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Understanding the genetic factors behind meat quality traits is of great significance to
animal breeding and production. We previously conducted a genome-wide association
study (GWAS) for meat quality traits in a White Duroc × Erhualian F2 pig population using
Illumina porcine 60K SNP data. Here, we further investigate the functional candidate genes
and their network modules associated with meat quality traits by integrating
transcriptomics and GWAS information. Quantitative trait transcript (QTT) analysis,
gene expression QTL (eQTL) mapping, and weighted gene co-expression network
analysis (WGCNA) were performed using the digital gene expression (DGE) data from
493 F2 pig’s muscle and liver samples. Among the quantified 20,108 liver and 23,728
muscle transcripts, 535 liver and 1,014 muscle QTTs corresponding to 416 and 721
genes, respectively, were found to be significantly (p < 5 × 10−4) correlated with 22 meat
quality traits measured on longissiums dorsi muscle (LM) or semimembranosus muscle
(SM). Transcripts associated with muscle glycolytic potential (GP) and pH values were
enriched for genes involved in metabolic process. There were 42 QTTs (for 32 genes)
shared by liver and muscle tissues, of which 10 QTTs represent GP- and/or pH-related
genes, such as JUNB, ATF3, and PPP1R3B. Furthermore, a genome-wide eQTLmapping
revealed a total of 3,054 eQTLs for all annotated transcripts in muscle (p < 2.08 × 10−5),
including 1,283 cis-eQTLs and 1771 trans-eQTLs. In addition, WGCNA identified five
modules relevant to glycogen metabolism pathway and highlighted the connections
between variations in meat quality traits and genes involved in energy process.
Integrative analysis of GWAS loci, eQTL, and QTT demonstrated GALNT15/GALNTL2
and HTATIP2 as strong candidate genes for drip loss and pH drop from postmortem
45min to 24 h, respectively. Our findings provide valuable insights into the genetic basis of
meat quality traits and greatly expand the number of candidate genes that may be valuable
for future functional analysis and genetic improvement of meat quality.
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INTRODUCTION

Meat quality is important to both meat processing industry and
consumer’s purchasing attitude, while meat quality traits are
controlled by multiple genes as complex quantitative traits
(Andersson and Georges, 2004). Therefore, improving pork
quality is a priority and challenge task in modern pig breeding
(Moeller et al., 2010; Gallardo et al., 2012; Becker et al., 2013;
Nonneman et al., 2013). The genetic mechanisms that underlie
meat quality traits are still largely unknown. Exploration of genes
and gene networks related to meat quality traits in pigs through
transcriptomic analysis will increase our knowledge of the genetic
mechanisms of meat quality traits.

To date, GWAS have successfully identified a large number of
genetic loci associated with meat quality traits (Ma et al., 2009;
Luo et al., 2012; Nonneman et al., 2013; Liu et al., 2015; Xiong
et al., 2015). They also discovered some promising candidate
genes affecting target meat quality traits, such as GLUL for pH
and ITGB1 for cooking loss (Nonneman et al., 2013). However,
many GWA studies have demonstrated that most trait-associated
loci likely resulted from regulatory mutations rather than amino
acid substitutions within gene, and even the genes closest to
GWAS peak SNPs are frequently not causative genes underlying
the studied traits (Tasan et al., 2015). The common SNPs detected
by current GWAS only explain a small proportion of heritable
variability and provide limited insights into biological pathways
and genetic mechanisms for meat quality traits. Since genotypes
give rise to organismal phenotypes through intermediate
molecular phenotypes (such as gene expression), in addition to
genomics, systematic analysis of multiple omics is very helpful to
decipher GWAS signals.

Recently, genetic analysis of expression profiles have proved to
be a popular and promising strategy for elucidating the genetic
basis of complex traits (JU, 2008). Integration of expression
profiles with genotyping data in segregating groups allows the
mapping of expression quantitative traits loci (eQTL) which has
potential to map the mutations on the level of DNA affecting the
mRNA expression (Wimmers et al., 2010; Drag et al., 2019;
Carmelo and Kadarmideen, 2020) and provides more
biological insights into GWAS findings. Up to now, lots of
studies have demonstrated that jointing GWAS and eQTL can
facilitate the identification of causative genes/mutations or
biological pathways (Kogelman et al., 2014; Puig-Oliveras
et al., 2016) affecting studied traits. For instance, Ma et al.
(2014) performed an integrative analysis of GWAS and eQTL
to identify the causal variant for GP, pH24h, and drip loss of pork.
Xiong et al. (2015) characterized SDR16C5 as the important
candidate gene for pig growth trait by jointing QTL mapping
and gene expression analysis. Gonzalez-Prendes et al. (2017)
observed a number of cis-eQTL that co-localized with QTL
regions for meat quality.

To our knowledge, Ponsuksili et al. (2008), for the first time,
performed quantitative trait transcript (QTT) analysis between
gene expression profiles in muscle and pork drip loss in Duroc ×
Pietrain F2 pigs. Using White Duroc × Erhualian F2 60K SNP
data, we previously identified a number of loci for meat quality
traits and prioritized some interesting potential candidate genes

(Duan et al., 2009; Ma et al., 2013; Ma et al., 2014). In this study,
to further investigate the genetic architecture of 22 meat quality
traits, herein we firstly performed QTT analysis to explore
transcripts significantly associated with different meat quality
attributes; then, we surveyed the over-represented GO terms of
these by functional enrichment analysis. After that, through
integrative analyses of GWAS, eQTL, and QTT, we detected
several promising candidate genes for the meat quality traits.
Finally, co-expression gene network was conducted via WGCNA
package. This study provides deeper insights into the genetic
determinism of meat quality traits and would benefit the final
identification of causal genes underlying these traits.

MATERIALS AND METHODS

Ethics Statement
All procedures involving animals followed the guidelines for the
care and use of experimental animals approved by the State
Council of the People’s Republic of China. The ethics
committee of Jiangxi Agricultural University specifically
approved this study.

Animals and Phenotypic Traits
This study involved a three-generation resource population, as
described elsewhere (Ren et al., 2006; Duan et al., 2009). Briefly, a
total of 1912 F2 animals were obtained from nine F1 boars and 59
F1 sows in six batches, which were the progeny derived from two
White Duroc sires and 17 Erhualian dams as founders. All piglets
were fed with a similar diet, raised under a consistent indoor
condition. Of them, 1029 F2 individuals were slaughtered for
phenotype recoding at 240 ± 5 days of age in a commercial
abattoir.

Twenty-two meat quality traits, including pH, EZ-drip loss
and glycolytical potential (GP)-related components were
measured on the LM between the 10th rib and the last rib
and/or SM from the left side of the carcass. The 22 meat quality
traits are as follows: pH45min, 3, 9, 15 and 24 h,
pHdrop_45 min_3 h and pHdrop_45 min_24 h of LM and
SM, dripEZ_24 h and dripEZ_48 h of LM and SM, glycogen,
glucose-6-phosphate, lactate, and GP concentrations of LM
(Table 1). The detailed measurement procedures have been
described previously (Duan et al., 2009; Ma et al., 2009). In brief,
the pH values were measured in LM and SM using the Delta 320
pHMeter at 45 min, 3, 9, 15, and 24 h postmortem. The pH drop
between the two time points was then calculated. Each sample
was measured twice and the average value of parallel
measurements was used for the further analysis. Drip loss
was assayed by an EZ-Drip Loss method (Rassmussen and
Andersson, 1996; Otto et al., 2004). Glycogen, glucose,
glucose-6-phosphate, and lactate concentrations were
determined at 30 min postmortem on LM according to the
procedure as described by Duan et al. (2009). Glycolytic
potential (GP) was calculated using the following formula:
GP � 2× (glucose + glycogen + glucose-6-phosphate) +
lactate (Monin and Sellier, 1985; Maribo et al., 1999). The
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total amount of glucose and glycogen was defined as residual
glycogen (RG) in muscle.

Single Nucleotide Polymorphisms
Genotyping and Genome-Wide Association
Study Analysis
Genomic DNA was isolated from ear tissue with a standard
phenol/chloroform extraction method and then dissolved in Tris-
EDTA buffer. After examining DNA quality and concentration, a
total of 1,020 animals were genotyped for 62,613 SNPs on the
Illumina PorcineSNP60K Beadchip according to the
manufacturer’s protocol. The quality control (QC) procedures
were performed by Plink v 1.07 software (Purcell et al., 2007).
Briefly, the SNPs with call rate <0.9, minor allele frequency
(MAF) < 0.05, and Hardy–Weinberg equilibrium p < 10−5, as
well as animals with call rate <0.9 and Mendelian inheritance
error rate >0.05, were excluded from the dataset. After QC, a final
set of 47,956 SNPs on all F2 pigs were used for the subsequent
analyses. The association between SNPs and phenotypic values
were then evaluated using polygenic and mmscore function of
GenABEL v1.7 as described previously (Ma et al., 2013). SNP
chromosomal positions were based on the current pig genome
assembly (Sus Scrofa Build 11.1 assembly).

Ribo Nucleic Acid Extraction and Digital
Gene Expression Quantification
Total RNA was harvested from LM muscles and livers of 493 F2
individuals using TRIzol (Invitrogen, Carlsbad, CA,

United States) and further purified with RNeasy column
(Qiagen, Valencia, CA, United States) following the
standard manufacturer’s protocol. RNA integrity and
concentration were evaluated with the Bioanalyser 2,100
(Agilent) and the NanoDrop ND-1000 Spectrophotometer
(Thermo Fisher Scientific, Carlsbad, CA, United States).
Expression profiles of whole genome transcripts were
assayed by digital gene expression analysis (DGE), and then
the DGE quantification and DGE data processing were
conducted as described by Chen et al. (2013) and Zhang
et al. (2017), respectively. Briefly, mRNA was isolated from
total RNA using the magnetic oligo (dT) beads (Invitrogen).
Double-stranded cDNA was synthesized with oligo (dT)
primers and then digested by the restriction enzymes NlaIII
andMmeI (New England Biolabs, Ipswich, MA, United States).
The digested cDNA was ligated with two Illumina specific
adaptors. Polymerase chain reaction was performed to enrich
the cDNA library. After purification and denaturation, the
single-chain molecules of each cDNA library were loaded onto
the flowcell and sequenced on a GAII sequencer (Illumina).
The pig genome reference sequence and annotated transcript
set were downloaded from the database of PEDE (Pig
Expression Data Explorer; http://pede.dna.affrc.go.jp/) and
pig unigene in the National Center for Biotechnology
Information (ftp://ftp.ncbi.nih.gov/repository/UniGene/Sus_
scrofa/). After removing reads of low quality in which more
than half the base’s qualities were <5, we aligned qualified
reads against the reference sequences using SOAP2 (Li et al.,
2009), allowing up to one mismatch in 21-bp tag sequences.
The number of unambiguous clean tags for each transcript was

TABLE 1 | Descriptive statistics of 22 meat quality traits measured on longissimus dorsi muscle (LM) and semimembranosus muscle (SM).

Trait No Mean ± SDa CVb (%)

LM
pH at 45 min postmortem (pH45 min) 756 6.41 ± 0.33 5.13
pH at 3 h postmortem (pH3 h) 759 6.27 ± 0.44 7.01
pH at 9 h postmortem (pH9 h) 763 5.92 ± 0.33 5.55
pH at 15 h postmortem (pH15 h) 761 5.75 ± 0.23 4.01
pH at 24 h postmortem (pH24 h) 764 5.67 ± 0.17 3.06
pH decline from 45 min to 3 h postmortem (pHdrop_45 min_3 h) 738 0.20 ± 0.18 87.38
pH decline from 45 min to 24 h postmortem (pHdrop_45 min_24 h) 743 0.76 ± 0.31 40.54
Drip loss after 24 h storage (DripEZ_24 h), % 884 1.10 ± 0.50 44.87
Drip loss after 48 h storage (DripEZ_48 h), % 397 1.65 ± 1.01 61.08
Residual glycogen (RG), μmol/g 957 24.06 ± 14.15 58.82
Glucose-6-phosphate (6PGlucose), μmol/g 957 0.16 ± 0.35 221.90
Lactate, μmol/g 957 88.38 ± 21.72 24.57
Glycolytic potential (GP), μmol/g 957 136.80 ± 29.26 21.39

SM
pH at 45 min postmortem 763 6.54 ± 0.29 4.39
pH at 3 h postmortem 657 6.36 ± 0.33 5.13
pH at 9 h postmortem 756 6.05 ± 0.27 4.47
pH at 15 h postmortem 763 5.86 ± 0.23 3.88
pH at 24 h postmortem 768 5.76 ± 0.20 3.50
pH decline from 45 min to 3 h postmortem 651 0.18 ± 0.17 91.43
pH decline from 45 min to 24 h postmortem 761 0.78 ± 0.31 39.40
Drip loss after 24 h storage, % 848 0.91 ± 0.54 58.94
Drip loss after 48 h storage, % 398 1.08 ± 0.54 49.73

aStandard deviation.
bCoefficient of variation.
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calculated and then normalized to TPM (number of tags
mapped to each gene per million clean tags) as the
expression level of each transcript.

Quantitative Trait Transcript Analysis and
eQTL Mapping
Firstly, gene expression profiles and phenotypic data of meat
quality traits were adjusted for sex, batch, and kinship with a
robust linear regression model by using the polygenic function
of GenABEL in the R software (Lourenco et al., 2011). The
Pearson correlation coefficient estimation between gene
expression level and phenotypic values of meat quality traits
was then evaluated by using the cor function in R environment.
In order to adjust the multiple tests, a significant threshold of p <
0.0005 was applied, which refers to the QTT analysis in the
human obesity (Naukkarinen et al., 2010) and Drosophila
melanogaster (Passador-Gurgel et al., 2007). Therefore, a
transcript was defined as a quantitative trait transcript (QTT)
if its association coefficient reached a p value of <0.0005. The
functional annotations of a series of genes were performed by
gene ontology (GO) with DAVID Bioinformatics Resources 6.7
(https://david.ncifcrf.gov/summary.jsp). eQTL mapping was
performed for transcripts in muscle using mixed linear
model implemented by the mmscore function of GenABEL
package in R software as described by Chen et al. (2013). In
brief, sex and batch were considered as fixed effects, the genetic
co-variances among samples were also taken into account by
fitting kinship matrix derived from genotypes of whole-genome
SNP markers. A Bonferroni correction was applied to adjust
multiple tests. A cis-eQTL was defined if its peak SNP (eSNP)
was located in the region from 2.5 megabase (Mb) upstream of
the transcription start site to 2.5 Mb downstream of the gene
end; otherwise, it was termed as a trans-eQTL. High linkage
disequilibrium (LD) existed in the F2 special population, but LD
between pairs of SNPs 2.5 Mb apart in this population was no
longer significant, so 2.5 Mb was used (Xiong et al., 2015). For
integrative genomic analysis, a chromosomal region around 2.
5 Mb upstream and downstream of the most significant trait-
associated SNPs obtained in previous GWAS analysis was
defined as a QTL region. We first screened the QTTs located
within QTL regions and then analyzed the associations of gene
expression levels of QTTs with the SNPs within the QTL region
(cis-eQTL).

Weighted Gene Co-expression Network
Analysis
WGCNA groups genes into modules based on patterns of co-
expression, which can be linked to phenotypes by correlation
analysis between trait values and the module eigengenes. All
QTTs for a given trait were explored to build up a weighted gene
co-expression network using the WGCNA package in R (Zhang
and Horvath, 2005; Kogelman et al., 2014). In brief, all transcripts
were used to construct a matrix of the Pearson correlations
between gene pairs studied. The Pearson correlation matrix

(PCM) then was transformed into an adjacency matrix (i.e., a
matrix of connection strengths) using a power function f(x) � x̂β,
where x is the absolute value of the PCM. It resulted in a
“weighted” network. Analysis of scale-free topology for
multiple soft thresholding powers was implemented to pick an
appropriate soft-thresholding power (β) for network
construction. In the present study, the adjacency matrix was
created by calculating the Pearson’s correlation between all genes
and raised to a power β of 2. The power βwas chosen based on the
scale-free topology criterion (Zhang and Horvath, 2005),
resulting in a scale-free topology index (R2) of 0.86. The
adjacency matrix was further transformed into a topological
overlap matrix to detect modules using hierarchical clustering.
We then evaluated the correlations between modules and a given
meat quality trait. A Bonferroni-corrected threshold of 1/(Nmodule

× Ntrait), where Nmodule and Ntrait are the number of modules
and meat quality traits, respectively, was adopted for the
statistical significance threshold for the correlation coefficient.
The network connectivity (k) represents the sum of a gene’s
connection strengths with the other genes in the network. We
defined an intramodular connectivity (Kin) measure for each gene
based on its correlation with the rest of genes in a given module.

RESULTS

Analysis of Meat Quality Traits and
Transcript Profiles in Liver and Muscle
This study involved 22 meat quality traits recorded in the White
Duroc × Erhualian F2 family, and descriptive statistics of all the
studied traits are shown in Table 1. Compared with LM, SM had

FIGURE 1 | The Pearson correlation coefficients for each pair among 22
meat quality traits. The blue and red colors represent positive and negative
direction of the correlation coefficient. A correlation coefficient of <−0.16 or
>0.16 indicates a significant threshold of p < 0.05.
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higher pH values measured at all the five postmortem time points
(pH45 min, 3, 9, 15, and 24 h) and lower drip loss after 24 or 48 h
of storage (p < 0.05), while the ranges of pH decline from 45 min
to 3 h and from 45 min to 24 h were comparable between two
muscle tissues (p > 0.05). We examined the correlation
coefficients among the 22 meat quality traits (Figure 1 and
Supplementary Tables S1, S2). The lactate content was
strongly negatively (r < −0.5, p < 0.05) correlated with
pH45 min and pH3h (Figure 1). In contrast, the contents of
RG and 6PGlucose both were positively correlated with early
post-mortem pH values while negatively correlating with pH24 h.
As a result, GP showed a strong negative correlation with pH24 h
(r � −0.39, p < 0.05). LM_RG was positively correlated with
LM_pHdrop_45 min_24 h in a moderate degree (r � 0.45, p <
0.05). Moreover, there was a moderately high and positive
correlation (r: 0.39–0.66) between LM and SM for the same
meat quality trait.

To detect the QTTs related to meat quality traits, the
expression levels of whole-genome transcripts in liver and
muscle were determined by tag-based RNA sequencing. On
average, about 6 million and 5 million (ranging from 3 million
to 10 million reads) raw tags 35 bp in length were sequenced in
liver and muscle samples, respectively. Clean reads 21 bp in
length were obtained by removing the adaptors and low-
quality sequences. Clean tags accounting for 93.6–98.8%
(average 96.4%) of raw tags were used for the subsequent
analysis. Then clean tags were mapped to the two pig
transcript sequence databases: PEDE and pig unigene in
NCBI. We mapped 84.2% for liver and 81.3% for muscle of
clean tags to swine transcripts. After quality control, 20,108 liver
and 23,728muscle transcripts were used for further QTT analysis.

Detection of Quantitative Trait Transcripts
for Meat Quality Traits
To identify transcripts and genes that are significantly associated
with meat quality traits, we evaluated the associations of the
whole genome expression profiles of liver and muscle with the 22
meat quality traits liver in 493 White Duroc × Erhualian F2 pigs.
Based on DGE data, 20,108 and 23,728 transcripts were qualified

in liver and muscle, respectively. Among them, we identified 535
liver QTTs (corresponding to 416 genes) and 1,014 muscle QTTs
(corresponding to 721 genes) that were significantly (p < 5 × 10−4)
associated with those studied traits. The number of liver or
muscle QTTs associated with pH, drip loss, or GP
components exceeded a hundred (Table 2). Among them, 111
liver and 312 muscle transcripts were significantly associated with
at least two meat quality traits.

To reveal the biological function of the discovered QTT, we
performed GO enrichment analysis on genes which had QTTs in
liver or muscle correlated with pH, drip loss, or GP components.
In muscle tissue, genes significantly associated with the GP-
related traits were mainly enriched in the macromolecule
catabolic process (p � 2.54E-04), macromolecule metabolic
process (p � 1.20E-03), and protein catabolic process (p �
6.20E-03) (Table 2), and we found that genes significantly
related to pH were concentrated in the GO terms of
regulation of the cellular metabolic process (p � 1.90E-02) and
glycogen metabolic process (p � 2.60E-02). Besides, the genes
whose expression correlated with drip loss were enriched in the
regulation of the insulin receptor signalling pathway (p � 1.00E-
03), negative regulation of the phosphorus metabolic process (p �
4.30E-02), and regulation of cAMP-dependent protein kinase
activity (p � 4.60E-02). The top GO biological process terms
significantly overrepresenting in liver QTTs for pH, drip loss, and
GP components were negative regulation of protein metabolic
process (p � 4.50E-04), cellular response to fatty acid (p � 5.20E-
04), and lipid metabolic process (p � 4.30E-03), respectively.

Forty-two QTTs were identified in both the liver and muscle
tissues, representing 32 candidate genes for meat quality, 10 of
which were associated with pH and/or GP (Table 3). The JUNB
gene was significantly correlated with three meat traits including
LM_pH24h, LM_GP, and SM_pH24 h. FOS gene was
significantly associated with LM_pH3h. In addition, the most
significant transcript associated with the GP in muscle was gnl.
UG.Ssc.S35165160 (p � 1.54E-09, r � 0.26), and the correlation
coefficient between it and the GP in liver was 0.174 (p � 1.54E-
04). This transcript was derived from the PPP1R3B (Protein
phosphatase 1 Regulatory Subunit 3B) gene, which encodes
the catalytic subunit of the serine/threonine phosphatase-1. In

TABLE 2 | QTTs for pH, drip loss, and GP components identified in liver and muscle tissues.

Traits No. of
QTTs in
liver

GO terms of biological process No. of
QTTs in
muscle

GO terms of biological process

pH 332 Negative regulation of protein metabolic process (p � 4.50E-
04), response to glucocorticoid (p � 5.30E-04), negative
regulation of cellular protein metabolic process (p � 1.00E-03)

413 Regulation of cellular metabolic process (p � 1.90E-02),
glycogen metabolic process (p � 2.60E-02)
KEGG_Pathway: TNF signaling pathway (p � 5.60E-03)

Drip loss 141 Cellular response to fatty acid (p � 5.20E-04), enzyme linked
receptor protein signaling pathway (p � 1.90E-02), cellular
macromolecule metabolic process (p � 3.10E-02)

156 Regulation of insulin receptor signaling pathway (p � 1.00E-03),
negative regulation of phosphorus metabolic process (p �
4.30E-02), regulation of cAMP-dependent protein kinase
activity (p � 4.60E-02)

GP
components

162 Lipid metabolic process (p � 4.30E-03), organic substance
metabolic process (p � 4.90E-03), positive regulation of
biological process (p � 6.20E-03)

564 Macromolecule catabolic process (p � 2.50E-04),
macromolecule metabolic process (p � 1.20E-03), protein
catabolic process (p � 3.30E-03), organic substance metabolic
process (p � 3.40E-02), metabolic process (p � 3.50E-02)
KEGG_Pathway: cGMP-PKG signaling pathway (p �
4.40E-02)
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human and mice, the gene-encoded protein promotes hepatic
glycogen synthesis and thereby regulates fasting energy
homeostasis (Dunn et al., 2006; Mehta et al., 2017; Raffield
et al., 2017; Stender et al., 2017). For the 10 candidate genes,
the GO-enriched terms included transcription factor activity,
RNA polymerase II core promoter proximal region sequence-
specific binding (p � 4.40E-06), skeletal muscle tissue
development (p � 5.50E-05), and regulation of cellular
macromolecule biosynthetic process (p � 4.20E-02) (Table 3).

Gene Expression Network Analysis
To further explore the molecular mechanisms and genes related
to meat quality, we constructed a weighted gene co-expression
network using gene expression profiles in muscle tissue and then
investigated the correlation between network modules and the 22
meat quality traits. Overall, we identified 85 muscle network
modules (Figure 2A and Supplementary Table S3). Among
them, four modules (modules 15, 35, 45, and 75; Figure 2B,

Supplementary Tables S4, S5) were significantly correlated with
at least one meat quality trait. More importantly, muscle module
15 had significant associations with 11 meat quality traits,
including pH and GP values (Figure 2B). The result of GO
biological enrichment analysis for the module 15 showed that the
genes in this module were enriched in the categories of response
to chemical stimulus (p � 5.20E-12), positive regulation of
macromolecule biosynthetic process (p � 6.60E-07), and
positive regulation of transcription, DNA-dependent (p �
1.20E-06) (Figure 2C). The co-expression network was
established with the genes in module 15 (Figure 2D), and it
contained the top 150 connections ranked by significance of
correlation coefficients among genes in module 15. In this
network, we observed that FOS, JUNB, BTG2, and ATF3
belonged to hub genes, which was consistent with the findings
of the QTTs for GP. Additionally, we found another four hub
genes including DUSP1, EGR1, ZEP36, and JUN that were
associated with GP.

TABLE 3 | Ten candidate genes were identified to have GP- or pH-associated transcripts in both liver and muscle.

Traits QTT Position, bpa Geneb Liver tissue Muscle tissue GO categories

r
valuec

p
Value

r
value

p
Value

LM_pH24h ADR01_0086_A06 SSC2:
66,214,594–66,215,637

JUNBd 0.19 9.11E-
05

0.25 4.23E-
07

GOTERM_MF_ALL: transcription factor
activity, RNA polymerase II core promoter
proximal region sequence-specific
binding (p � 4.40E-06)

LM_GP ADR01_0086_A06 SSC2:
66,214,594–66,215,637

JUNB −0.16 4.54E-
04

−0.19 5.63E-
06

SM_pH24h ADR01_0086_A06 SSC2:
66,214,594–66,215,637

JUNB 0.22 8.65E-
06

0.19 1.00E-
04

LM_GP PTG01_0068_A09 SSC3:
59,176,153–59,185,280

VAMP5 0.16 4.24E-
04

0.17 6.43E-
05

LM_pH3h gnl.UG.Ssc.S35166542 SSC7:
98,449,508–98,453,576

FOS −0.19 2.18E-
04

0.22 7.67E-
06

LM_GP gnl.UG.Ssc.S46877694 SSC9:
55,377,266–55,512,247

ETS1 −0.18 5.99E-
05

−0.16 2.00E-
04

GOTERM_BP_ALL: skeletal muscle tissue
development (p � 5.50E-05), regulation of
cellular macromolecule biosynthetic
process (p � 4.20E-02)

SM_pH24h gnl.UG.Ssc.S46877694 SSC9:
55,377,266–55,512,247

ETS1 0.18 3.96E-
04

0.21 2.33E-
05

LM_RG gnl.UG.Ssc.S42528236 SSC9:
64,031,841–64,038,694

BTG2 −0.20 8.35E-
06

−0.16 1.29E-
04

LM_GP gnl.UG.Ssc.S42528236 SSC9:
64,031,841–64,038,694

BTG2 −0.17 2.81E-
04

−0.21 5.29E-
07

LM_RG OVR01_0025_H10 SSC9: 130,772,262-
130,785,599

ATF3 −0.25 4.47E-
08

−0.18 1.95E-
05

LM_GP OVR01_0025_H10 SSC9: 130,772,262-
130,785,599

ATF3 −0.17 1.91E-
04

−0.22 3.63E-
07

SM_pH24h OVR01_0025_H10 SSC9:
130,772,262–130,785,599

ATF3 0.20 7.91E-
05

0.22 1.07E-
05

LM_ pH24h gnl.UG.Ssc.S18378970 SSC13:140,730,114-
140,758,627

TIMMDC1 0.19 1.78E-
04

0.17 4.14E-
04

LM_GP gnl.UG.Ssc.S35165160 SSC15:
56,002,439–56,013,471

PPP1R3B 0.17 1.51E-
04

0.26 1.54E-
09

LM_pH45min gnl.UG.Ssc.S18549086 SSC15:
63,485,314–63,505,728

NR4A2 −0.18 3.04E-
04

0.20 5.98E-
05

LM_pH45min OVRM1_0062_C12 SSC16:
51,458,262–51,463,541

DUSP1 −0.19 2.06E-
04

0.18 2.91E-
04

LM_pH3h OVRM1_0062_C12 SSC16:
51,458,262–51,463,541

DUSP1 −0.22 1.33E-
05

0.18 3.14E-
04

aChromosomal location of quantitative trait transcript (QTT) according to Sus Scrofa Build 10.2 assembly.
bAnnotated gene of the QTT.
cThe coefficient between gene expression and phenotype value.
dThe hub gene in the module 15.
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Genome-wide Detection of eQTL
The result of eQTL analysis for liver transcript profiling has been
reported previously (Chen et al., 2013). Thus, we herein mapped
eQTL using muscle transcriptome data. At a significance
threshold of p < 2.08 × 10−5, we identified 3,054 eQTLs,
including 1,283 cis-eQTLs for 1,146 genes (Supplementary
Table S6) and 1771 trans-eQTLs for 1,569 genes (Figure 3A
and Supplementary Table S7). An eQTL may regulate the
expression of multiple genes, which we also refer to as
pleiotropy of eQTLs (Tian et al., 2016). Descriptive statistics
revealed that 73 cis-eQTLs (cis-eSNPs) and 141 trans-eQTLs
(trans-eSNPs) were associated with the expression of two or
more genes (Figure 3B). Of note, the eQTLs that displayed
pleiotropy were distributed in some specific chromosome
regions but formed clusters, which could be regarded as eQTL

hotspots (Figure 3C). The most striking cis-eQTL with
pleiotrophy was identified at 41, 817, 352 bp on SSC3 (cis-SNP
ss131212891), which was associated with the expression of four
genes (Supplementary Table S6). The trans-eQTLs hotspots
were focused on SSC1, 3, 4, 7, 9, 12, 14, and X (Figure 3C).
Strikingly, the trans-eSNP ss131233236 on SSC3 was found to be
associated with 84 genes (Supplementary Table S7).

Integrative Analysis of Genome-Wide
Association Study, eQTL, and Quantitative
Trait Transcript Data
We previously detected the loci for the meat quality traits through
linkage and GWAS analyses in the White Duroc × Erhualian F2
population (Duan et al., 2009; Ma et al., 2013). After conducting

FIGURE 2 | Weighted gene co-expression analysis of 17,822 transcripts in muscle. (A) Heat map for muscle tissue co-expression network. Each module is
assigned a unique color. Themodules are ordered by size, and the genes within modules in the rows and columns are sorted according to their intramodular connectivity.
(B) Heatmap representing the significance (−log10 p-value) of the correlation between muscle network modules and 22 meat quality traits in muscle. (C) Functional
annotation of module 15 genes by gene ontology (GO) analysis. The bar plot represents the gene counts within each GO category. All function or process terms
listed have enrichment of corrected p values < 0.05. (D) Visualization of module 15; the top 150 connections sorted by correlation coefficients among transcripts are
shown for each module. Nodes correspond to genes. When the gene symbols are unknown, transcript IDs are shown. The size of nodes represent their intramodular
connectivity. Nodes in red within a module represent genes involved in glycogen metabolism pathway enriched in module 15.
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eQTL mapping using muscle transcriptome data of 493 F2
animals, we carried out an integrative analysis of GWAS,
eQTL, and QTT information to identify the most likely
candidate genes at the GWAS loci for meat quality. A major
QTL for drip loss of SM (SM_DripEZ_48 h) was mapped on
SSC13, where the most significant SNP associated with this trait
was rs80860411 (p � 3.49E-05, Figure 4A). Interestingly, the SNP
rs80860411 was just the peak cis-eQTL SNP for the GALNT15
gene (p � 3.83E-12, Figure 4B). Moreover, the QTT analysis
showed that the expression level of GALNT15 was significant
negative correlated with drip loss phenotype (p � 3.81E-05, r �
−0.21; Figure 4C). Therefore,GALNT15was stand out as a strong
candidate gene influencing drip loss.

Similarly, the GWAS signal for pHdrop_45 min_24 h was
colocalized with the cis-eQTL for HTATIP2, and there was a

significantly negative correlation between pHdrop_45 min_24 h
phenotype and HTATIP2 gene expression (p � 4.08E-04, r �
−0.75) (Supplementary Figure S1). GO annotations related to
this gene include oxidoreductase activity and NAD binding.

DISCUSSION

Comparison of Trait-Related Quantitative
Trait Transcripts Between Liver and Muscle
Liver and muscle are metabolically active organs and their
functions have important effects on meat quality traits. Some
studies have investigated the association between transcription
profiles of muscle and pork quality traits (Ponsuksili et al., 2008),
while few studies have identified QTTs in liver associated with

FIGURE 3 | Genome-wide eQTL analysis. (A) Scatter plot of all eQTL. Each dot represents a SNP-gene pair, with the vertical direction linking to the SNP and the
horizontal direction linking to the gene. The red and blue dots represent cis-eQTL and trans-eQTL, respectively. The size of the dot represents the degree of significance.
(B) Analysis of eQTL pleiotropy. The X-axis of the histogram represents different groups that were classified according to the associated gene numbers per eQTL, and
the Y-axis represents the eQTL count for each group. cis-eQTLs and trans-eQTLs are distinguished by red and blue color. (C) Distribution of eQTL hotspots. The
X-axis represents the chromosome distribution of eQTLs, the Y-axis indicates the count of genes associated with each eQTL. The upper part displays the cis-eQTL
hotspot distribution, and if the count of associated genes is 1, it is shown in grey. If greater than 2, it is shown in red. The lower part displays the trans-eQTL hotspot
distribution, and if the count of associated genes is 1, it is shown in grey. If greater than 2, it is shown in blue.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7480708

Liu et al. Genetic Architecture of Meat Quality Traits

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


pork quality traits (Zhang et al., 2017). Interestingly, the number
of our observed muscle QTTs for pH, drip loss, and GP
components are higher than that of liver QTTs (Table 2). A
plausible explanation for this result is that changes in gene
expression in muscle tissue have a more direct effect on meat
quality than in liver. Unsurprisingly, the results of GO
enrichment analysis on the gene sets with liver or muscle
QTTs related to pH, drip loss, and GP components indicate
that genes involved in the regulation of organic substance
metabolism and energy metabolism in liver and muscle tissues
are important for the molecular basis of variation in these meat
quality traits.

Given the difference in metabolic functions between liver and
muscle, comparing the QTTs and GO enrichment analysis results
between liver and muscle may help in understanding the
functional similarities and differences between genes associated
with the same meat characteristics in the two tissues. For
example, we observed 92 liver and 210 muscle QTTs
associated with residual glycogen (RG) in LM. The genes in
liver tissue were enriched in response to extracellular stimulus
(p � 2.90E-06), response to starvation (p � 1.70E-05), cellular
response to extracellular stimulus (p � 5.50E-05), response to
nutrient levels (p � 9.03E-05), etc. In contrast, the genes in muscle
tissue were focused on the organic substance catabolic process
(p � 2.70E-04), muscle structure development (p � 6.10E-04),
catabolic process (p � 7.20E-04), etc. The results suggest that most
RG-related genes in the liver are those that can alter their
expression levels in response to extracellular stimulus (such as

nutrients and hormone in the blood), which in turn may
influence the blood glucose level and the rate of glucose
uptake in muscle, while genes in muscle that regulate catabolic
process play an important role in its own RG levels. Thus, the
results are consistent with the main function of the two tissues.
Meanwhile, we detected 10 common QTTs for the same traits in
liver and muscle tissues (Table 3). Three enriched GO terms was
found for the gene set of those QTTs, including transcription
activity, skeletal muscle development, and macromolecule
biosynthetic process, suggesting the complexity of the genetic
mechanisms of GP and pH traits.

Comparison of Trait-Related Quantitative
Trait Transcripts Between Longissiums
Dorsi Muscle and Semimembranosus
Muscle
Except chemical composition determined only in LM, other meat
quality traits were measured in both LM and SM. On one hand,
the moderate and positive correlation for the same meat quality
trait between LM and SM imply that these two muscle tissues
might share some common factors influencing their
characteristics. Indeed, in the present study, we found that 34
liver QTTs (for 26 annotated genes) and 54 muscle QTTs (for 34
annotated genes) were associated with meat quality of both LM
and SM (Supplementary Tables S8, S9). It is noted that there was
only one transcript ADR01_0086_A06 in liver and muscle
significantly associated with the pH24 h of LM and SM. On

FIGURE 4 | Integrating analysis of pQTL, eQTL, and QTT identify candidate gene GALNT15 influencing drip loss. (A) The results for GWAS and the phenotype
distribution for three genotypes of the peak SNP rs80860411 on SSC13. (B) The results for eQTLmapping and the gene expression level distribution for three genotypes
of the peak SNP rs80860411 on SSC13. The phenotype/expression level distribution adjusting for sex and batch. (C) The correlation coefficient between drip loss
phenotype data and gene expression level.
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the other hand, although LM and SM are both characterized as
fast-twitch, glycolytic skeletal muscle, there are some differences
in meat quality traits between them (Table 1), which may be
caused by different genetic factors (Herault et al., 2014). This
notion is supported by the finding that many liver QTTs were
only associated with pH24 h of LM or SM. Furthermore, the
functional enrichment analysis showed that the liver genes related
to pH24 h of LM were mostly enriched in small molecular
metabolic process (p � 6.10E-04), while the liver genes for
pH24 h of SM were highly concentrated at the term of the
apoptotic signalling pathway (p � 4.40E-06). The result
implied the possible potential molecular mechanism for
differences in meat quality characteristics between LM and SM.

Key Modules and Hub Genes Associated
With Glycolytic Potential and pH
Our QTT and WGCNA analyses jointly identified five important
candidate genes that may affect pH and/or GP, including JUNB,
FOS, ATF3, BTG2, and DUSP1 (Table 3 and Figure 2D). They
were detected as the hub genes in module 15, significantly
associated with pH and GP traits. Raimundo et al. (2009)
showed that SRF-regulated FOS-JUNB network was
downregulated in fumarate hydratase deficiency. Fumarate
hydratase in the mitochondria is a Krebs cycle enzyme, which
catalyzes reversible reaction: Fumaric acid + H2O # L-malate.
So, FOS-JUNB pathway may play a key role in glucose and energy
metabolic process. ATF3 encodes a member of the mammalian
activation transcription factor/cAMP responsive element-
binding (CREB) protein of transcription factors. Several
studies have demonstrated that ATF3 modulates the immune
response, atherogenesis, cell cycle, apoptosis, and glucose
homeostasis (Allen-Jennings et al., 2001; Thompson et al.,
2009; Kim et al., 2013; Tsai et al., 2015; Jadhav and Zhang,
2017). BTG2 encodes a member of the BTG/Tob family, and this
encoded protein is involved in the regulation of the G1/S
transition of the cell cycle. BTG2 expression was reported to
play a key role in skeletal muscle growth and fat traits in pig (Feng
et al., 2007; Mo et al., 2011). Knockdown of BTG2 using lentiviral-
based shRNA and siRNA severely impaired myotube formation
through cell cycle arrest (Rajan et al., 2012). The protein encoded
by DUSP1 (dual-specificity phenosphatase 1) can
dephosphorylate MAP kinase MAPK1/ERK2, leading to its
involvement in several cellular processes. Wu et al. (2006)
found that mice lacking DUSP1 had enhanced MAP kinase
activity and resistance to diet-induced obesity and exhibited
unpaired insulin-mediated signalling and glucose homeostasis.

In module 15, in addition to the above-mentioned five genes,
EGR1, ZEP36, and JUN were also identified as hub genes. EGR1
(early growth response transcription factor) functions to drive
many biological processes such as differentiation, proliferation,
inflammatory response, and muscle regeneration during skeletal
muscle wound healing (Thiel and Cibelli, 2002; Fan et al., 2013).
Recently, a number of studies have shown highly connected hub
genes, like BTG2, EGR1, and FOS, tend to play significant roles in
module organization and might be expected to play the most
influential regulatory roles (Rajan et al., 2012). Raimundo et al.

(2009) found that the core FOS-JUNB network have interplayed
with their functional partners including EGR1 and ZFP36 genes,
in fumarate hydratase-deficient diploient diploid fibroblasts.
Ponsuksili et al. (2015) applied siRNA targeting to
significantly reduce the level of a regulator gene Cxcr7 relative
to control at 48 h post-transfection, then the expression of the
most top hub genes (such as EGR1, ZFP36, FOS, KLF4, and JUN)
in modules was also reduced. Therefore, in agreement with other
studies (Raimundo et al., 2009; Ponsuksili et al., 2015), the hub
genes and pathways in module 15 could play an important role in
regulating muscle energy metabolism and meat quality traits.

Other Identified Candidate Genes for Meat
Quality Traits
Two additional candidate genes, ETS1 and VAMP5, associated
with GP were identified by the QTT analysis (Table 3). Like
BTG2 and ATF3, ETS1 was also previously confirmed as
transcriptional regulators in myogenesis (Rajan et al., 2012).
The ETS1 gene encodes a member of the ETS family of
transcription factor. A study (Hua et al., 2018) demonstrated
that miR-139-5p inhibits aerobic glycolysis, cell proliferation,
migration, and invasion in hepatocellular carcinoma via a
reciprocal regulatory interaction with ETS1. The VAMP5
gene is a member of the vesicle-associated membrane protein
(VAMP)/synaptobrevin family and the SNARE superfamily.
This VAMP family may participate in trafficking events that
are associated with myogenesis, such as myoblast fusion and/or
GLUT4 trafficking (Schwenk et al., 2010). Therefore, the ETS1
and VAMP5 genes could be considered as interesting candidate
genes for GP.

Systematic integration of pQTL, eQTL, and QTT indicated
that GALNT15 and HTATIP2 are key genes affecting drip loss
and pHdrop_45 min_24 h (Figure 4 and Supplementary Figure
S1), respectively. GALNT15 catalyzes the initial reaction in
O-linked oligosaccharide biosynthesis, the transfer of an
N-acetyl-D-galactosamine residue to a serine to threonine on
the protein receptor. So far, few studies have addressed this gene.
A study (Abuli et al., 2011) addressed that GALNTs are
interesting candidates for colorectal cancer genetic
susceptibility. However, some studies of HTATIP2 suggest that
it plays a role in tumor suppress progression (Zhang et al., 2012;
Yu et al., 2014). The results can help to further decipher the
molecular mechanisms underlying the GWAS loci for the two
traits. Moreover, the same peak SNP shared by GWAS and eQTL
mapping can be applied in marker-assisted selection to achieve
genetic improvement of drip loss. Apparently, our findings
suggest that integrative analysis of GWAS, eQTL, and QTT is
a useful and powerful way to prioritize candidate genes for meat
quality traits.

CONCLUSION

In conclusion, we conducted QTT analysis between genome-wide
transcript profiles and 22 meat quality traits in the large scales of
493 liver andmuscle samples in F2 population, respectively. Some
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of these QTTs have been identified as functional genes affecting
meat-related traits. In addition, systems genetics study
(integrating transcriptome and genomic information) revealed
potential candidate genes associated with drip loss and
pHdrop_45 min_24 h. Furthermore, several relevant GO terms
and molecular pathway related to 22 meat quality traits were
obtained. Therefore, our results shed light on the genetics of meat
quality traits from a global point of view using large-scale
molecular gene expression profiles, gene clusters, DE genes
and QTL detection. We detected some candidate genes
associated with meat quality traits and revealed some
biological mechanisms related with target traits in pigs. These
findings provide in-depth insights into the genetic architecture of
meat quality traits, and would benefit the final identification of
the underlying QTLs/genes.
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