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5-Methylcytosine (5mC) is an important type of epigenetic modifi-
cation. Bisulfite sequencing (BS-seq) has limitations, such as severe
DNA degradation. Using single molecule real-time sequencing, we
developed a methodology to directly examine 5mC. This approach
holistically examined kinetic signals of a DNA polymerase (includ-
ing interpulse duration and pulse width) and sequence context for
every nucleotide within a measurement window, termed the ho-
listic kinetic (HK) model. The measurement window of each ana-
lyzed double-stranded DNA molecule comprised 21 nucleotides
with a cytosine in a CpG site in the center. We used amplified
DNA (unmethylated) and M.SssI-treated DNA (methylated) (M.SssI
being a CpG methyltransferase) to train a convolutional neural
network. The area under the curve for differentiating methylation
states using such samples was up to 0.97. The sensitivity and spec-
ificity for genome-wide 5mC detection at single-base resolution
reached 90% and 94%, respectively. The HK model was then
tested on human–mouse hybrid fragments in which each member
of the hybrid had a different methylation status. The model was
also tested on human genomic DNA molecules extracted from var-
ious biological samples, such as buffy coat, placental, and tumoral
tissues. The overall methylation levels deduced by the HK model
were well correlated with those by BS-seq (r = 0.99; P < 0.0001)
and allowed the measurement of allele-specific methylation pat-
terns in imprinted genes. Taken together, this methodology has
provided a system for simultaneous genome-wide genetic and
epigenetic analyses.

third-generation sequencing | epigenetics | epigenomics | base
modifications

DNA methylation is a biological process by which methyl
groups are covalently added to DNA molecules. The most

common form of this process occurs at the fifth position of the
pyrimidine ring of cytosine: i.e., 5-methylcytosine (5mC). DNA
methylation plays a number of essential roles in epigenetic reg-
ulation in cells, including genomic imprinting, X-chromosome
inactivation, and carcinogenesis (1, 2). The most widely used
method for detecting 5mC involves bisulfite treatment, followed
by methods such as the PCR, or massively parallel DNA sequencing
(i.e., bisulfite sequencing [BS-seq]) (3, 4). However, there are sig-
nificant drawbacks to such bisulfite-based technologies. For instance,
the harsh reaction conditions of bisulfite treatment could de-
grade the majority of the input DNA (5). Such DNA degradation
renders long DNA molecule sequencing challenging. Another
disadvantage is that bisulfite-induced DNA degradation prefer-
entially acts on genomic regions enriched for unmethylated cy-
tosines, resulting in an overestimation of global methylation and
substantial variations at specific genomic regions among different
bisulfite treatment protocols (4). Recently, a bisulfite-free method
(called ten-eleven translocation (TET)-assisted pyridine borane

sequencing, TAPS) for detecting 5mC has been published (6).
This approach used milder conditions for converting 5mC to
thymine, attempting to overcome the limitations present in BS-
seq. However, TAPS involves multiple steps of enzymatic and
chemical reactions, including TET oxidation, pyridine borane
reduction, and PCR amplification. An undesired conversion ef-
ficacy occurring in any DNA conversion step would adversely
affect the accuracy in 5mC analysis.
We envisioned that an ideal approach for measuring base

modifications would be a method that could be directly applied
to native DNA, without any chemical/enzymatic conversions of
DNA and PCR amplification prior to sequencing. Third-generation
sequencing technologies, such as nanopore sequencing (e.g., by
Oxford Nanopore Technologies) and single molecule real-time
(SMRT) sequencing (e.g., by Pacific BioSciences, PacBio), en-
able single molecule sequencing in real time, offering opportu-
nities to explore such approaches for detecting base modifications.

Significance

Single molecule real-time (SMRT) sequencing theoretically of-
fers the opportunity to directly assess certain base modifica-
tions of native DNA molecules without any prior chemical/
enzymatic conversions and PCR amplification, using kinetic
signals of a DNA polymerase. However, the kinetic signal
changes caused by 5mC modification are extremely subtle.
Hence, the robust genome-wide measurement of 5mC modifi-
cation has not been achieved. We enhanced 5mC detection
using SMRT sequencing by holistically analyzing kinetic signals
of a DNA polymerase and sequence context for every base
within a measurement window. We employed a convolutional
neural network to train a methylation classification model,
leading to genome-wide 5mC detection. The sensitivity and
specificity reached 90% and 94%, with a 99% correlation of
overall methylation level with bisulfite sequencing.
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Liu et al. reported the feasibility of using nanopore sequencing to
detect base modifications (7). However, the sequencing results were
often accompanied by high sequencing errors, such as insertions and
deletions (8). Such errors would cause the introduction of many loci
missing the necessary signals for methylation analysis. Such a limitation

of the current generation of nanopore sequencing may hamper the
resolution of decoding methylation patterns at a single molecule level,
especially for a large genome such as the human genome.
In contrast to nanopore sequencing that reads the DNA tem-

plate at most twice (i.e., including both the Watson and Crick

Fig. 1. Schematic 5mC detection using single molecule sequencing and the HK model. Double-stranded DNA molecules were ligated with hairpin adapters,
forming circular DNA templates. DNA polymerase in a ZMW would incorporate nucleotides labeled with different fluorophores into the complementary
strand of a DNA template, thus emitting different fluorescent colors indicating nucleotide information: for example, red, yellow, green, and blue colors
represented G, C, T, and A, respectively. The light pulse signals were reflective of DNA polymerase kinetics, depending on the base modifications. Pulse signals
included IPD and PW. For a cytosine subjected to methylation analysis, IPDs, PWs, and sequence context surrounding that cytosine were organized into a data
matrix, referred to as a measurement window. For illustration purposes, the 10 nt upstream and downstream of the cytosine within a CpG site in question
were presented as 5′-G[CCATGC]ATACGTT[GATGCA]A-3′ for the Watson strand. The bases in the brackets were left out (denoted by “. . .”) for the sake of
simplicity. In this case, the measurement window size, including the interrogated cytosine in the middle, was 21 nt. For a position of -3 corresponding to the
base of adenine (“A”), the IPD (1.8) and PW (0.7) associated with “A” were filled in the corresponding cells between a column of “-3” and a row of “A.” The
other cells in the same columns were filled by “0.” The remaining IPDs and PWs related to the 21-nt sequence context were filled in that measurement
window based on the same rule. The kinetic signals and sequence context originating from the Crick strand (‘5-T[TTGCAT]CAACGTA[TGCATG]G-3′) were also
processed similarly. The measurement windows for two CpG sites complementary to each other (i.e., the Watson strand and the Crick strand) were combined
for downstream analysis. A number of combined measurement windows originating from methylated and unmethylated cytosines were used for training a
CNN, so as to differentiate methylated and unmethylated cytosines in test samples. CNN involved input layer, convolutional layers, and output layer. The
measurement windows were fed into the input layer, followed by the process of convolutional layers; then, the probability of methylation (range: 0 to 1) for a
CpG was generated through the output layer based on a sigmoid function. This approach was referred to as the “holistic kinetic (HK) model” (HK model).
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strands, also called two-dimensional [2D] sequencing), SMRT
sequencing relies on the creation of circularized DNA templates
that allow the molecules to be sequenced multiple times, thus
greatly improving base calling accuracy (9). Base modifications
would in theory influence the kinetics of a DNA polymerase
during DNA synthesis. For example, the processivity of a DNA
polymerase would be retarded at a thymine (T) incorporation
opposite N6-methyladenine (6mA) on the template, leading to
an increased time interval between the incorporations of the
current and the next base (10). The pulse signals emitted from
dye-labeled nucleotides could be used to monitor these changes
in polymerization speed, thus enabling detection of base modifi-
cations (10). For example, the interpulse duration (IPD) (i.e., time
interval between two successive fluorescence pulses) could be
used to identify the N6-methylation of adenine (6mA). Unlike
6mA detection, to our knowledge, there is still no reported ap-
proach using SMRT sequencing to achieve practically mean-
ingful accuracy for genome-wide detection of 5mC of native
DNA molecules. The challenge for 5mC detection is caused by
the subtle changes in the kinetics of a DNA polymerase by which
a guanine is incorporated opposite 5mC. For example, Clark et al.
reported that the detection rate of the 5mC using IPD at cytosines
within CpG sites was low, ranging from 1.9 to 4.3% (11).
In this study, we attempted to develop an approach to achieve

accurate detection of 5mC using SMRT sequencing, by holisti-
cally making use of sequence context and pulse signals associated
with DNA polymerase kinetics, referred to as the holistic kinetic
(HK) model. Based on the HK model, we utilized methylated
and unmethylated datasets to train a convolutional neural net-
work (CNN) to detect 5mC modifications.

Result
The Principle of the HK Model for 5mC Detection.As shown in Fig. 1,
double-stranded native DNA molecules were ligated with hair-
pin adapters, forming a topologically circular DNA template.
Sequencing primers were annealed to circularized DNA tem-
plates via the complementary sites on hairpin adapters. Circu-
larized DNA templates were bound to DNA polymerases, forming
complexes each subsequently immobilized at the bottom of the
zero-mode waveguides (ZMWs). A DNA polymerase molecule
in a ZMW catalyzed the incorporation of nucleotides labeled
with different fluorophores into the complementary strand of a
DNA template. The kinetic changes of the DNA polymerase
during polymerization can be monitored on a single-molecule
basis.
Different fluorescent dyes were used to determine the base

content. For example, red, yellow, green, and blue colors rep-
resented G, C, T, and A, respectively (Fig. 1). The light pulse
signals emitted from fluorescently labeled nucleotides were re-
flective of DNA polymerase kinetics, depending on the base
modifications. Thus, the appropriate use of pulse signals would
make it possible to determine whether a cytosine was methylated
or not. Pulse signals included the IPD, that represented the time
duration between two consecutive base incorporations, and the
pulse width (PW), that represented the time duration of the
emission of fluorescent signal associated with a base incorpora-
tion. The pulse signals were associated with the sequence context
in which the polymerization reaction was occurring. Herein, we
developed an approach for determining DNA methylation by
using pulse signals, including IPDs, PWs and the sequence con-
text. Sequence context referred to the base compositions (A, C, G,
or T) and the base orders in a stretch of DNA. For a cytosine
within a CpG site, IPDs, PWs, and sequence context surrounding
that cytosine were organized into a data matrix, referred to as a
measurement window (Fig. 1). As a molecule of a circular form
could be sequenced multiple times, the mean IPD and PW value
of each nucleotide within the measurement window were used for
downstream analysis.

We would hereby use the data processing of kinetic signals and
sequence context from the Watson strand as an example. The
position of an interrogated cytosine within a CpG site in a
template DNA was denoted as position 0. For illustration pur-
poses, the Watson and Crick strand templates comprising 10
nucleotides (nt) upstream and downstream of the cytosine in
question were presented as 5′-G[CCATGC]ATACGTT[GATGCA]
A-3′ and 5′-T[TTGCAT]CAACGTA[TGCATG]G-3′, respectively.
The bases in the brackets were left out in Fig. 1 for the sake of
simplicity. In this case, the measurement window size including
the interrogated cytosine itself (in the center) was 21 nt. For the
position of -3 corresponding to the base of adenine (“A”), the
IPD (1.8) and PW (0.7) associated with “A” were filled in the
intersection places (called cells) between a column of “-3” and a
row of “A.” The other cells between a column of -3 and rows of
cytosine (“C”), guanine (“G”), and thymine (“T”) were filled by
“0.” Other IPDs and PWs related to the 21-nt sequence context
were filled in corresponding cells in that measurement window.
The kinetic signals and sequence context originating from the
Crick strand were similarly processed.
As nearly all methylated CpG sites would occur on both

strands symmetrically (12), we combined the measurement win-
dow flanking a CpG site from the Watson strand with that
flanking the paired CpG site from the Crick strand, forming a
combined measurement window for downstream analysis. We
utilized a number of combined measurement windows originat-
ing from methylated and unmethylated cytosines, to train a
CNN. The trained CNN model would then be used for differ-
entiating methylated and unmethylated cytosines in test samples.
This analytic framework for 5mC detection was holistically tak-
ing advantage of kinetic signals of DNA polymerase across in-
dividual nucleotides within a measurement window, as well as
sequence context (i.e., nucleotide information and orders), and
was thus referred to as the “holistic kinetic (HK) model” (HK
model). The HK model involved an input layer, convolutional
layers, and an output layer. Data needed for the HK model
(i.e., sequence context, IPD, and PW) from each measurement
window were entered into the input layer and then processed by
the convolutional layers (Fig. 1). The output, based on a sigmoid
function, represented the probability of methylation, referred to
as a methylation score for the cytosine in a CpG site, ranging
from 0 to 1. As it was a binary classification, the probability of
the cytosine within a CpG site being unmethylated would be 1 –

methylation score. The larger the methylation score, the more
likely a CpG site would be methylated. Based on the receiver
operator characteristic (ROC) curve, a methylation score thresh-
old was defined for classifying the methylation status for each
CpG site residing within the analyzed DNA molecule. The details
regarding the training and testing procedures are described in
Materials and Methods.

Training the HK Model for 5mC Detection Using Amplified and
M.SssI-Treated DNA. To demonstrate the feasibility and perfor-
mance of using the HK model to determine the methylation
states in a genome-wide fashion, the model was trained and
validated using SMRT sequencing datasets, including an unme-
thylated dataset (i.e., the negative dataset) and a methylated
dataset (i.e., the positive dataset). The unmethylated dataset
contained the sequencing results from amplified DNA that was
prepared via whole genome amplification (WGA) (denoted as
the WGA dataset). The use of unmodified nucleotides in the
WGA resulted in the amplified DNA containing nearly no base
modifications (with the exception of the small amount of input
genomic DNA). The methylated dataset contained the sequencing
results from DNA treated by the M.SssI (a CpG methyltransfer-
ase, isolated from a strain of Escherichia coli which contains the
methyltransferase gene from Sprioplasma sp. strain MQ1, would
methyalte all CpG sites in a double-stranded DNA) prior to
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sequencing (denoted as the M.SssI-treated dataset). M.SssI
methyltransferase rendered CpG sites methylated (13). Among
the sequenced CpG sites within the dataset of the M.SssI-treated
sample, half was used for training the HK model. Within the
WGA dataset, an equal number of CpG sites were randomly
sampled for training the HK model. The remaining half of the
CpG sites within the dataset of the M.SssI-treated sample and
the same number from the WGA dataset were used for valida-
tion of the model. In this study, we used 1) the Sequel I se-
quencing kit 3.0 (Sequel sequencing kit 3.0 as its official name)
on the PacBio Sequel I sequencer, and 2) the Sequel II sequencing
kit 1.0 and Sequel II sequencing kit 2.0 on the PacBio Sequel II
sequencer, obtaining WGA and M.SssI-treated DNA datasets for
evaluating the HK model across different reagents and sequencers
in this study.
For the Sequel I sequencing kit 3.0, we used 328,233 CpG sites

from an M.SssI-treated DNA sample (fully methylated) and
328,233 CpG sites from a WGA sample (fully unmethylated) to
train the HK model. The methylation scores from the M.SssI-
treated dataset (median: 0.99; interquartile range [IQR]: 0.93 to
1.0) were separated from the results from the WGA dataset
(median: 0.04; IQR: 0.02 to 0.1) (P value: < 0.0001, Mann–Whitney
U test) (Fig. 2A). The area under the ROC curve (AUC) was
0.97 (Fig. 2B).
We further analyzed the SMRT sequencing datasets prepared

by different sequencing kits. The separation between WGA and
M.SssI-treated datasets in terms of the methylation score was also
clearly observable in both training datasets prepared by the Sequel
II kit 1.0 and the Sequel II kit 2.0 (Fig. 2A), with the use of
11,272,552 and 325,780 CpG sites for the two datasets. The AUC
values were 0.96 and 0.94 for datasets prepared by the Sequel II
sequencing kit 1.0 and 2.0, respectively (Fig. 2B).

Performance of the HK Model for 5mC Detection Using Amplified and
M.SssI-Treated DNA. Fig. 2 C and D shows the performance of the
HK model in the testing datasets. The AUC values were found to
be 0.97, 0.96, and 0.93 for the Sequel I sequencing kit 3.0 and the
Sequel II kit 1.0 and 2.0, respectively. These results suggested
that the HK model could accurately determine the methylation
states. The HK model was applicable to data produced by dif-
ferent sequencing kits and sequencers as long as the training
and testing processes were based on the same experimental
conditions.
The AUC values based on the HK model (range: 0.93 to 0.97)

were much greater than the AUC values (0.53 to 0.67) based on
IPD or PW values at CpG sites for all three testing datasets (SI
Appendix, Fig. S1 A–C), suggesting that the HK model greatly
outperformed the conventional methods using kinetic signals at a
queried base.
We defined a methylation score cutoff for classifying the

methylation status of CpG sites. We selected 0.5 as the methyl-
ation score cutoff, which was the point close to the top-left
corner of each ROC curve in the training datasets. A CpG site
with a methylation score above 0.5 was classified as methylated;
otherwise, it would be classified as unmethylated. We could
achieve 94% specificity and 90% sensitivity for datasets gener-
ated by Sequel I sequencing kit 3.0. For datasets generated by
Sequel II sequencing kit 1.0, the specificity and sensitivity were
92% and 87%, respectively. For datasets generated by Sequel II
sequencing kit 3.0, the specificity and sensitivity were 89% and
83%, respectively.
In addition to the CNN model, we attempted to evaluate the

performance of 5mC detection using a hidden Markov model
(HMM) for the sample BC01 with high-depth sequencing cov-
erages by SMRT-seq (SI Appendix, Table S2). As a result, we
found that the performance of HMM (83% sensitivity and 84%
specificity) appeared to be worse than that of the HK model
(87% sensitivity and 92% specificity). The details about the
implementation of HMM are described in SI Appendix, Methods
and Materials (SI Appendix, Figs. S2 and S3).

Effect of Window Size and Subread Depth on the Performance of 5mC
Detection. To study how the window size of the measurement
window and subread depth affected the performance of the HK
model, we varied the measurement window sizes, covering 1, 3, 5,
7, 9, 11, 21, 31, 41, 51, and 61 nt. For a particular measurement
window size, we further varied the subread depths, covering 1, 2,
3, 4, 5, 10, 15, 20, 25, and 30×. The HK model was first trained
using a training dataset comparing 100,000 measurement win-
dows each from the WGA and M.SssI-treated datasets. For each
combination of window size and subread depth, we randomly
sampled 2,000 CpG sites from a full dataset that did not overlap
with the training dataset, thus forming a testing dataset.
We analyzed datasets generated by the Sequel II sequencing

kit 1.0 for which the subread depth was at 10×. The AUC was
found to be 0.70 using a measurement window size of 1 (SI
Appendix, Fig. S4A). As we increased the measurement window
size to 3, 7, 21, and 31 nt, the AUC value increased to 0.84, 0.90,
0.93, and 0.93, respectively (SI Appendix, Fig. S4A). Besides,
when applying a measurement window size of 21 nt, the AUC
was found to be 0.75 using a subread depth of 1 (SI Appendix,
Fig. S4B). As we increased the subread depth to 5 and 10, the
AUC value was observed to increase to 0.85 and 0.93 (SI Ap-
pendix, Fig. S4B), respectively. These data suggested that the
performance of the HK model could be improved by adjusting
the measurement window size and subread depth requirement.
SI Appendix, Fig. S4C shows that the performance of differenti-
ating methylated cytosines from unmethylated cytosines reached
a plateau with an AUC of 0.96, using a window size of 21 nt and a
subread depth of 30×. The use of a measurement window size of
21 nt at a subread depth of 10× also allowed us to achieve an

A

C D

B

Fig. 2. The HK model training and validation using datasets generated
from amplified DNA and M.SssI-treated DNA. (A) Box plots for methylation
scores in training datasets derived from the whole genome amplified DNA
(WGA DNA dataset) and M.SssI-treated DNA (M.SssI-treated DNA dataset) on
the basis of different sequencing kits including Sequel I sequencing kit 3.0
and Sequel II sequencing kit 1.0 and 2.0. (B) ROC curves for training datasets
on the basis of different sequencing kits. (C) Box plots for the methylation
scores in testing datasets. (D) ROC curves for testing datasets.
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AUC of 0.93. To balance the number of molecules suitable for
downstream analysis and accuracy, we adopted the window size
of 21 nt and a subread depth of at least 10× as a default setting in
this study. There are 28.2 million CpG sites in a human haploid
genome, resulting in 28.2 million measurement windows. Of
those, 69.4% of the 21-nt measurement windows harbored one
CpG site. There were 21.2% and 6.5% of measurement windows
that contained two and three CpG sites, respectively. Only 3% of
the measurement windows contained more than three CpG sites.
Thus, we believed that the majority of the measurements would
not be affected by the potential interactions of kinetic signals
caused by two nearby CpG sites residing within the same
measurement window.
The results related to datasets generated by the Sequel I se-

quencing kit 3.0 and Sequel II sequencing kit 2.0 (SI Appendix,
Figs. S5–S7) led to a consistent conclusion that the performance
of the HK model would depend on the window sizes and subread
depths. The increase of subread depth would generally increase
AUC values in differentiating methylated and unmethylated
cytosines. The measurement window size of 21 nt was a robust
parameter for methylation analysis as such a window size appeared
to reach a plateau value at a subread depth of 30× (SI Appendix,
Fig. S7 A and B). Interestingly, the Sequel I sequencing kit 3.0, a
relatively early reagent kit, paradoxically appeared to be superior
to the other two updated kits for methylation analysis across a
range of window sizes and subread depths. For example, with a
measurement window size of 21 nt and a subread depth of 30, the
AUC values were 0.98, 0.96, and 0.94, respectively, for the Se-
quel I sequencing kit 3.0 (SI Appendix, Fig. S7A) and Sequel II
sequencing kit 1.0 (SI Appendix, Fig. S4C) and 2.0 (SI Appendix,
Fig. S7B).

Effect of the Number of Sequence Contexts on the Performance of
5mC Detection. There were a total of 28.2 million CpG sites in the
human reference genome (University of California Santa Cruz
hg19). Among them, a total of 20.7 million 21-nt sequence con-
texts centered on a CpG site were found. As shown in SI Appendix,
Table S1, among the 20.7 million contexts, the percentages of
sequence contexts used in the training of the HK model were
2.7%, 32.7%, and 1.3% for the datasets prepared by Sequel I kit
v3, Sequel II kit v1, and Sequel II kit v2, respectively. Because we
had obtained a much higher sequencing throughput for the training
sample prepared by the Sequel II kit v1, there were many more
sequence contexts empirically covered in that sample. Each
testing dataset contained a similar amount of sequence contexts
to its corresponding training dataset. Notably, even though a
variable number of contexts were covered across different datasets
during the training and testing processes, the performance of the
resultant HK models appeared not to be varied much, with the
area under the receiver operating characteristic curve (AUC)
values ranging from 0.93 to 0.97.
To further investigate how the number of sequence contexts

would affect the performance of the HK model, we carried out
downsampling analysis of sequence contexts by randomly sam-
pling 1,000, 5,000, 50,000, 100,000, 200,000, 300,000, 400,000,
500,000, 1,000,000, 5,000,000, and 10,000,000 sequence contexts.
SI Appendix, Fig. S4D shows that the performance of the HK
model progressively improved as the number of sequence con-
texts increased. For example, with the use of 1,000 sequence
contexts, the AUC was 0.73 whereas the AUC increased to 0.95
with 300,000 sequence contexts. The plateau of the performance
was reached at 300,000 sequence contexts. In other words, 1.45%
of the 21-nt sequence contexts in the genome (i.e., 300,000/20.7
million × 100%) were sufficient to train the HK model well for
distinguishing the methylated and unmethylated cytosines at
CpG sites. We conjectured that many sequence contexts might
have a similar impact on the kinetic features of DNA polymerase

during SMRT sequencing. Therefore, there may be a certain de-
gree of redundancy in genomic sequence contexts in such training.

The Analysis of Divergent Methylation States Using Human–Mouse
Hybrid Fragments. As the aforementioned validation process re-
lied on WGA and M.SssI-treated DNA samples that were in
theory homogenously methylated or unmethylated for a frag-
ment, we further tested whether the HK model could be general-
izable to fragments carrying heterogeneous methylation states (i.e., a
fragment concurrently harboring methylated and unmethylated CpG
sites). To this end, we generated two datasets comprising human–
mouse hybrid fragments on the basis of restriction digestion (HindIII
and NcoI, both being 6-base cutters) and DNA ligation (Mate-
rials and Methods), as illustrated in SI Appendix, Fig. S8. The first
dataset contained the hybrid DNA molecules for which the hu-
man part was methylated by M.SssI and the mouse part was
rendered unmethylated by WGA, named the human (meth)–
mouse (unmeth) dataset. The second dataset contained the hy-
brid DNA molecules with opposite methylation patterns: i.e., the
human part was unmethylated and the mouse part was methyl-
ated, named the human (unmeth)–mouse (meth) dataset. We
used the Sequel II sequencer together with the Sequel II se-
quencing kit 1.0 to sequence sample H01 and H02, obtaining 5.7
million (median size: 1.3 kb; median subread depth: 10×) and 3.3
million (median size: 1.2 kb; median subread depth: 10.5×)
molecules for the human (meth)–mouse (unmeth) and human
(unmeth)–mouse (meth) datasets, respectively.
We applied the HK model trained from datasets with ho-

mogenous methylation states to determine the methylation states
across CpG sites for each human–mouse hybrid DNA molecule
in the human (meth)–mouse (unmeth) dataset. We pooled a
total of 104,896 CpG sites within 50 base pairs (bp) upstream
and downstream to restriction sites, according to relative posi-
tions (i.e., distances) to the nearest base of a restriction enzyme
recognition site (HindIII or NcoI). Positions originating from the
human part of a molecule were assigned as upstream (negative
values) while those from the mouse part were assigned as down-
stream (positive values). The percentage of CpG sites determined
to be methylated was deemed as the methylation level. Fig. 3A
shows that the human part in this human (meth)–mouse (unmeth)
dataset was shown to be methylated with a methylation level range
of 85.9 to 93.0% whereas the mouse part was shown to be
unmethylated with a methylation level range of 6.7 to 9.6%. Such
patterns were found to be opposite in the human (unmeth)–
mouse (meth) dataset (Fig. 3B).
We furthermore analyzed the two nearest CpG sites flanking

restriction enzyme sites, evaluating the effect of the potential
interactions of kinetic signals of neighboring CpG sites on the
performance of the HK model. As the restriction enzyme rec-
ognition sites were 6 bp in length and did not contain CpG sites,
the least number of nucleotides between two nearest CpG sites
surrounding cutting sites was restricted to 6 bases (not including
the 4 bases within the CpG sites) (SI Appendix, Fig. S9 A and B).
The greatest number of nucleotides between the two nearest
CpG sites was 17 (i.e., 21 − 4) because the window size of 21 nt
was taken into account for this evaluation. For the human (meth)–
mouse (unmeth) dataset, 82.4% of these two nearest CpG sites
harbored the “M-U” pattern (Fig. 3C), indicating that the first cy-
tosine within a CpG site from the human part was methylated (M)
while the second cytosine within a CpG site was unmethylated
(U). These results suggested that the HK model could robustly
decode methylation for each CpG site in a DNA molecule even
with divergent methylation states. Such a conclusion was further
evidenced by the fact that 82.0% of these two nearest CpG sites
harbored the “U-M” pattern in the human (unmeth)–mouse
(meth) dataset (Fig. 3D).
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Methylation Determination Using the HK Model for Biological Samples.
To further validate whether the trained HK model could be used
for analyzing real biological samples, we sequenced 11 tissue DNA
samples using the Sequel II sequencer together with the Sequel II
sequencing kit 1.0 (PacBio) (SI Appendix, Table S2). We obtained
a median of 6 million sequenced molecules, with a median of 5.9
kilobases (kb) in size. The median subread depth was 4.3× (IQR:
3.6 to 6.7×). Each sample was also sequenced by BS-seq to a
median of 50 million paired reads. The methylation states across
CpG sites were determined by the Methy–Pipe software (14).
We compared the overall methylation levels between two

measurements by the HK model and BS-seq. The overall methyl-
ation levels were defined as the percentage of CpG sites deter-
mined to be methylated among all sequenced CpG sites. Fig. 4
shows that the overall methylation levels across samples analyzed
by the HK model correlated well with those quantified by BS-seq
(r = 0.99; P value < 0.0001). The methylation levels concerning
placental DNA (sample PL01), hepatocellular carcinoma (HCC)
tumor tissue DNA (HCC01 and HCC02), and HepG2 cell line
DNA were lower (range: 48.4 to 58.4%) than the counterparts of
adjacent nontumoral DNA (NT01 and NT02) and buffy coat
DNA (BC01 to BC05) (range: 69.0 to 75.7%). The hypomethylation
observed in placental DNA, HCC tumor tissue DNA, and HepG2
cell line DNA was in agreement with previous studies (15–18), fur-
ther suggesting the robustness of the HK model for differentiating
methylated and unmethylated cytosines in native DNA molecules
from various biological samples.

In addition to the methylation levels in a whole genome, we
further analyzed the methylation levels at 1-megabase (Mb)
resolution. From Circos plots (19) showing the analysis for buffy
coat DNA, placental DNA, and HepG2 cell line DNA samples
(Fig. 5 A–C), the methylation level profile across 1-Mb genomic
bins deduced by the HK model (Fig. 5 A–C, inner ring) was
highly concordant with that determined by BS-seq (Fig. 5 A–C,
outer ring). The concordance between the HK model and BS-seq
was further evidenced in the scatter plots (Fig. 5 D–F), showing a
correlation coefficient of 0.85, 0.94, and 0.98 for buffy coat
DNA, placental DNA, and HepG2 cell line DNA samples, re-
spectively. The results for HCC tumor samples and their paired
adjacent nontumoral tissue samples are shown in SI Appendix,
Figs. S10 and S11.
It was well known that lower methylation densities would be

observed in regions near transcription start sites (TSSs) (12).
Notably, a “valley pattern” concerning methylation levels sur-
rounding TSS regions was indeed seen in results determined by
the HK model, which were confirmed in the BS-seq results
(Fig. 5G).

Methylation Correlation at Single-Base Resolution between the HK
Model and BS-Seq. To compare the correlation at single-base
resolution, we calculated the methylation level for each CpG
site covered by at least 20 sequenced molecules in both the SMRT-
seq and BS-seq results for the sample BC01. As there were a large
number of CpG sites, a smoothed scatter plot was used for vi-
sualizing the correlation of methylation levels deduced by the
HK model and BS-seq (SI Appendix, Fig. S12). A Pearson’s cor-
relation coefficient of 0.8 (P value < 0.0001) was observed be-
tween the HK model and BS-seq.
A representative region (chr1: 145,071,369 to 145,075,700)

with a relatively high sequencing depth was used for illustrating
the comparison between the HK model and BS-seq at single-base
resolution. As shown in Fig. 6A, 16 sequenced molecules were from
this region, which were subjected to analysis by the HK model, with
a median read length of 3,103 nt (range: 1,484 to 8,490 nt). The
portion of a molecule overlapping with the CpG island (CGI)

A C

DB

Fig. 3. Methylation pattern analysis for human–mouse hybrid fragments.
(A) Methylation levels across CpG sites from human–mouse hybrid fragments
present in the human (meth)–mouse (unmeth) dataset. CpG sites were
pooled together according to the relative distance to the nearest base of a
restriction cutting site (HindIII or NcoI). (B) Methylation levels across CpG
sites from human–mouse hybrid fragments present in the human
(unmeth)–mouse (meth) dataset. (C) Methylation patterns for the two
nearest CpG sites immediately flanking a restriction cutting site (HindIII or
NcoI) for human–mouse hybrid fragments present in the human (meth)–
mouse (unmeth) dataset. (D) Methylation patterns for two CpG sites im-
mediately flanking a restriction cutting site (HindIII/NcoI) for human–mouse
hybrid fragments present in the human (unmeth)–mouse (meth) dataset.
“M-M” represents that the first and second CpG sites in the human and
mouse parts are both methylated. “M-U” represents that the first CpG site in
the human part is methylated while the second CpG site in the mouse part is
unmethylated. “U-M” represents that the first CpG site in the human part is
unmethylated while the second CpG site in the mouse part is methylated.
“U-U” represents that the first and second CpG sites in the human and
mouse parts are both unmethylated.

Fig. 4. Correlation of overall methylation levels quantified by BS-seq and
the HK model. Each dot represents one sample.
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region was mainly determined to be unmethylated whereas the
portion of a molecule outside the CGI region (i.e., CGI shore)
tended to be methylated (Fig. 6A). Such distinct patterns were
confirmed in the result by BS-seq, with 102 resulting sequences

(median size: 163 nt; range: 30 to 599 nt). Fig. 6B illustrates that
the HK model could provide full genotype information, includ-
ing A, C, G, and T (i.e., four-letter information) and methylation
states at CpG dinucleotides. However, for BS-seq, the genotype

A C

D

B

E F

G

Fig. 5. Methylation levels quantified by BS-seq and the HK model at 1-Mb resolution. Circos plots show methylation levels determined by the HK model
(inner ring) and BS-seq (outer ring) across different 1-Mb regions of human genome for buffy coat (A), placenta (B), and the HepG2 HCC cell line (C). Scatter
plots show correlations of methylation level in each 1-Mb genomic region determined by the HK model and BS-seq for buffy coat (D), placenta (E), and the
HepG2 HCC cell line (F). (G) Methylation patterns surrounding TSSs.
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information was mainly restricted to three-letter information
(i.e., A, G, and T).

Methylation Determination for Representative Imprinted Genes. DNA
methylation is important for establishing imprinting marks on
either paternal or maternal alleles (20), often displaying allele-
specific methylation patterns. Therefore, we expected that the
SMRT sequencing would enable analysis of allele-specific meth-
ylation patterns in a single molecule resolution using the HK
model. We selected four representative imprinted genes, SNURF,
PLAGL1, NAP1L5, and ZIM2, which were commonly imprinted
across various tissues reported in a study (21). We applied the
HK model to determine the methylation states of those mole-
cules overlapping with these four imprinted genes in the sample
BC01, as this sample had a relatively high sequencing depth (SI
Appendix, Table S2). As an example, the imprinted gene, SNURF,
displayed allele-specific methylation patterns spanning a known
imprinted control region (22) ranging from 25,200,004 to
25,201,976 on chromosome 15 (Fig. 7A). The fragments linked to
the “C” allele were methylated on that imprinted control region

whereas the fragments linked to the “T” allele were unmethylated.
The differential methylation patterns between alleles were gen-
erally not observable in nonimprinted regions, such as a region
(chr12: 21,729,541 to 21,739,542) randomly selected from the
genome (Fig. 7B). In contrast to nonimprinted regions, all four
imprinted genes had differentially methylated regions between
two alleles (Fig. 7C). SI Appendix, Fig. S13 shows the methylation
patterns for each DNA molecule covering the other three
imprinted genes (NAP1L5, ZIM2, and PLAGL1), all exhibiting
allele-specific methylation patterns.

Discussion
We have developed an approach for holistically making use of
kinetic signals and sequence context to realize the genome-wide
detection of cytosine methylation by SMRT sequencing. The

A

B

Fig. 6. Methylation patterns at single-base resolution. (A) Methylation
patterns for the region chr1: 145,071,369 to 145,075,700 overlapping the
CGI. The genomic coordinates of the CGI are highlighted in blue. “(I)” and
“(II)” represent two sequence reads that are used to highlight the difference
in the readout between the HK model and BS-seq. (B) Genetic and epige-
netic information generated using the HK model (denoted “I”) and BS-seq
(denoted “II”). For the ease of visualization, A, C, T, and G are denoted
in different colors. For the HK model, the original genomic sequence
and methylation information are directly and simultaneously read out
from the results. For BS-seq, the interpretation of a “TG” readout (i.e.,
whether the T means an unmethylated cytosine, or whether a T is present
at that position in the genome) can only be made after comparison with the
reference genomic sequence. Filled lollipops, methylated C; unfilled lolli-
pops, unmethylated C.

Fig. 7. Methylation patterns for each single molecule derived from
imprinted regions. (A) An example showing the methylation patterns for
each DNA molecule in association with imprinted regions of gene SNURF.
The x axis indicates the coordinates of CpG sites. The coordinates highlighted
in blue indicate CGIs. Red dots indicate methylated CpG sites. Green dots
indicate unmethylated CpG sites. The alphabet embedded among each
horizontal series red and green dots (i.e., CpG sites) indicates the allele at the
SNP site. The numbers in parentheses on the right of each horizontal series
of dots indicate the size of a fragment. The dashed rectangle indicates the
regions overlapped with the known imprinting control region. (B) An ex-
ample showing the methylation patterns for each DNA molecule originating
from nonimprinted regions. The dashed rectangle indicates a region sur-
rounding the SNP site highlighted for comparison. (C) Methylation levels
between imprinted and nonimprinted regions.
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robustness of the approach has allowed us to decipher 5mC
patterns in the human genome. Several previous studies attempted
to use SMRT sequencing to detect base modifications. However,
practically meaningful accuracy for genome-wide detection of
5mC using SMRT sequencing has not previously been achieved.
For example, Clark et al. reported that the detection rate of the
5mCs in a native DNA using the IPD metric was very low,
ranging from 1.9 to 4.3% (11). It was concluded that the prior
conversion of 5mC to 5-carboxylcytosine (5caC) using Tet pro-
teins would be required to improve the sensitivity of 5mC (11) as
the change of IPD induced by 5caC was much greater than 5mC.
In a more recent report by Blow et al., the IPD ratio-based
method was used to detect the base modifications in 217 bac-
terial and 13 archaeal species with 130-fold read coverage per
organism (23). Among all the base modifications they identified,
5mCs only accounted for 5% and was much lower than expected
(11), suggesting the low sensitivity of single-molecule real-time
sequencing for detecting 5mC. Hence, we believe that our meth-
odology has addressed an unmet need in the field.
In this study, we developed a methodology of utilizing kinetic

features of DNA polymerase for every base within the mea-
surement window (e.g., 10 nt upstream and downstream flanking
a CpG site in question). The measurement window allowed the
representation of various kinetic signals in combination with se-
quence context in a way analogous to an image with different pixel
patterns: i.e., in the form of a 2D matrix. Thus, CNN, a class of
deep learning algorithms, could be used for differentiating
methylated and unmethylated cytosines after training, leading to
a robust performance (AUC: 0.97). To the best of our knowledge
(10, 24–26), there was no prior study reporting the simultaneous
consideration of IPD, PW, and sequence context for base mod-
ification analysis. The lack of an effective way of using kinetic
signals and sequence context might be one reason why the pre-
viously reported performance of 5mC detection had not achieved
the practically useful accuracy, hampering translation of SMRT
sequencing to real-word applications of 5mC detection of
native DNA.
Using the HK model, we have dramatically improved the de-

tection rate for 5mC up to 90% at a specificity of 94% in the
validation datasets generated from amplified DNA and M.SssI-
treated DNA. Several factors were considered to be informative
for further improvement of 5mC detection. First, the actual ef-
ficiency of CpG methyltransferase (M.SssI) would determine the
likelihood of being methylated for CpG sites in the M.SssI-
treated dataset. If the methylation efficacy of M.SssI was 90%,
10% of CpG sites that were unmethylated would be falsely
considered as methylated CpG sites in the training of the HK
model, perhaps leading to the detection rate below 100%. Sec-
ond, for the WGA dataset, the methylation status of original
input DNA prior to the WGA process would add noise during
the training of the HK model. In the future, it would be inter-
esting to explore the use of other training datasets (e.g., using
synthetic oligonucleotides with known methylation states) for
enhancing the overall performance of the HK model. Third, the
sequencing kits would be another factor affecting the perfor-
mance. Notably, we found that the newer sequencing kits (the
Sequel II sequencing kit) were inferior to the old-generation
sequencing kit (the Sequel I sequencing kit 3.0). It might imply
that the base modification detection using SMRT sequencing
could be further optimized through engineering DNA polymer-
ases and reagents.
From results regarding human–mouse hybrid fragments, the

aggregate methylated levels of DNA from the unmethylated part
were observed to systematically above a methylation level of 0%
whereas the aggregate methylated levels of DNA from the
methylated part were observed to below a methylation level of
100%. Such a difference from the expected values might be likely
attributed to the suboptimal conversation rate of M.SssI treatment,

affecting the accuracy of the HK model. Such deviations in
methylation estimation were also present in native DNA mole-
cules from biological DNA samples, when compared to that
measured by BS-seq. However, the methylation levels deduced
by the HK model were highly correlated with those values de-
termined by BS-seq. Such a deviation between the measurement
by the HK model and BS-seq could in the future be harmonized
by recalibration between studies.
Theoretically, in a measurement window with more than one

CpG site, the kinetic signals from these CpG sites might interact
with one another. To investigate this possibility, we used the HK
model to classify the methylation status of the human–mouse
hybrid fragments in which the human and murine portions of the
hybrid fragment possessed opposing methylation status. The data
demonstrated that the HK model was able to decode the di-
vergent methylation status of CpG sites separated by at least 6 nt.
As the length of the restriction site (i.e., 6 bp) involved in the
human–mouse hybrid fragment assay limited the least distance
between CpG sites that we could assess (SI Appendix, Fig. S9),
the performance for CpG sites separated by nucleotides less than
6 nt would warrant future research. In the further study, the
synthetic oligonucleotides carrying multiple CpG sites charac-
teristic of different methylation status within a measurement
window would be informative to enhance the HK model in the
training process, in an attempt to address the methylation status
of CpG sites near one another in a testing sample. On the other
hand, as the methylation status among CpG sites within a close
genomic distance (<50 bp) tended to be comethylated or coun-
methylated (27), we believe that the current version of the HK
model would be broadly applicable to analyze DNA from various
biological samples. Such a hypothesis was in part evidenced by
the fact that the methylation patterns surrounding TSS regions
(commonly overlapping with CGIs) appeared to be very consis-
tent between the HK model and BS-seq.
In addition to the methylcytosines, other oxidized derivatives of

cytosine, such as 5-hydroxymethylcyotsine (5hmC), 5-formylcytosine
(5fC), and 5caC, had been reported to be present in mammalian
genomes (28–30). However, we believe that the actual impact on
the performance of the HK might be small, because of the low
abundance of these other modified cytosines in tissues other than
the brain (28). A future follow-up effort would be to enhance the
HK model by incorporating these other modified cytosines
during the training process.
It was previously reported that the genomic variations, in-

cluding single nucleotide variants, insertions, and deletions, would
introduce “quantification bias” of methylation levels in the step of
alignment for BS-seq reads (31). For example, if a sample ge-
nome has a “CG-to-TG” variant relative to the reference ge-
nome sequence, standard alignment approaches would consider
a “TG” dinucleotide in a read to be derived from an unmethy-
lated CpG dinucleotide, resulting in an underestimation of
methylation level (31). Such a quantification bias would lead to
inaccurate data interpretation when comparing methylation pat-
terns between species and human normal-cancer datasets with di-
vergent genotypes (31). In addition to a dedicated bioinformatics
approach for mitigating the quantification bias (31), the HK model
presented in this study would provide an opportunity to address
the quantification bias due to the issue of mappability in the
standard alignment approaches for BS-seq. In this regard, we
wish to highlight two attributes of the approach described in our
study. 1) The HK model used the kinetic values of a DNA po-
lymerase derived from subreads generated by SMRT-seq for
base modification analysis. Subreads could be used for constructing
the circular consensus sequences (CCSs), providing highly accurate
sequence information (accuracy: 99.8%) on the DNA template
(32); 2) The nature of multikilobase long-read sequencing would
facilitate elucidation of haplotype information. Thus, the HK model
allows one to simultaneously analyze epigenetics and genetics for
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each DNA molecule (Fig. 6B). For the traditional BS-seq, when
one sees a sequence “TG,” one would not know whether the “T”
is the result of bisulfite conversion on an unmethylated “C” until
one looks at the reference genomic sequence. In contrast, using
the HK model, the methylation status is determined based on the
PW, IPD, and sequence context without alignment to a reference
genome (Fig. 6B).
Another advantage of the HK model is its ability to elucidate

the methylation states across a long DNA molecule (tens of ki-
lobases). For example, the short fragments (50 to 600 bp)-based
BS-seq were not suitable for decoding the methylation states of
imprinted regions as the short DNA fragment lacked the ability
to efficiently link the methylation states to individual haplotypes.
In contrast, the HK model-based analysis for SMRT sequencing
has made it possible to effectively link methylation states across
CpG sites to parental haplotypes using long DNA molecules. We
believe that the HK model-based methylation analysis would
open up many new possibilities for studying the genetics and
epigenetics in different organisms and may be useful in many
molecular diagnostic applications (e.g., in oncology).

Materials and Methods
Sample Recruitment and Processing. HCC patients and pregnancy samples
were recruited from the Department of Surgery and the Department of
Obstetrics and Gynecology, respectively, of the Prince of Wales Hospital,
Hong Kong. The study was approved by the Joint Chinese University of Hong
Kong–Hospital Authority New Territories East Cluster Clinical Research Ethics
Committee. Written informed consent forms were obtained from the pa-
tients. The details are described in SI Appendix, Methods and Materials.

SMRTbell Template Library Preparation, Sequencing, and Alignment. SMRT
sequencing was performed using the Sequel Systems (PacBio) according to
the manufacturer’s instructions. This study involved both the Sequel I and
Sequel II systems. Specifications about reagent kits used for SMRT-seq are
detailed in SI Appendix, Methods and Materials. SI Appendix, Table S2
summarizes which kits were applied for each sample. Sequencing reads were
aligned to the human reference genome (hg19) using BWA aligner (33).

SMRT Sequencing Datasets for Amplified DNA and M.SssI-Treated DNA. We
used the Sequel I sequencer together with the Sequel I sequencing kit 3.0 to
sequence sample W01 and M01, obtaining 0.74 and 0.74 million sequenced
molecules, with amedian 319 and 296 bp in size, respectively. The circularized
DNA template was sequencedmultiple times, thus generatingmany readouts
from the same DNA template. A readout that began at one adapter sequence
and ended at the other adapter sequence was defined as a subread. One full
cycle of a circularized molecule passing through the DNA polymerase would
generate two subreads. The mean number of subreads per strand covering a
site was defined as the subread depth. The median subread depth was 11×
and 10.5× for WGA and M.SssI-treated datasets, respectively. We used the
Sequel II sequencer together with the Sequel II sequencing kit 1.0 to se-
quence W02 and M02, obtaining 3.0 million (median size: 4.4 kb) and 2.1
million (median size: 3.7 kb) sequenced molecules for WGA and M.SssI-
treated datasets, respectively. The median subread depth was 3.5× and 5×

for the WGA and M.SssI-treated datasets, respectively. In addition, we used
the Sequel II sequencer together with the Sequel II sequencing kit 2.0 to
sequence W03 and M03, obtaining 0.26 million (median size: 728 bp; median
subread depth: 30.5×) and 0.26 million (median size: 392 bp; median subread
depth: 41.5×) sequenced molecules for WGA and M.SssI-treated datasets,
respectively.

Human–Mouse Hybrid Fragment Generation. Human and mouse DNA was
whole-genome amplified with Phi29 polymerase (NEB) and random hex-
amers (ThermoFisher) to create unmethylated DNA (unmeth), or treated
with M.SssI (NEB) to become methylated DNA (meth). The hybrid fragments
were created in a way that the DNA species mentioned in the previous
sentence were each subjected to double restriction enzyme digestion (Hin-
dIII and NcoI) (NEB), 1:1 mixing of unmethylated and methylated DNA, fol-
lowed by DNA ligation via T4 DNA ligase (NEB). The cleavage sites of HindIII
and NcoI were 5′-A^AGCTT-3′ and 5′-C^CATGG-3′ (“^” denotes the restriction
enzyme cutting locus), respectively. Two sets of hybrid DNA were generated:
human (unmeth)–mouse (meth) and human (meth)–mouse (unmeth).

CNN. The CNN model made use of two one-dimensional (1D)-convolutional
layers, each having 64 filters with a kernel size of 4. The activation function
of the rectified linear unit (ReLU) was used for those convolutional layers. A
batch normalization layer was applied subsequently, followed by a dropout
layer with a dropout rate of 0.5. A maximum pooling layer with a pool size
of 2 was used. A flattened layer was further added, followed by a fully
connected layer comprising 10 neurons with the use of the ReLU activation
function. The output layer with one neuron was finally applied, with a sig-
moid activation function to yield the probabilistic score for a CpG site of
being methylated (i.e., methylation score). The program for the CNN model
was implemented on the basis of the Keras deep learning framework
(https://keras.io/).

Procedures for Training and Testing the HK Model. The measurement windows
associated with methylated CpG sites (the M.SssI-treated DNA dataset) and
those associated with unmethylated CpG sites (the WGA DNA dataset) were
used for training the HK model through CNN. Data within each measure-
ment window flanking a cytosine within a CpG context, including the se-
quence context, mean IPDs, and PWs originating from subreads across
individual nucleotides, were entered into the HK model. Each target output
(i.e., analogous to a dependent variable value) for a CpG site in M.SssI-treated
DNA datasets was assigned as “1” while each target output for a CpG site in
WGA DNA datasets was assigned as “0.” The patterns present in the mea-
surement windows of methylated and unmethylated CpG sites were used for
training CNN to determine the parameters (often called weights) of the HK
model. The details are described in SI Appendix, Methods and Materials.

Data Availability. Sequence data for the subjects studied in this work have
been deposited at the European Genome-Phenome Archive (EGA), https://
www.ebi.ac.uk/ega/, hosted by the European Bioinformatics Institute (EBI)
(accession no. EGAS00001004642).
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