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Abstract

This study exhaustively explores leaf features seeking diagnostic characters to aid the clas-

sification (assigning cases to groups, i.e. populations to taxa) in a polyploid plant-species

complex. A challenging case study was selected: Veronica subsection Pentasepalae, a tax-

onomically intricate group. The “divide and conquer” approach was implemented—that is, a

difficult primary dataset was split into more manageable subsets. Three techniques were

explored: two data-mining tools (artificial neural networks and decision trees) and one unsu-

pervised discriminant analysis. However, only the decision trees and discriminant analysis

were finally used to select diagnostic traits. A previously established classification hypothe-

sis based on other data sources was used as a starting point. A guided discriminant analysis

(i.e. involving manual character selection) was used to produce a grouping scheme fitting

this hypothesis so that it could be taken as a reference. Sequential unsupervised multivari-

ate analysis enabled the recognition of all species and infraspecific taxa; however, a subop-

timal classification rate was achieved. Decision trees resulted in better classification rates

than unsupervised multivariate analysis, but three complete taxa were misidentified (not

present in terminal nodes). The variable selection led to a different grouping scheme in the

case of decision trees. The resulting groups displayed low misclassification rates when ana-

lyzed using artificial neural networks. The decision trees as well as the discriminant analysis

are recommended in the search of diagnostic characters. Due to the high sensitivity that arti-

ficial neural networks have to the combination of input/output layers, they are proposed as

evaluation tools for morphometric studies. The “divide and conquer” principle is a promising

strategy, providing success in the present case study.
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Introduction

Polyploidization is known to have occurred at least once during the evolutionary history of all

angiosperms [1,2] and it is widely thought to play an important role in plant evolution and ecol-

ogy [3–6]. Also, interspecific hybridization may have occurred over plant evolution more fre-

quently than previously suspected [7,8] and in fact involves at least one-quarter of plant-

speciation events [9]. Hybridization (including allopolyploidization) and introgression are com-

plex processes that may blur species boundaries in hybrid zones if isolating factors are not defi-

nitely established [10,11] and may even end up merging species that were formerly separated

[12]. These processes affect species delimitation, giving rise to intermediate phenotypes between

the parents [4,13,14], leading to overlapping character states, and many gradual phenotypic

transitions (e.g. in related subgenera of Veronica, [15]; or in other genera, e.g. Koutecký [16];

Horändl et al. [17] among many others) or results in high intraspecific variation [18–20].

Veronica subsect. Pentasepalae is a recently diversified complex in which genetic isolation

barriers are not definitely established [21–23]. In addition, both polyploidy and hybridization

have been identified as processes causing morphological alterations that make species bound-

aries indistinct and avoid clear-cut recognition of closely related taxa [24]. Consequently,

some key aspects remain controversial and/or poorly studied, mainly the determination of spe-

cies boundaries and the accurate selection of morphological traits to identify them. The com-

plex taxonomy of the study group is reflected in the existence of c. 230 names for just 22

accepted taxa [25]. Although most of the Eurasian species of this group have been reviewed

throughout history in partial monographs or taxonomic treatments within several Floras (e.g.

Watzl [26]; Walters and Webb [27]; Martı́nez-Ortega et al. [28]), Rojas-Andrés and Martı́nez-

Ortega [25] have proposed the most recent taxonomic treatment for the whole subsection.

This taxonomic proposal is based on the results of DNA sequence-based phylogenetic analyses

that included all the taxa belonging to the subsection known at that time [22], which are con-

sidered together with information on ploidy level, phenotypic characters, habitat preferences,

and species distributions. The subsection contains 17 species, four subspecies and one variety

[25] and is represented in the temperate regions of Eurasia and in North Africa (only one spe-

cies). This taxonomic treatment has recently been revised and slightly modified based on

AFLP fingerprinting and DNA ploidy-level estimations [23]. This latest taxonomic proposal

based on several data sources and on the general lineage concept is taken here as a starting

hypothesis (see Materials and Methods). The members of the subsection are characterized by a

pentapartite calyx (rarely tetrapartite) with the fifth sepal significantly smaller [22]. Within this

subsection some of the taxa are registered on the International Union for the Conservation of

Nature Red List (http://www.iucnredlist.org/) and regional catalogues [29], because they are

threatened plants with narrow distribution areas and low numbers of known populations [30].

It is necessary to define species boundaries and provide tools to recognize taxa (i.e. useful dis-

criminant characters to be implemented in identification keys), but this is even more impor-

tant when endangered species are involved.

For identification keys, leaf-lamina shape is one of the most relevant characters; it is

remarkably informative for woody plants [31–33]; Kafkas and Perl-Treves [32]; Jensen et al.

[33]), but it is also useful to identify species belonging to many other plant groups (e.g. Acker-

field and Wen [34]; Plotze et al. [35]; Andrade et al. [36]). Specifically, the taxonomic treat-

ments available for V. subsect. Pentasepalae thoroughly consider and use leaves as a primary

source of characters for species identification [25–28,37,38], mainly because floral features

show little variation in Veronica and they are quite ephemeral in comparison to leaf attributes.

A previous work that examined leaf variation in eight taxa from the Iberian Peninsula and

North Africa demonstrated that an overall separation of taxonomic units was possible based
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on a set of morphological characters despite some particular cases in which unequivocal iden-

tification through these features alone was not accomplished [39].

At present, different methods are available to analyze morphometric data. The classical data

analysis through multivariate discriminant analyses (hereafter DAs) are still being successfully

applied [40,41]. Multivariate morphometrics represents a robust tool for evaluating variation pat-

terns at the specific and infraspecific levels [42], but new techniques are being implemented and

show noteworthy outcomes. Data mining is the core step in the Knowledge Discovery in Data-

bases (KDD), and data-mining tools find and describe structural patterns in data [43]. Data-min-

ing tools have been successfully applied to a broad range of fields such as marketing, chemistry

or social studies [44–49]. Although these methods have not been widely used in morphometrics,

some examples can be found (see below). Specifically, two well-known data-mining techniques

have been previously applied in morphometric studies: “Decision Trees” and “Artificial Neural

Networks” (hereafter DTs and ANNs, respectively). DTs are designed to identify patterns defin-

ing a given number of different groups, using direct information about the membership of the

units [50], which results in classification trees providing decisions at each branch point or node.

This technique makes direct use of the “divide and conquer” principle and generates groups

automatically while the tree is constructed. DTs have been used in taxonomic and palaeoecologi-

cal studies involving plant species [51,52]. ANNs, computational models inspired by biological

systems, are formed by a number of elements (neurons) organized in layers. Each neuron in a

layer is connected with each neuron in the next one by weights, and these weights are adjusted

through a learning process (i.e. they are "trained" with respect to specific data until they "learn"

the underlying hidden patterns). This technique has lately been used to identify organisms on

the basis of morphological traits, mostly in animals [53,54] but not exclusively [55,56]. Also some

studies have explored the usefulness of the three previously mentioned approaches in different

areas of knowledge and with different objectives, such as species distribution [57], medical data

analysis [58], prediction accuracy [59] or disease prediction [60,61]. There is a wide range of

data-mining techniques (such as support vector machines, methods based on the K-nearest

neighbor algorithm, rule induction, etc.) and statistical methods (e.g. Bayesian approaches,

regression-based approaches), but these have been less used for morphometric studies and there-

fore, are not considered here and thus lie beyond the scope of this work.

The purpose of the present work was to compare the performance of three classification

techniques, using the morphologically highly heterogeneous diploid-polyploid complex V.

subsect. Pentasepalae as a case study, applying a “divide and conquer” approach (i.e. a dataset

that was difficult to handle was split into more manageable subsets). For this, a search was

made for discriminant morphological characters to allow accurate taxon identification in taxo-

nomically intricate species groups. The “divide and conquer” approach has been successfully

used for example to align high numbers of DNA sequences [62,63] and phylogenetic analyses

using parsimony [64]. The selection of the study group is based on two main criteria that make

the case both challenging and robust. First, despite the knowledge acquired after years working

on this group, species identification remains problematical; and, second, enough molecular,

cytological, biogeographic, and phylogenetic information is available, ensuring a solid starting

taxonomic working hypothesis for the reference taxa. Morphometric data have been partially

gathered from a previous work by Andrés-Sánchez et al. [39], but this dataset has been sub-

stantially augmented (threefold) with information on virtually all the species included in V.

subsect Pentasepalae and, whenever possible, from the entire distribution area of each taxon.

For the aim, this work involves the following:

1) Formulation of an optimal classification scheme by assigning cases to groups (i.e. popula-

tions to taxa) in accordance with the available taxonomic starting hypothesis. The
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separation of the entities is forced with the help of subsequent guided DAs. From the leaf

features with importance in each DA, the final selection is based on previous knowledge

(i.e. manual character selection). This character selection and the initial scheme are used as

a reference to be compared with the results found using other techniques (see point 3).

2) Analysis of the morphometric dataset through three techniques at the same level: two data-

mining tools [DTs and ANNs, currently available under GNU-GPL license (General Public

License)] and an unsupervised systematic multivariate approach. For these methods no pre-

vious knowledge is assumed. The analyses are focused on the search for leaf features that

are diagnostic for the species (many of them narrowly distributed and with a few known

populations) that comprise a recently diversified and morphologically highly heterogeneous

plant group affected by hybridization and polyploidization.

3) Assessment of the pros and cons of each approach plus an evaluation of the diagnostic fea-

tures resulting from each technique. Use of ANNs to determine the suitability of the vari-

ables (input layers) over the groupings established (output layers) and comparison with the

optimal classification scheme.

4) Verification of whether it is possible to establish an automated protocol to find out diagnos-

tic characters to be readily used in taxon identification keys.

It should be remarked that the purpose of this study is not to achieve automated plant rec-

ognition. As stated above, within V. subsect. Pentasepalae, multiple lines of evidence have pre-

viously been used to propose a taxonomic starting hypothesis, following an integrative

taxonomic approach [65] and the general lineage species concept of De Queiroz [66,67]; see

Rojas-Andrés et al. [22], as well as Padilla-Garcı́a et al. [23]. Here, well-established taxonomic

entities were used as a reference to carry out the main points mentioned here.

Materials and methods

A total of 605 specimens (individuals) from 209 populations were studied, either on loan from

19 herbaria—B, BC, BCF, BM, DR, E, FCO, G, GDA, JACA, K, MA, MAF, MGC, RNG, SEST,

SEV, VAB and VIT—or collected during the present study and deposited in SALA (herbarium

acronyms according to Thiers, continuously updated [68]). The selection of the material mea-

sured was based on the species distribution. The initial attempt was to evaluate all the species

and subspecies currently included in V. subsect. Pentasepalae, but finally three taxa could not be

studied for lack of available material (V. krylovii Schischk., V. thracica Velen., and V. dalmatica
N.Pad.Gar., Rojas-Andrés, López-González & M.M.Mart.Ort.). Therefore 20 of the 23 species

and subspecies comprising the subsection according to Rojas-Andrés and Martı́nez-Ortega

[25], and Padilla-Garcı́a et al. [23] were examined. Details about the plant material are given in

S1 Table ordered according to the initial identification. The number of individuals and popula-

tions studied is summarized in Table 1, and the abbreviation assigned to each operational taxo-

nomic unit (OTU) is indicated. The taxonomic starting hypothesis follows Rojas-Andrés et al.

[22] and Padilla-Garcı́a et al. [23], which is based on the results from previous molecular,

cytological, biogeographic, phylogenetic and morphological studies (Fig 1 and Table 1). The

spatial distribution of the specimens selected is displayed in Fig 2.

The 30 quantitative characters (abbreviations shown in Table 2) already used in Andrés-

Sánchez et al. [39] were measured for the additional taxa and populations included here.

Except for cases in which the available material was insufficient, each character was measured

in three specimens per population and the arithmetic mean was calculated. The matrices
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containing raw data and all the average values per population are available on GitHub (https://

github.com/NoeLG4/morpho.dataset).

The measurements were taken from a leaf situated in the central segment of the stem

(medium leaf) (Fig 2 in Andrés-Sánchez et al. [39]) and from one on the apical shoot (Fig 3 in

Andrés-Sánchez et al. [39]). The measurements were taken with a digital electronic caliper

Digimatic 500 (Mitutoyo American Corporation, Aurora, USA). Characters related to the

indumentum were calculated only in the medium leaves. One measurement was made for

each variable except for hair length, for which five trichomes per leaf were considered. “Den-

sity” was indirectly estimated by counting the number of hairs on a 1-cm-long linear transect

at the leaf margin. Hair length and “density” were determined by means of a stereoscopic

zoom microscope NIKON SMZ-U (Nikon Corporation, Tokyo, Japan) equipped with a video

camera SONY 3CCD DXC-930P (Sony Corporation, Tokyo Japan). The photos taken were

transferred to a computer and examined through the image-analysis software Image-Pro Plus

version 1.0 (Media Cybernetics Inc., Rockville, USA).

In an effort to avoid the size effect, some characters were considered as quotients (LLM/

MLWM, LLM/WMPM, LLM/DBMWM, FTLM/FTWM, STLM/STWM, DLAUM/TLWM,

LLM/DLAUM, LLS/MLWS, LLS/WMPS, LLS/DBMWS, FTLS/FTWS, STLS/STWS, DLAUS/

TLWS and LLS/DLAUS).

Table 1. Plant material.

Operational taxonomic unit (OTU) Number of individuals Number of populations

V. aragonensis Stroh. (ARA) 21 7

�V. austriaca L. - -

(1)V. austriaca L. ssp. austriaca (AUS) 15 5

(2)V. austriaca ssp. dentata (F. W. Schmidt) Watzl (DEN) 36 12

(3)V. austriaca ssp. jacquinii (Baumg.) Watzl (JCQ) 55 19

V. crinita Kit. (CRI) 25 9

V. kindlii Adamović (KIN) 24 8

V. linearis (Bornm.) Rojas-Andrés & M. M. Mart. Ort. (LIN) 6 2

V. orbiculata A. Kern. (ORB) 33 11

V. orsiniana Ten. (ORS) 72 24

V. prostrata L. (PRO) 43 15

V. rhodopea Degen. ex Stoj. & Stef (RHO) 14 5

V. rosea Desf. (ROS) 40 14

V. satureiifolia Poit. & Turp. (SAT) 42 15

V. senneni (Pau) M. M. Mart. Ort. & E. Rico (SEN) 41 15

�V. tenuifolia Asso - -

(1)V. tenuifolia ssp. fontqueri (Pau) M. M. Mart. Ort. & E. Rico (FON) 14 5

(2)V. tenuifolia ssp. javalambrensis (Pau) Molero & J. Pujadas (JAV) 34 12

(3)V. tenuifolia Asso ssp. tenuifolia (TEN) 29 10

V. teucrioides Boiss. & Heldr. (TCR) 9 3

V. teucrium L. (TEU) 43 15

V. turrilliana Stoj. & Stef. (TUR) 9 3

Total 605 209

Summary of individuals and populations included in the morphometric study. The abbreviations of the 20 operational taxonomic units (OTUs) corresponding to the

taxonomic starting hypothesis are indicated in brackets.

� The species marked with an asterisk comprise several subspecies; those belonging to V. austriaca have been highlighted in blue, while those of V. tenuifolia appear in

red.

https://doi.org/10.1371/journal.pone.0199818.t001
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The absence of normality was checked and the Spearman correlation coefficients were deter-

mined from the original matrix of descriptors in order to test for correlation between primary

variables. The primary matrix was reduced by removing one of the variables shown to be corre-

lated for all subsequent analyses; the threshold applied was 0.95. Statistical analyses were per-

formed using the open-source R platform (descriptive statistics, Spearman correlation) [69].

A Euclidean coefficient was used to compute the secondary distance matrix after standardiza-

tion of the characters in the primary matrix. Then, a principal component analysis (PCA) was

performed with no a priori knowledge of the population groupings (i.e. ordination of the OTUs

as revealed by leaf characters). Computations were made with the software NTSYSpc 2.21n [70].

Fig 1. Starting taxonomic hypothesis. Simplified neighbour joining of the taxa examined for V. subsect Pentasepalae; modified from Padilla et al. 2017. a) V. satureiifolia,

Borau, Spain. Photo: N. Padilla-Garcı́a; b) V. senneni, Borau, Spain. Photo: N. Padilla-Garcı́a; c) V. teucrium, Novi Sad, Serbia. Photo: S. Andrés-Sánchez. d) V. orbiculata,

Makarska, Croatia. Photo: S. Andrés-Sánchez; e) V. aragonensis, Mount Baziero, Spain. Photo: N. Padilla-Garcı́a; f) V. rosea, Djebel Lakra, Marruecos. Photo: S. Andrés-

Sánchez; g) V. tenuifolia ssp. fontqueri, Sierra de las Nieves, Spain. Photo: J. Peñas de Giles; h) V. tenuifolia ssp. javalambrensis, Valdeajos, Spain. Photo: N. Padilla-Garcı́a;

i) V. tenuifolia ssp. tenuifolia, Bordón, Spain. Photo: M. M. Martı́nez-Ortega; j) V. orsiniana, Iglesuela del Cid, Spain. Photo: M. M. Martı́nez-Ortega; k) V. kindlii, Pljevlja,

Montenegro. Photo: S. Andrés-Sánchez; l) V. teucrioides, Mount Olimpus, Greece. Photo: B. M. Rojas-Andrés; m) V. linearis, Kozjak Lake, FYROM. Photo: N. López-

González; n) V. rhodopea, Belmeken, Bulgaria. B. M. Rojas-Andrés; o) V. crinita, Popovitsa, Bulgaria. Photo: M. M. Martı́nez-Ortega; p) V. prostrata, Pirot, Serbia. Photo:

S. Andrés-Sánchez; q) V. turrilliana, Veleka river, Bulgaria. Photo: B. M. Rojas-Andrés; r) V. austriaca ssp. austriaca, Cerna Mountains, Romania. Photo: A. Badarau; s) V.

austriaca ssp. dentata, Botanical Garden (Univerzity Karlovy, Prague), Czech Republic. Photo: M. Kesl; t) V. austriaca ssp. jacquinii, Josipdol, Croatia. Photo: S. Andrés-

Sánchez;

https://doi.org/10.1371/journal.pone.0199818.g001
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Fig 3 illustrates the data-analysis approach followed, which is described below.

Building an initial classification scheme based on the taxonomic starting

hypothesis: Guided discriminant analyses

Several canonical discriminant analyses (DAs) were performed using the software SPSS v. 15

for Windows (SPSS, Chicago, USA) over the standardized variables, which were selected man-

ually to force the separation of each of the previously accepted taxonomic units and to provide

an initial reference classification scheme.

Four sequential DAs were conducted for the division of the initial data set into smaller sub-

sets and therefore simplify its complexity. This was done by selecting one of the most discrimi-

nant characters derived from the original and subsequent DAs (i.e. those based on the initial

data set and different subsets established in further steps; see Results section). Character selec-

tion was manual, based on previous knowledge of the species group. The variables finally

employed were: STLM/STWM (which divides the taxa into specimens with medium leaves

entire to pinnatifid vs. pinnatipartite to bipinnatisect; sensu Beentje [71]), DI (densely hairy

leaves vs. subglabrous to glabrous leaves), LT (short vs. long trichomes) and LLM (to

Fig 2. Distribution map of the populations included in this study.

https://doi.org/10.1371/journal.pone.0199818.g002
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distinguish taxa showing large medium leaves from those with small medium leaves). By this

character selection, some phenotypic groups arise. Within these final groups, several charac-

ters were further used, forcing taxon classification. To show the variability of the selected char-

acters within each species in a comparable way, graphic tests (i.e. box-plot with indication of

median values) were conducted. The box-plots were generated using the “ggplot2” package in

R [72]. Following this procedure, some particular observations (populations) were classified as

belonging to a taxon that did not match the initial identification. These observations were con-

sidered errors. The misclassification rate (MCR: number of misclassified cases regarding the

total) was calculated as the sum of errors (i.e. the misclassified cases) in each division. A mis-

classification in a superior division forces an observation to be misguided and never reach cor-

rect classification.

Searching for diagnostic characters assuming no previous knowledge

The purpose of the data analysis was to search for leaf features that would be diagnostic for the

species. This search was assumed to be uninfluenced by prior knowledge of the group,

Table 2. Characters measured and abbreviations.

Abbreviation Morphological character

LT Medium leaf Length of trichomes

DI Density of indumentum

MLWM Width Maximum width

WMPM Middle part

TLWM Entire terminal part

FTWM First tooth

STWM Second tooth

LLM Length Total

FTLM First tooth/segment

LFFM First division/segment (bipinnatisect leaf)

STLM Second tooth/segment

LFSM First tooth of the second segment (bipinnatisect leaf)

PLM Petiole

DBMWM Distance between the leaf base and the maximum width line

DLAUM Distance between the leaf apex and the uppermost teeth

NTM Number of teeth per hemilimb

MLWS Leaf of the apical shoot Width Maximum width

WMPS Middle part

TLWS Entire terminal part

FTWS First tooth

STWS Second tooth

LLS Length Total

FTLS First tooth/segment

LFFS First division/segment (bipinnatisect leaf)

STLS Second tooth/segment

LFSS First tooth of the second segment (bipinnatisect leaf)

PLS Petiole

DBMWS Distance between the leaf base and the maximum width line

DLAUS Distance between the leaf apex and the uppermost teeth

NTS Number of teeth per hemilimb

https://doi.org/10.1371/journal.pone.0199818.t002
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meaning that manual intervention or decisions based on previous knowledge should be ruled

out. For the implementation of the “divide and conquer” approach, the character selection

should reduce the complexity of the initial dataset, recurrently dividing this initial matrix into

subsequent subgroups (i.e. generating a grouping scheme).

(1) Unsupervised discriminant analyses (unsupervised multivariate analysis). Unsu-

pervised multivariate analysis discarding manual intervention was carried out. For this, several

canonical discriminant analyses (DAs) at different scales were performed using the software

SPSS v. 15 for Windows (SPSS, Chicago, USA) following a systematic, sequential approach.

The procedure was unsupervised, assuming some artificial criteria to rule out manual inter-

vention and thus decisions based on previous knowledge. This was done by selecting the vari-

able showing the highest percentage of variance explained in the first discriminant function in

each DA. This character was then represented in a box-plot, allowing the separation of the

dataset into two subsets. Once the variable was chosen, the threshold for splitting the data was

established according to two conditions: (1) the main bodies of the box-plots could not

Fig 3. Workflow. The workflow involves the following steps (separated in the image by dashed gray lines): creation of the references, data-analysis approaches and

evaluation of the results. The green ticks mean optimal outcomes while red crosses mean suboptimal ones. Processes related to the search of diagnostic characters are

indicated in blue, while those corresponding to the groupings are indicated in light orange.

https://doi.org/10.1371/journal.pone.0199818.g003
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overlap, and (2) the threshold should minimize the number of misclassified cases for each step.

This procedure was recurrently applied until every species and subspecies was individually

classified. The misclassification rate was calculated as explained in the previous section. The

box-plots were generated using the “ggplot2” package in R [72].

(2) Decision Trees. DTs have a built-in mechanism for performing variable selection

[73]. This technique explicitly focuses on relevant features while ignoring irrelevant ones [74],

so that there is no need of prior feature selection. Together with feature selection, the treat-

ment of missing data is a key issue to be considered during the pre-processing of the data

when working with data-mining tools. Due to the low number of missing cases in the present

study, the only population presenting them was removed from both DTs and ANNs. First of

all, a perfect tree that fits the data was produced, setting the minimum size of the terminal

node to the minimum number of observations in the dataset (two, as it is indicated below) and

the minimum residual deviance to zero. These parameters enable the tree to detect taxa even

with only two cases (populations) available (e.g. V. linearis, see Table 1) and classify all the

observations (if the limit on tree depth allowed it), but this tree is clearly over-fitted (see

Results) and therefore useless. The tree was grown by binary recursive partitioning.

The splitting criterion is the division that maximizes the reduction in deviance; splitting

continues until the terminal nodes are too small or too few to be split [75]. These kinds of trees

lead to a large number of terminal nodes and are usually over-fitted, so in a second step the

tree was simplified by “pruning” [76]. This technique reduces the initial size by removing the

least important splits. The classification trees and the parameters to evaluate them (residual

mean deviance and misclassification rate) were taken directly from the package “tree” in R

[75]. The procedure for calculating the misclassification rate is analogous to that of DAs: it

results from the sum of the misclassified cases in each node. However, in this case a misclassifi-

cation in a higher division does not necessarily force an observation to be misguided because

some taxa appear in more than one final node.

The script used to analyze the data is available on GitHub (https://github.com/NoeLG4/

morpho.DT).

(3) Artificial neural networks. Feature selection when working with ANNs is a critical

step [43]. Perfectly correlated variables are truly redundant, meaning that no further informa-

tion is gained by adding them [77]. Therefore, correlated variables were removed from the

dataset and all remaining features were initially considered. Most of the variables considered

in the present study were leaf measurements so that some degree of correlation was expected.

Furthermore, some of them were highly correlated with each other (>0.8), making the task of

selecting sufficient independent variables especially difficult. With this taken into account, the

determination of the best conditions for the ANN was performed by a preliminary test among

several ANNs with different configurations of variables in combination with inspections of

time-series plots of potential inputs and outputs [78]. Max-Min standardization was carried

out to ensure that each input variable received the same attention [78]. The output layers (rep-

resenting the taxa) were transformed into binary variables through effect coding. The algo-

rithm used by the ANN for its training was designated by “rprop+” (resilient backpropagation

with weight backtracking [79]). All neural networks were performed using the “neuralnet”

package [80] included in R.

Once the input layers were established, several networks were performed with 50%, 60%,

and 70% of the cases randomly chosen as training data (and the rest reserved for testing the

models), with different number of hidden layers (1, 2), and different number of neurons

within each hidden layer (from 8 to 16). Because ANNs are sensitive to subtle changes [81]

three different training datasets were generated for each analysis. With the use of these three

datasets, the parameters were established (percentage of training set, number of hidden layers
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and number of neurons). With the parameters fixed, 10 different training and test sets were

created and the total and per species misclassification rates were then calculated as the average

of incorrectly assigned examples in the distinct test sets. Analyses including the 20 taxa

resulted in high misclassification rates (see Results) so that 10 random groups were generated

for four categories of output layers: 4, 8, 12, and 16 (i.e. 4, 8, 12, and 16 species or infraspecific

taxa) to evaluate the performance by number of species. The parameters ‘percentage of train-

ing set’ and ‘number of hidden layers’ remained constant, the number of neurons changed in

each case to optimize the outcomes. A neural interpretation diagram (hidden layers = 1; neu-

rons = 8; output layers = 8) is shown in S1 Fig. This general scheme of a typical three-layered

ANN architecture was produced using the R function plot.nnet [82]. The graphic displaying a

misclassification rate by the number of species (S2 Fig) was calculated through “ggplot2” pack-

age [72]. The script used for analyzing the data and generating the graphics is available on

GitHub (https://github.com/NoeLG4/morpho.ANN).

Artificial neural networks as a tool to evaluate morphological groups

established through a set of specific features

Since only suboptimal results were found when the whole taxonomic group was considered,

ANNs were finally not used for the initial aim. However, taking advantage of the high sensitiv-

ity of this technique to the combination of input and output layers, they were used to assess

the capacity of the selected variables to classify the taxa within the final groups established by

the best technique (see Results). This procedure was also used with the variables selected with

the help of the guided DAs and the corresponding groupings (initial identification scheme) to

be used as reference. The variables used in guided DAs and DTs were selected as input layers

for ANNs, and the different final groups established with these techniques (see Results) were

treated as output layers. The number of neurons was set and the misclassification rate calcu-

lated as explained in the previous section. The analyses were made using the “neuralnet” pack-

age [80] included in R.

Results

The results of the PCA (Table 3) indicate that the variance of the data is explained mostly by

the selected morphological variables. The first, second, and third components accounted for

53.57%, 17.04%, and 7.86%, respectively, of the total variation among populations.

Table 3. Principal component analysis.

Axis Eigenvalue Percent Cumulative

1 696.91 53.57 53.57

2 221.66 17.04 70.61

3 102.31 7.86 78.47

4 69.06 5.31 83.78

5 52.20 4.01 87.79

6 31.60 2.43 90.22

7 22.05 1.70 91.92

8 21.46 1.65 93.57

9 16.39 1.26 94.83

10 15.23 1.17 96.00

Eigenvalues and percentages of the data variance accounted by each axis.

https://doi.org/10.1371/journal.pone.0199818.t003
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Nevertheless, due to the high number of observations a clear structure is not evident in the cor-

responding graphic (figure not shown).

The Spearman correlation coefficients calculated from the original matrix of descriptors

showed that some of the primary characters were highly correlated (> 0.95). The pairs

MLWM-WMPM, LLM/WMPM-LLM/MLWM, LLS/MLWS-LLS/WMPS, and MLWS-WMPS

displayed the following values: 0.971, 0.961, 0.955, and 0.953, respectively. Therefore, the variables

MLWM, LLM/WMPM, LLS/MLWS, and MLWS were excluded from all subsequent analyses.

Initial classification scheme through guided discriminant analyses

An initial DA performed using the original data matrix showed that a set of variables contrib-

uted highly to the discriminant functions and therefore could be selected to delimit the first

two sub datasets. Some of these features (i.e. STLM, FTLM, STLM/STWM, FTLM/FTWM,

STLS, and FTLS) were related to leaf division (Fig 4A). There was another set of variables not

related to leaf division (i.e. NTM, WMPM, and LLM) that could also be used to delimit the

first two sub-datasets. Among these two sets of variables, those related with leaf division were

considered more informative, and consequently STLM/STWM was finally selected. Following

this procedure, subsequent DAs applied to different subsets of species showed sets of features

that could be selected for the recursive partitioning of the dataset. Among these variables DI,

LT, and LLM were chosen. The selection of these variables reduced the complexity of the data-

set even if these features did not contribute the most to the discriminant functions (all discrim-

inant functions, standard coefficients, and structure matrix tables are shown in S2 Table). The

subsequent partitions of the original dataset into subsets of species (Groups I to VIII) are dis-

played in Fig 4, together with box-plots for the chosen leaf characters corresponding to

sequential DAs that maximize differences between subsets. These eleven variables used for spe-

cies and infraspecific taxon classification constitute the reference diagnostic characters

Fig 4. Initial classification scheme through guided DAs. Partition of the original dataset in accordance with the

starting hypothesis. Box-plots for (A) STLM/STWM, (B) DI, (C) LT, and (D) LLM. See Table 1 for abbreviations. The

circles indicate Group II, Group IV, Group VI, and Group VIII, respectively.

https://doi.org/10.1371/journal.pone.0199818.g004
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(STLM/STWM, DI, LT, LLM, STWM, LLS/WMPS, NTS, STLM, PLS, FTLM and WMPM).

This initial classification scheme has a misclassification rate of 0.18 (38/209).

Group I holds the taxa with pinnatipartite to bipinnatisect medium leaves, while Group II

contains the species with entire to pinnatifid medium leaves. Within Group I the quotient

STLM/STWM (Fig 4A) helps to differentiate between [JCQ+TEN] and [AUS+JAV+ORB].

STWM further helps to distinguish JCQ from TEN, while LLM and LLS/WMPS differentiate

among AUS, JAV, and ORB [all box-plots corresponding to Group I are shown in S1 File,

from (a) to (d)].

The next partition within Group II was made using the character DI, which renders Group III

(taxa showing pubescent leaves), and Group IV (taxa with subglabrous leaves) (Fig 4B). Within

Group III, NTS is most helpful to distinguish among CRI and [LIN+KIN+ORS+PRO] and STLM

values do not overlap between LIN and the rest. Furthermore, PRO is easily distinguishable from

[KIN+ORS] based on the character DI, and KIN can be differentiated from ORS based on the

character LT [all box-plots corresponding to Group III are shown in S1 File, from (e) to (h)].

Within Group IV, the next partition is based on the length of the trichomes (LT; Fig 4C).

Thus, two further groups resulted: Group V, which contains the species bearing short trichomes

on their leaves, while Group VI includes taxa having long ones. Within Group V, ARA can be

distinguished from [RHO+TUR] using the character PLS. Moreover, FTLM could be used to

separate RHO from TUR [box-plots corresponding to Group V are shown in S1 File, (i) and (j)].

Finally, the taxa included in Group VI could be separated into two further subgroups based

on the character LLM (Fig 4D): While Group VII included the entities having medium-sized

and long leaves, Group VIII comprised the taxa with small leaves. Within Group VII, SEN

could be differentiated from [DEN+TEU] (and even from the remaining taxa within Group VI)

based on this character [LLM; S1 File, (k)]. Additionally, TEU differed from DEN in the width

of their medium leaves (WMPM) [box-plots corresponding to Group VII are shown in S1 File,

(k) and (l)]. Within Group VIII, the characters STWM help distinguish ROS from [FON+SAT

+TCR]; moreover, the variable STLM registered values that did not overlap between FON and

[SAT+TCR], and these two species could be easily differentiated using the variables DI or

DLAUM [all box-plots corresponding to Group VIII are shown in S1 File, from (m) to (o)].

Searching for diagnostic characters assuming no previous knowledge

(1) Unsupervised discriminant analyses. Ten variables were used for species and infra-

specific taxon classification through unsupervised DAs (STLM, WMPM, NTM, FTLM/FTWM,

DI, LT, LLM, STWM, LLM/DBMWM and STLS/STWS). All the divisions performed with the

most discriminant characters determined by DAs are available in S2 File. The first DA carried

out indicated that the variable STLM gave the highest percentage of variance explained in the

first discriminant function according to the structure matrix (all discriminant functions, stan-

dard coefficient, and structure matrix data are shown in S3 Table). In this first step [JCQ+TEN]

were separated from the rest of the taxa; additionally, the variable identified to distinguish JCQ

from TEN was WMPM. The best character according to the next pair of DAs was NTM, which

separated in one step [ARA+LIN+RHO] from the rest of taxa and in the second one, the

remaining species from CRI. Within the above-mentioned group, FTLM/FTWM helped to dis-

tinguish [ARA+LIN] from RHO, and DI separates ARA from LIN. The fourth DA applied

revealed WMPM as the best character and led to the distinction of TEU from the other taxa.

The leaf feature showing the highest percentage of variance explained in the first discriminant

function suggested by the next discriminant analysis was DI, which applied to the subset sepa-

rates [AUS+KIN+ORS+PRO] from the remaining taxa (nine at this point). DI arose again as
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the best variable to differentiate PRO from [AUS+KIN+ORS]; LT allowed the separation of

ORS from [AUS+KIN], finally AUS could be distinguished from KIN based on LLM.

LLM was used again in the subsequent DA to distinguish [DEN+SEN] from the remaining

taxa. This character was also useful to differentiate DEN from SEN. In the next DA the best vari-

able found was STWM, and the threshold with the fewest misclassified cases split the current

subset into [TCR+TUR] and the rest of the taxa; additionally, LT was found to be the best fea-

ture to differentiate between TCR and TUR. At this point, only five taxa remained; the DAs per-

formed to distinguish among them gave as a result STWM, LLM/DBMWM, and STLS/STWS

as the most discriminant characters, separating ROS, JAV, and SAT from [FON+ORB], in this

order. The best variable emerged for the last DA was DI, with slightly higher values in FON.

Through this variable selection in most of the steps, just one or two species were separated

from the rest. This process generated a greater number of groups than did guided DAs, with a

low number of species in each group. The complete sequence of DAs had a misclassification

rate of 0.33 (68/209).

(2) Decision trees. The perfect tree correctly classified all the observations (residual mean

deviance = 0; misclassification error rate = 0), but led to 48 final nodes (S3 Fig). Some of the

species (e.g. ROS, SAT, SEN) appeared more than three times, highly over-fitted, considering

that the dataset contained a total of 20 taxa.

The pruned tree (Fig 5) showed 20 terminal nodes, which did not correspond exactly to the

20 taxa: 14 entities were identified corresponding to a single terminal node, three were found

in two terminal nodes of separate branches (ARA, DEN, SEN), and three complete taxa were

misidentified (AUS, LIN, TUR). The residual mean deviance was 0.998 and the misclassifica-

tion rate 0.19 (40/208; one observation was eliminated due to lack of information; see Materi-

als and Methods). In tree construction, 11 variables were actually used (STLM/STWM,

STWM, STLM, DI, LT, NTM, WMPM, LLS, FTLM, LLM, and FTWS). According to this fea-

ture selection, the taxonomic entities can be classified into three main groups (characters and

exact values that lead to this classification are shown in Fig 5):

1) Group A [ARA+FON+KIN+RHO+ROS+SAT+SEN+TCR] has low values of NTM and

the ratio STLM/STWM. This first group can be subdivided by the character FTLM into Sub-

group A1 [ARA+KIN+RHO+SAT+TCR], with shorter teeth, and Subgroup A2 [ARA+FON

+ROS+SEN], with longer teeth. 2) Group B [JAV+JCQ+ORB+TEN], has low values of NTM

and high for the quotient STLM/STWM, which means pinnatipartite to bipinnatisect leaf. 3)

Group C [CRI+DEN+ORS+PRO+SEN+TEU], has high values of NTM; this group can also be

subdivided into two subgroups based on DI: Subgroup C1 [DEN+SEN+TEU], with low values;

and Subgroup C2 [CRI+DEN+ORS+PRO], with high values of DI.

Artificial neural networks

From the initial set of variables, 20 were finally selected for ANNs (LT, DI, PLM, STLM/

STWM, LLM, WMPM, DBMWM, DLAUM/TLWM, NTM, PLS, STWS, DLAUS/TLWS, LLS/

DLBMWS, LLM/DBMWM, TLWS, NTS, LLS/WMPS, LFFM, LFFS, and LFSS). The different

percentages used for splitting the data into training and testing sets showed no significant dif-

ferences in terms of misclassification rate. In each scenario, one hidden layer displayed better

outcomes than two or more and heavily reduced the computing time. The number of neurons

which resulted in higher predictive capacities varied between 8 and 16, depending on the num-

ber of output layers.

The analyses including all taxa led to high misclassification rates (mean value of 0.41, see S2

Fig). Even using the best model, nine of the 20 taxa displayed values over 0.40 (Table 4).

Reducing the number of output layers resulted in better values. As shown in S2 Fig, ANNs
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perform well with groups of less than eight taxa (values of correctly classified cases above 0.75,

i.e. a misclassification rate below 0.25), even though it depended largely on the combination of

species and infraspecific taxa.

Comparison of the variables and groups resulting from guided DAs and

DTs. Evaluation of the classification power with ANNs

Of the three techniques applied in the present study: ANNs gave suboptimal results when

applied to the total dataset, unsupervised DA failed to generate manageable groups, and DTs

offered good results regarding both aspects. Therefore, the leaf characters selected through

DTs (and the corresponding groupings) were compared to those manually selected with the

help of guided DAs (and the initial classification scheme) in terms of misclassified cases using

ANNs. Some groups displayed high misclassification rates (Group VIII for DAs: 0.36; Group

A and Subgroup A1 for DTs: 0.33 and 0.39, respectively), but the overall misclassification rate

was below 0.2 in most cases, as shown in Table 5 (guided DAs variables and groups) and

Table 6 (DTs variables and groups).

Discussion

This work presents an extensive morphometric analysis focused on relevant leaf characters

that covers the complete geographical range of V. subsection Pentasepalae. A classical multi-

variate technique (DA) and two data-mining techniques (DTs and ANNs) are used to facilitate

the search for discriminant characters and formulation of morphological groups within taxo-

nomically complex plants in which polyploidy and hybridization are involved. A phenotypic

species concept is of crucial importance for taxon identification, especially in the field, where

other kinds of evidence such as genetic data is still difficult to use. However, when allopoly-

ploidy is involved, morphological data could easily disagree with other sources of information,

Fig 5. Pruned tree.

https://doi.org/10.1371/journal.pone.0199818.g005
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such as genetic, biogeographic or cytological data, thus complicating the implementation of

integrative taxonomy. In this common situation, the methodology used when working with

angiosperm species could help to transfer a taxonomic hypothesis based on several lines of evi-

dence to the description of “morphological groups”.

Generating morphological groups through feature selection

(1) Morphological groups based on manual selection. As an initial step in this work, a

classic multivariate analysis combined with guided recursive partitioning (guided DAs) was

used to establish “morphological groups” as an optimal classification scheme, based directly

Table 4. ANNs per species results.

Species MCR NC

ARA 0.39 7

AUS 1.00� 5

DEN 0.38 12

JCQ 0.17 19

CRI 0.89� 9

KIN 0.56� 8

LIN 0.33 2

ORB 0.49� 11

ORS 0.18 24

PRO 0.10 15

RHO 0.33 5

ROS 0.56� 14

SAT 0.30 15

SEN 0.55� 15

FON 0.44� 5

JAV 0.05 12

TEN 0.17 10

TCR 1.00� 3

TEU 0.10 15

TUR 1.00� 3

(Hidden layer = 1, number of neurons = 16, output layers = 20). MCR = misclassification rate. NC = number of

cases.

� Values over 0.4 indicated with an asterisk.

https://doi.org/10.1371/journal.pone.0199818.t004

Table 5. MCR calculated through ANN.

Guided DAs final groups; hidden layer = 1

Neurons 8 10 10 8 12

Group I III V VII VIII

Error 0.14 0.053 0.024 0.038 0.089

Reached threshold 0.0086 0.0089 0.0085 0.0086 0.0086

Steps 81.00 64.80 27.36 47.34 86.38

MCR 0.14 0.12 0.17 0.09 0.36

In this case the input layers are the variables manually selected with the help of guided DAs and the output layers the entities within the final groups (initial classification

scheme).

https://doi.org/10.1371/journal.pone.0199818.t005
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on prior knowledge of the subsection and on an initial taxonomic working hypothesis [25]

(Fig 1). DA is a powerful technique for examining differences among groups with respect to

determining whether meaningful differences exist between them [42]. DA finds discriminant

functions that best differentiate predefined groups by maximizing the differences between

groups while minimizing variation within groups [83]. In the present case, a “divide and con-

quer” strategy was used through DAs in a directional way. For the implementation of this

strategy and for the establishment of “morphological groups” (i.e. I to VIII, Fig 4), the original

dataset was sequentially split into subgroups using the most informative variable among those

with high absolute correlation within any discriminant function. The misclassification rate

was low, but not zero, due to the particularities of the data set, mainly because it included taxa

having high levels of phenotypic variability (e.g. allopolyploid taxa).

(2) Using DTs to establish morphological groups automatically. For establishing mor-

phological groups in an automated way, DTs are appropriate. DTs (and ANNs) learning meth-

ods are part of the KDD process (knowledge discovery on databases), whose final aim is the

search for patterns in huge databases [43]. This technique implements the “divide and con-

quer” principle itself, and the generation of groups based on features is completely automatic.

Furthermore, the built-in mechanism of the trees automatically selects the most important var-

iables [73]. DTs therefore are highly useful for effective and, at least, fast initial approxima-

tions, because no previous knowledge on the group is required and successful results are

achieved even with closely related species [84–85]. The resulting trees display the root at the

top. Each sequential division shows an annotation in the graphic output representing the split-

ting criterion. Cases meeting the criterion go left and those failing to do so go right. The size of

the branch above each division shows the decrease in deviance associated with that split.

Therefore, the first divisions have longer branches than do the last ones and the branch length

diminishes with the depth of the division.

This approach has many advantages: feature selection is intrinsic to the methodology, data

transformation is unnecessary, classification success does not depend on the data meeting nor-

mality conditions or covariance homogeneity, and the non-linear effect of explanatory vari-

ables can be handled [86]. Moreover, some studies reveal that DT analyses perform better on

data-sets with incomplete records [87].

Decision trees also have drawbacks. They can be unstable and small changes in the training

data can result in alterations in the final tree [88], but this is not a serious disadvantage, being

easily solved by bootstrapping [89,90]. Another problem is the method’s inability to manage

groups with low numbers of cases unless a perfect tree is produced. This generates an over-fit-

ted tree which leads to a useless classification. When a large reference sample is available, DTs

are an appropriate choice [51,91]. Consequently, extending the observations in the initial data-

set could provide more accurate results with this technique. The main limitation arises when

Table 6. MCR calculated through ANN.

DTs final groups; hidden layer = 1

Neurons 18 10 8 12 8 10 12

Group A A1 A2 B C C1 C2

Error 0.153 0.177 0.05 0.109 0.057 0.037 0.041

Reached threshold 0.0089 0.009 0.0088 0.0089 0.0087 0.0089 0.0089

Steps 321.04 161.49 106.33 101.53 107.64 53.02 50.62

MCR 0.33 0.39 0.21 0.16 0.10 0.09 0.03

The input layers are the variables selected in DT analysis and the output layers the entities within the final groups obtained through the pruned tree.

https://doi.org/10.1371/journal.pone.0199818.t006
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information on these species cannot be added due, as in this particular case, to the small num-

ber of existing localities and individuals for some species.

(3) Using ANNs for evaluating the "morphological groups" through the combination of

variables selected. The ANNs used in this study are based on adaptive learning algorithms

(backpropagation algorithms) and are the most widely used type. They consist of an input

layer (with neurons representing input variables), an output one (with neurons representing

the dependent variables), and one or more hidden layers containing neurons intended to cap-

ture the nonlinearity in the data [92]. These networks are versatile and can be used for data

modelling, classification, forecasting, control, data and image compression, and pattern recog-

nition [93]. They can handle a great array of data types and integrate them into categorized

outputs which can represent nearly anything, from medical diagnoses [94] to echolocation

calls in bats [95].

ANNs also have limitations. They can handle various types of data, but for modelling data

of low dimensionality, ANNs perform worse than do conventional statistics. On the other

hand, they may be used when higher accuracy is required [92]. The data pre-processing is not

straightforward and represents a critical step [43], and consequently it has a significant effect

on the final model performance [78]. Another drawback is that using ANNs does not allow to

direct selection of the most important variables and does not provide p-values for testing the

significance of the parameter estimate [96]. However, in this case it should be taken into

account that there are some approaches which allow the assessment of the contribution of vari-

ables to the model [97]. Another disadvantage usually attributed to the traditional ANNs is a

limitation on the generalization of the results that can over-fit the data [98].

In any case, their power as classification tools is beyond doubt. The reason why ANNs are

not an appropriate approach in this case is related to the characteristics of the dataset generated

by the study group (i.e. too many entities to classify, too few observations per taxon in some

cases and the fact that some are highly polymorphic). Probably, ANNs combined with another

kind of initial dataset would provide better outcomes. For example, computer-based image

analysis has excellent potential even for identification at varietal levels in some plant groups

(wheat: Dubey et al. [99]; Camellia sinensis: Pandolfi et al. [55]) or when sufficient information

about each output case is available (onion varieties: Rodriguez Galdon et al. [100]).

It bears highlighting that ANNs were not used in this work as a classification method, but

rather to assess each of the final morphological groups with respect to the variables leading to

these groups. ANNs were employed to compare the groups established using DTs and groups

formed by a guided DA using the set of characters previously defined by each technique. The

properties of this construction (ability to capture hidden patterns in data, good results when

accuracy is needed) were taken advantage of together with the good results displayed when

dealing with small groups of species (the sensibility to the set of input/output layers observed

during this work). ANNs easily adjust to any set of input-output patterns and through a robust

training process perform a model function with the minimum possible error. For all these rea-

sons, a novel use of ANNs is proposed here to evaluate the adequacy of an input set of variables

to classify the dependent variables.

Searching automatically for discriminant characters: DTs vs. unsupervised

DAs

Looking for a set of discriminant characters to distinguish taxonomic entities represents a pri-

mary objective in taxonomic studies [65]. In this study, DTs (11 variables selected, see Results)

and unsupervised DAs (10 variables selected, see Results) were both appropriate to this aim.

Despite the misclassification rates–suboptimal results using unsupervised DAs, as compared
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to DTs–the characters selected through DTs and unsupervised DAs are overall consistent with

each other and the reference diagnostic characters (11 variables selected, see Results). That is,

six variables coincided between guided DAs and DTs (DI, LT, LLM, STLM, STWM, and

STLM/STWM), and a slightly different set of six features were shared between the two

approaches that use DAs (DI, LT, LLM, STLM, STWM and WMPM).

The differences in the misclassification rate depend in part on the order of selection of diag-

nostic variables which eventually lead to the groupings. The variables which account for a greater

amount of the variance were identified through unsupervised DAs. However, each step usually

separated one or two species, but did not really split the dataset. This situation differed in the

case of manual selection (guided DAs) or DTs, but neither the variable selection nor the order

has one valid solution. Notably, the misclassification rate here was almost optimal using DTs.

DTs achieved nearly the same results as guided DAs using a different combination of 11 variables

from the initial set of 44. The similarity between these two techniques leads to some groupings

that are equivalent (Group VII and C1) or quite comparable (Group I and B; Group III and C2).

DTs use specific classification rules allowing the direct and automatic creation of dichoto-

mous keys to distinguish the different OTUs [101]. They also provide clear information on the

importance of significant factors for prediction or classification [96]. In fact, DTs have been

used in the pre-processing of data for the feature-selection step [98]. DTs (as data-mining tech-

niques) can deal with sets having considerably high levels of incomplete data in several ways

[102], but as mentioned above, they are not the most appropriate tools in the search of dis-

criminant variables to classify species with low numbers of cases. By contrast, an important

advantage of DAs is the ability to differentiate all the entities regardless of the number of obser-

vations. For particular scenarios involving endangered species or narrowly distributed taxa

that, moreover, occur sympatrically with closely related species, DA may be the best choice

[103,104]. In the present study, the species with low numbers of observations (e.g. LIN, TUR)

were identified better by the combination of features implemented by DAs than by DTs.

For their part, DAs constitute an extraordinarily robust technique that in all cases should be

considered in the search of morphological evidence for classification purposes (often in com-

bination with molecular studies) when complete data sets are available [105–107]. Even with

geometric morphometrics, multivariate analyses provide a good strategy for testing population

differences [108]. With respect to the unsupervised DAs, the results would probably improve

maintaining the sequential approach, but eliminating the restrictive rule of choosing the best

variable in statistical terms and considering instead the set of the most useful variables with the

help of graphic analysis (e.g. using box-plots).

A “divide and conquer” strategy applied to the polyploid complex V.

subsect Pentasepalae
The methodological approach followed in this study to search for diagnostic characters that

could aid taxon classification is based on the “divide and conquer” principle. With this proce-

dure, the most informative diagnostic characters were used to divide the initial dataset and pro-

gressively decrease its complexity. The methods that use recursive partitioning (i.e. splitting the

initial task into various subtasks until they become simple enough to be easily solved) success-

fully address different kinds of intricate problems [109–111]. The combination of different tech-

niques that are based on this principle (i.e. sequential DAs, DTs) seems to have been an

excellent approach at least in the case of study. Veronica subsect. Pentasepalae is particularly

challenging due not only to the high intraspecific morphological variability of some taxa, which

makes species identification difficult, but also to the low number of populations known for sev-

eral narrow endemics. However, this approach reduced the initial complexity, generating
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smaller subsets of data and avoiding the loss of information concerning the OTUs with low

numbers of observations. It is noteworthy that in this case, the DTs, which implement a recur-

sive partitioning method [73], provided satisfactory results. These recursive partitioning meth-

odologies therefore seem to be reliable for assigning a population to taxa, either by conventional

multivariate analysis techniques such as DAs, by implementing data-mining approaches, or by

combining the two methods, which should not be considered mutually exclusive [89].

Conclusions

In summary, the present study used the following workflow: 1) If possible, consider only indi-

viduals/populations which can be identified by other sources of information. Take detailed

measurements corresponding to all the morphometric characters that a priori show variability

(leaf features in this case, but any organ should be considered, and if that organ has a three-

dimensional structure, geometric morphometrics should be considered as well). 2) Perform a

PCoA or PCA (depending on the type of data) to verify whether there is enough variance pres-

ent in the variables to explain the cases. 3) Implement a “divide and conquer” approach

through the DT technique as a fast, easy, and effective solution in the search of diagnostic char-

acters. In the case of species with low numbers of populations (or scarce data for any other rea-

son), take advantage of the properties of the DAs to determine whether there is a sequence of

characters that allows their classification aside from DTs and afterwards apply DTs without

these entities. 4) Assess through ANNs the capacity of the variables to classify the taxa included

in the final groups. Consider the variables selected as input layers and the taxa as output layers,

divide the corresponding subset into several training/testing groups, and calculate the misclas-

sification rate. If the rates show consistently high values or the different results are too unsta-

ble, the search of other characters would be recommended.

Establishing a general protocol based on this particular example seems of course too bold.

However, these methodological guidelines may be of use to find robust morphological charac-

ters to differentiate among closely related taxa which have been taxonomically recognized as

different entities based on multiple lines of evidence. Morphological data has its limitations in

that it can disagree with phylogenetic data or can be misinterpreted due to homoplasy. Thus,

gathering as many data as possible about species or infraspecific taxa (i.e. genetic, cytological,

biogeographic, etc.) appears to be the most appropriate way to achieve classification. Integra-

tive taxonomy appears to be the most suitable way to inspect biodiversity, the selection of the

most appropriate combination of characters to identify each group of organisms is crucial, and

morphological features should not be ruled out [65,112].

Applications

As mentioned above, each group of organisms has its particularities (and hopefully its appro-

priate solutions). There are scenarios in which the extreme morphological and ecological vari-

ation among species [113] or the existence of cryptic taxa [114] has never allowed the

identification of diagnostic phenotypic characters (by definition no morphological character

would be found in the latter example) and cases in which genetic approaches show promising

results [115,116].

In practical terms, conservationists cannot protect organisms that cannot be identified [117].

Adequate knowledge and description are needed to develop the necessary plans and mecha-

nisms for species conservation [118,119]. For species complexes that are difficult to determine,

it is recommended to perform careful morphometric studies on previously established taxa,

which may allow finding robust characters in order to achieve proper identification. The ade-

quate determination of endangered species and their distinctiveness with respect to their closest
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relatives is required, mainly when distribution areas are sympatric [120,121]. Studies based on

the recursive partitioning or the “divide and conquer” principle are easily implementable to

identification guides or even mobile apps (e.g., ArbolApp: http://www.arbolapp.es/; IPflanzen:

http://www.ipflanzen.ch/; NatureGate: http://www.luontoportti.com/suomi/en/), which would

increase the knowledge of species outside the academic sphere, thus facilitating their protection.

The applications of these approaches may therefore facilitate the necessary dialogue with practi-

tioners, communication that needs urgent improvement [122], even in order to avoid the immi-

nent extinction of taxonomists, an additional endangered species [123].
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Investigation: Noemı́ López-González, Santiago Andrés-Sánchez.

Methodology: Noemı́ López-González.
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