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Spatial heterogeneity is a fundamental characteristic of organisms from viruses to humans. Measuring
heterogeneity is challenging, especially for naked-eye invisible viruses, but of obvious importance. For
example, spatial heterogeneity of virus distribution may strongly influence infection spreading and out-
breaks in the case of pathogenic viruses; the spatial distribution (i.e., the inter-subject heterogeneity) of
commensal viruses within/on our bodies can influence the competition, coexistence, and dispersal of
viruses within or between our bodies. Taylor’s power law (TPL) was first discovered in the 1960s to
describe the spatial distributions of plant and/or animal populations, and since then it has been verified
by numerous experimental and theoretical studies. Recently, TPL has been extended from population to
community level and applied to bacterial communities. Here we report the first comprehensive testing of
the TPL fitted to human virome datasets. It was found that the human virome follows the TPL as bacterial
communities do. Furthermore, the TPL heterogeneity scaling parameter of human virome is virtually the
same as that of the human bacterial microbiome (1.916 vs. 1.926). We postulate that the extreme close-
ness of human viruses and bacteria in heterogeneity scaling coefficients could be attributed to the fact
that most of the viruses that were annotated in this study actually belong to bacteriophages (86% viral
OTUs) that ‘‘piggyback” on their bacterial hosts, and their distributions are likely host-dependent. The
scaling parameter, which measures the inter-subject heterogeneity changes, should be an innate prop-
erty of human microbiomes including both bacteria and viruses. It is similar to the acceleration coeffi-
cient of the gravity (g = 9.8) as specified by Newton’s law, which is invariant on the earth.
Nevertheless, we caution that our postulation is contingent on an implicit assumption that the proportion
of bacteriophages to total virome may not change significantly when more virus species can be identified
in future.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Our body does not consist of our own cells alone. Instead, it is
cohabited by trillions of microorganisms, collectively termed as
human microbiome. For this reason, some scientists consider our
body as the holobiont, consisting of the host cells and all of its sym-
biotic microbes [23,24]. It is estimated that the human body is
inhabited by at least 38 trillion bacteria, which is about 10 times
of the cell number of our body. However, the award for the most
abundant microbes in the human microbiome cannot be awarded
to bacteria, and instead the award goes to viruses which are esti-
mated to exceed 380 trillions, i.e., approximately 10 times of the
bacterial number, that are collectively termed as the human vi-
rome. As expected, absolute majority of the trillions of viruses are
harmless to our hosts, but how they are distributed spatially and
temporally certainly have significant impacts on our health and dis-
eases. In the present study, we are interested in assessing and
interpreting the spatial heterogeneity of the human virome in
terms of the inter-subject scaling (changes) of viral OTU
abundances.

The term ‘‘heterogeneity” literally represents the quality or
state of being diverse in character or content, which appears to
be the other side of evenness coin or a proxy of biodiversity. How-
ever, much of the formal and quantitative research of heterogene-
ity in ecology has been performed separately from diversity
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research [14,15,17,18]. For instance, in population ecology, the
terms such as heterogeneity, aggregation, dispersion, and patchi-
ness are often used interchangeably, and all of which can be used
to characterize the spatial distribution of biological populations.
Similarly, the terms such as spatial heterogeneity, spatial dispersion,
and spatial distribution are often used interchangeably in popula-
tion ecology. In these usages, the spatial information is referred
to either implicitly or explicitly. Although temporal heterogeneity
can also be defined and measured, it is essentially a proxy of (tem-
poral) stability of population or community [9,11,20]. In this arti-
cle, we focus on spatial heterogeneity exclusively.

If the concept of heterogeneity is constrained by the spatial dis-
tribution (arrangement) or temporal (variation), its difference with
diversity or evenness becomes obvious. The traditional diversity
concept and its various metrics do not usually deal with spatial dis-
tribution (arrangement) (e.g., [2]). We are only aware of two excep-
tions: One is beta-diversity, which may implicitly take into the
spatial information but it is far less convenient in dealing with spa-
tial information than the heterogeneity concept. Another exception
is the concept of dominance [12,13], which has to with its deriva-
tion from the concept of mean crowding [10]. Nevertheless, it is far
less comprehensive than the power law parameter we use in this
study because it is just an index, rather than a model that is built
from multi-site abundance data.

Spatial heterogeneity is a fundamental property of any natural
ecosystems including the human virome. In ecology, three most
important scales that the spatial heterogeneity exhibits are the
population, community, and landscape. At population scale, aggrega-
tion, dispersion and heterogeneity are often used interchangeably
with each other, but the term aggregation is preferred. In popula-
tion ecology, aggregation or heterogeneity is often measured quan-
titatively with Taylor’s [31] power law, which achieved rare status
of ecological law [3,28–30,32,33,3,21–22,5,18] as further explained
below shortly.

At community scale, community spatial heterogeneity can be
quantitatively measured with Taylor’s power law extensions
(TPLEs), which were proposed by Ma [11] via extending Taylor’s
[31] power law from population to community level. In addition,
the heterogeneity of the assemblage of species, which falls
between single-species population and community, can be mea-
sured with the so-termed mixed species population aggregation
[11]. Several applications of the TPLE to human microbiome have
been reported (e.g., [15–18,20]). In the present study, we propose
and test the application of TPLE for measuring the spatial hetero-
geneity of human virome. The ‘unit’ of space in human virome
study is usually individual human subject, and therefore the terms
spatial heterogeneity and inter-individual heterogeneity are equiv-
alent in this study.

The characterizations of human virome heterogeneity are of
obvious importance. For example, in the case of pathogenic viruses,
understanding the spatial heterogeneity (distribution) of viruses
can be critical for investigating the epidemiology (such as outbreak
thresholds) (Ma 2020). For another example, in the case of com-
mensal viruses, the spatial distribution of commensal viruses
within our bodies or the inter-subject heterogeneity (differences)
can influence the competition, coexistence, dispersal, and spread
of viruses within or between our bodies, and should have far reach-
ing significance to our healthy and diseases. In fact, the term
‘‘heterogeneity” has been listed in the mission statements of both
the HMP (Human Microbiome Project) and HMP2 or iHMP (inte-
grative HMP) of the US-NIH, referring to various aspects of the
human microbiome from inter-subject heterogeneity in micro-
biome composition to the heterogeneity in disease treatment
responses [6,7]. These appearances highlighted the importance of
the microbiome (virome) heterogeneity in human microbiome (vi-
rome) research. Nonetheless, assessing and interpreting the
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heterogeneity of human microbiome (including virome) can be
rather challenging. There have been several applications of the
applications of TPL (TPLE) to the bacterial communities (e.g.,
Citations). To the best of our knowledge, the inter-individual
heterogeneity of human virome has not been investigated compre-
hensively. We fill the gap in this article by applying the TPLE
modeling for analyzing the big data of metagenomic sequencing
reads of the human virome samples. Table S1 displayed the brief
information of 287 virome samples from 4 research projects.
Fig. 1 illustrated the strategy and computational procedures of
our study.
2. Material and methods

2.1. Virome datasets and bioinformatics analysis for viral OTU tables

Four published datasets of human viromes were reanalyzed in
this study, with a total sample size of 287 (see Table S1). A total
of 147 bronchoalveolar lavage samples from lung donors and
transplant recipients, including 61 control samples and 80 PGD
(Primary Graft Dysfunction) samples, and 34 blood serum samples
from recipients (16 control samples and 18 PGD samples) were col-
lected in the United States, and DNA-sequenced for virome
research in the dataset (1). Dataset (2) consists of 81 fecal samples
of healthy children from four different locations in Venezuela, with
sample sizes of Urban A, Village B, Village C and Village D being 20,
10, 16, 15, respectively. The colon samples of dataset (3) were
taken from 5 healthy individuals, 6 CD (Crohn’s disease) patients
and 4 UC (Ulcerative Colitis) patients from Canada. Finally, a total
of 30 stool samples of dataset (4) were collected from Tanzanian
Hadza hunter-gatherers.

Since it was difficult to collect multiple datasets with the same
or even very similar meta (environmental) factors, we decided sim-
ply to ignore the difference in meta factors such as host age, sex,
etc. Instead, we only required that the datasets were collected for
sequencing the reads of human viromes. In other words, we did
not care the ‘‘heterogeneity” or lack of homogeneity among the
treatments of the four datasets. Nevertheless, starting from the vir-
ome reads, we kept the exactly computational procedures and
quality control measures to get the viral OTU (operational taxo-
nomic unit) tables.

We adopted VirusSeeker, a BLAST-based NGS data analysis soft-
ware pipeline [35], to reanalyze all of the virome reads with the
same configurations and to ensure consistent computational pro-
cedures were applied to obtain the viral OTU tables. Fig. 1 illus-
trated the flowchart of VirusSeeker, as well as the follow-up
procedures for performing the power law analysis with the viral
OTU tables generated from the VirusSeeker pipeline. An advantage
with the VirusSeeker pipeline is that it handles both eukaryotic
virus and virome composition equally well, while many other
pipelines usually focus on one or the other. This advantage is rather
helpful for us to obtain consistent OTU tables across the four
datasets.

2.2. Taylor’s power law (TPL) and TPL extensions (TPLE)

Taylor [31] found that there is a rather robust power function
relationship between population mean abundance (M) and corre-
sponding variance (V) across regions of a species’ distribution
range, i.e.,

V ¼ aMb ð1Þ
For example, Mi can be the mean population abundance of an

insect pest species in the i-th crop field, and Vi is the corresponding
variance. The Vi-Mi pairs across a series of crop fields then follow



Fig. 1. A diagram illustrating the computational procedure for measuring the spatial heterogeneity of human virome with Taylor’s power law extensions (TPLE).
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the above power-function relationship. Since 1960s, the power
function has been verified by numerous field observations and also
theoretical analyses, and it has achieved a rare status of classic eco-
logical law, known as Taylor’s power law [4,28–33,3,21,22].

TPL is usually fitted by transforming Eq. (1) into the following
log-linear model:

lnðVÞ ¼ lnðaÞ þ bM ð2Þ
TPL possesses two parameters a & b. Parameter a or ln(a) is the

intercept of the log-linear form of TPL, and is generally considered
of little ecological significance; instead, it is influenced by the envi-
ronmental factors such as sequencing platforms and/or sampling
efforts (sample sizes) in the case of microbiome research. Parame-
ter b is considered a species-specific parameter that is primarily
determined by the species evolutionary history, therefore being
invariant with environmental conditions. Note that this is not a
consensus agreed upon by all ecologists. There are evidences sup-
porting both invariance and non-invariance assumptions. We
argue that whether or not parameter b is invariant should be deter-
mined by statistical tests. In this study, we rely on the permutation
test (randomization test) to determine if b is invariant with envi-
ronmental factors (or meta factors) such as host health status or
sequencing platforms. An advantage of TPL is that parameter a
may ‘‘absorb” the noise effects such as meta-factors and sampling
efforts.

The classic TPL is a population level law (model), which is
determined by the computation of V-M pairs. Ma [11] extended
classic TPL to community level by proposing four TPL extensions
(TPLE): Type-I TPLE for measuring community spatial heterogene-
ity; Type-II for measuring community temporal stability (variabil-
ity); Type-III for measuring mixed-species population spatial
aggregation (heterogeneity); and Type-IV for measuring mixed-
species population temporal stability (variability). The commonal-
ity between the classic TPL and TPLE is that they all share the same
mathematical model (power function) [Eqn. (1) & (2)]. Neverthe-
less, the interpretations of the model parameter b in TPL and TPLE
are different as explained previously. That is, the TPLEs (Type-I, II,
III, & IV) possess four different interpretations, and all are different
from the interpretation of b in the classic TPL.
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Type-I and Type-III TPLEs are built with cross-sectional datasets
or spatial series of V-M pairs, and therefore they are used to mea-
suring spatial heterogeneity. Type-I TPLE parameter b is termed
community spatial heterogeneity scaling parameter, measuring
the change rate of heterogeneity with mean species size in viral
community. Type-III TPLE parameter b is termed mixed-species
population spatial aggregation scaling parameter, measuring the
change rate of aggregation with the mean population size in viral
community. The differences between Type-I TPLE and Type-III
TPLE include: (i) Type-I is community level and Type-III is essen-
tially species-level (mixed-species or averaged-species); (ii) The
mean species size of Type-I is computed by averaging the species
abundance of all species within a community, whereas the mean
population size is computed by averaging the population abun-
dance of a species across multiple communities (or community
samples). For these differences, Type-I TPLE scaling parameter
essentially measures the heterogeneity among species or
community-level spatial heterogeneity, whereas Type-III TPLE
scaling parameters essentially measures the aggregation (hetero-
geneity) of an averaged species across spatial series of communi-
ties, and hence is a species-level heterogeneity similar to the
population aggregation in the classic TPL.

Type-II and Type-IV TPLEs are built with time-series data or
temporal sampling of ecological communities, and therefore are
used to measure temporal variability (stability) [11]. These two
temporal versions of TPLE are not implicated in this article, but
they have been applied to human microbiome and virome (e.g.,
[11,19,20]).
3. Results and discussion

We first fitted Type-I and III TPLEs to the four datasets of human
viromes, which consisted of 14 different treatments as detailed in
Table S1. The results from fitting the TPLEs to the 14 treatments
were summarized in Table S2, and further illustrated in Figs. 2
and 3. These results demonstrated that the TPLEs, whether it is
Type-I or Type-III, fitted to the human viromes significantly well
(P-value < 0.0001).



Fig. 2. Fitting Type-I TPLE (Taylor’s power law extension) for measuring community spatial heterogeneity to the 14 treatments of the four human virome datasets separately.
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The heterogeneity scaling parameter (b) for community scaling
parameter ranged between 1.729 and 2.189 with average b = 1.956
(Fig. 2). This range is similar to that of bacterial community of the
humanmicrobiome [11], and furthermore the average is extremely
close to the mean of bacterial communities of the human micro-
biome (1.956 vs. 1.926).

The heterogeneity scaling parameter (b) for mixed-species pop-
ulation aggregation ranged between 1.477 and 1.970 with an aver-
age b = 1.767, which is slightly higher than that of human bacterial
communities (virome = 1.767 vs. bacteria = 1.545). Fig. 3 illustrated
the fittings of Type-III TPLE to 14 human virome data groups.

We further tested the potential differences between the treat-
ments of the human virome in the TPLE parameters and the results
were listed in Table S3. It was shown that in majority cases (87.5%-
100%), there were not any statistically significant differences
among different treatments. This finding indicates that, despite
potentially significant differences among the 14 treatments, the
TPLE parameters are rather robust. This is consistent with a long-
standing conjecture that the TPL scaling parameter (b) is invariant
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with environmental factors. Analogically, the heterogeneity scaling
parameter is not unlike the acceleration coefficient of gravity
(g = 9.8) on the earth planet. The g is a characteristic (invariant)
of the earth, although it may slightly vary with latitudes (longi-
tudes), but the moon may have a different g. Here we conjecture
that human virome should have a characteristic scaling value of
community spatial heterogeneity, b = 1.956 as averaged from
Table S2. We further realize that this characteristic parameter is
rather close to that of the bacterial communities of the human
microbiome.

Given there is little significant difference between the treat-
ments of the four datasets as shown in Table S3, we pooled
together the samples from all four datasets and fitted the TPLE
with the combined samples. Table 1 listed the TPLE parameters
for the human virome from the pooled datasets, which we consider
as the more realistic scaling parameters for the inter-individual
(spatial) heterogeneity of the human virome. Fig. 4 further illus-
trated the TPLE model fittings. As shown in Table 1, the scaling
parameter of community spatial heterogeneity b = 1.916 is even



Fig. 3. Fitting Type-III TPLE (Taylor’s power law extension) for measuring mixed-species population spatial aggregation (heterogeneity) to the 14 treatments of the four
human virome datasets separately.

Table 1
The TPLE (Taylor’s power law extension) parameters of the human virome*.

TPLE Model (V = amb) b ln(a) M0 R P-value N

Type-I TPLE for the Community Spatial Heterogeneity 1.916 5.320 0.003 0.994 0.000 287
Type-III TPLE for the mixed-species Population Aggregation 1.686 3.519 0.006 0.984 0.000 1115
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more closer to the b-value = 1.926 of bacterial communities of the
human microbiome, compared with the averaged b-value = 1.956
from four separately fitted TPL models in Table S2.

In summary, we conclude that the TPLEs successfully fitted the
human viral communities just like they fitted the human bacterial
communities. Furthermore, the degree of community spatial
heterogeneity scaling of viral communities and bacterial commu-
nities are virtually the same (b = 1.926 vs. 1.916) (see [11] for the
bacterial community). Our explanation for the virtually same levels
of community heterogeneities in both viral and bacterial commu-
nities is as follows: As shown in Table S1, approximately 78% of
sequencing reads or 86% viral OTUs are actually bacterial phages,
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whose distribution should depend on the bacteria because phages
are the ‘‘parasites” of bacteria [25]. Nevertheless, we caution that
the proportion of bacteriophages to total virome may change from
dataset to dataset. The state-of-the-art technology in virome
sequencing and identifications is actually rather limited given that
only small percentages of virome sequences could be matched
with known virome sequences in existing genomic databases. With
more extensive and intensive virome studies, this limitation may
be alleviated or even removed. It is unknown whether such
technological advances will significantly change the proportion of
bacteriophages to whole virome in future. If the proportion
changes, then our previous explanation to the equality of spatial



Fig. 4. Fitting the TPLEs (Taylor’s power law extension) for measuring community spatial heterogeneity (Type-I) and mixed species population aggregation (Type-III) with the
pooled human virome datasets.
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heterogeneity between bacterial microbiome and virome may be
questioned. Nevertheless, the change does not necessarily invali-
date our hypothesis.

As to the slightly difference in the Type-III TPLE scaling param-
eter (b) between the viral communities and bacterial communities
(virome = 1.686 vs. bacteria = 1.545), this should be to do with the
nature of mixed-species population aggregation. The mixed-
species population is similar to single-species population, or it is
an averaged virtual population. It is essentially a population-level
property. The aggregation levels of an average bacterial species
and an average viral species are more likely to be different, as
reflected by their different average b-values (virome = 1.686 vs.
bacteria = 1.545).

In conclusions, the previous findings suggest that the spatial
heterogeneity of the human virome is similar to that of the bacte-
rial community in the human microbiome if measured at the com-
munity scale, and is slightly higher if measured at species level.
The ‘‘homogeneity” between virome and bacteria is likely due to
the parasite-host relationship between bacteria phages and bacte-
ria (hosts), given that 80% of virome reads are actually reads of
phages (Table S1).

As to existing similar studies, to the best of our knowledge,
there is only one application of TPL (TPLE) to human virome, con-
ducted by Martí [19], which analyzed the temporal fluctuation
(stability) of human virome. The application belongs to Type-II
TPLE [11] that measures the temporal stability of human virome.
In the present study, our focus is to measure the spatial hetero-
geneity based on cross-sectional datasets of human virome, which
utilize Type-I TPLE for measuring community spatial heterogeneity
and Type-III TPLE for measuring mixed-species population aggre-
gation, as introduced previously. At the population level, the appli-
cations of TPL have been relatively more. For example, Keeling and
Grenfell [8] analyzed measles variability with classic single-species
TPL. More recently, Ma (2020) applied single-species TPL to ana-
lyze the spatiotemporal fluctuations of COVID-19.
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