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Simple Summary: RRM2 is a crucial subunit of ribonucleotide reductase. In this article, we provided
a comprehensive analysis of RRM2 with immune infiltration in pan-cancer. We focused on the
hotspots of ferroptosis-related gene RRM2 and immunotherapy. Via bioinformatics analysis, multiple
indicators suggested that RRM2 high expression may enhance immunotherapy sensitivity. For the
first time, we systematically analyzed the role of RRM2 in pan-cancer. We provided the prospect of
RRM2 and immunotherapy for pan-cancer. Additionally, we proved the expression pattern, clinical
value, prognostic value and potential pathways of RRM2 with different platforms. In particular, we
confirmed RRM2 expression and function in bladder cancer in our clinical samples and cell lines.
Collectively, we found that RRM2 is a novel prognostic biomarker, and these findings may aid in an
improved understanding of the role of RRM2 and its clinical application in human cancers.

Abstract: As a crucial subunit of ribonucleotide reductase, RRM2 plays a significant part in DNA
synthesis. This study aimed to elucidate the comprehensive landscape of RRM2 in human cancers.
With different bioinformatics platforms, we investigated the expression pattern, prognostic signifi-
cance, mutational landscapes, gene interaction network, signaling pathways and immune infiltration
of RRM2 in tumors. We found that RRM2 expression was predominantly up-expressed in tumor
tissues in most tumors. Concurrently, RRM2 expression was significantly associated with worse prog-
nosis and tumor stage across TCGA cancers. Moreover, RRM2 high levels were critically associated
with the infiltration of natural killer T cells and immune scores. RRM2 was positively related to
immune checkpoints, tumor mutation burden, microsatellite instability, neoantigen, and cytotoxic
T lymphocyte in several cancers, predicting effective response to immunotherapy. Meanwhile, a
strong co-expression of RRM2 with immune-related genes was observed. Additionally, multiple
Cox regression analysis showed that RRM2 was an independent prognostic factor in bladder cancer
(BLCA). Eventually, we verified that RRM2 was overexpressed in BLCA clinical samples and cell lines.
Blocking RRM2 could suppress BLCA cells’ growth and proliferation while enhancing sensitivity
to cisplatin. This study provided a new perspective for understanding RRM2 in cancers and new
strategies for tumor immunotherapy.

Keywords: RRM2; pan-cancer; prognosis; immune infiltration; immunotherapy; bladder cancer

1. Introduction

Cancer therapy has advanced substantially over the past decades, yet many patients
still undergo cancer progression, recurrence and, ultimately, death [1]. In recent years,
antitumor immunotherapy has provided considerable survival benefits in the treatment of
multiple tumors, such as melanoma, colorectal cancer, and lung cancer [2,3]. The discovery
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of tumor immune escape mechanisms promotes the development of immune checkpoint
inhibitors (ICIs) [4]. However, non-sensitivity and adverse reactions to ICIs limited their
practical application [5,6]. Therefore, there is a need to elucidate the mechanisms of
cancer pathogenesis to predict and increase the sensitivity of ICIs for tumor patients. The
continuously improving cognition of tumor genomic characterization and the immune
microenvironment has major implications for finding biomarkers to guide personalized
immunotherapy [7,8].

Ribonucleotide reductase (RR) is the rate-limiting enzyme that catalyzes the de novo
formation of deoxyribonucleotides in DNA synthesis [9]. RR mainly consists of two
homodimeric subunits—the large subunit (RRM1) and the small subunit (the small subunit
has two isoforms, RRM2 and RRM2B) [10]. As the critical component of RR, RRM2
contains tyrosyl radicals necessary to initiate catalysis and participates in the regulation
and modification of proteins [11,12]. RRM2 aberration may lead to genome instability
and increased mutation rates, thus influencing tumor progression [13–15]. For instance,
RRM2 could significantly and specifically promote colon cancer (CRC) cell growth [16].
Consequently, RRM2 overexpression plays a critical part in the proliferation, metastasis
and drug dependence of human cancers [17,18].

More importantly, RRM2 has been identified as a member of the ferric iron-binding
ferritin-superfamily [19]. Shen et al. have demonstrated that RRM2 engaged in the iron
metabolism in hepatocellular carcinoma (HCC) [20]. Iron modulated tumor cells progress
through protein and lipid modifications [21]. However, iron overload also contributed
to cancer cell death. This accumulation of iron-dependent lipid peroxides leads to a new
type of cell death, known as ferroptosis [22,23]. As an example, Yang et al. found that
RRM2 could protect against ferroptosis by sustaining glutathione (GSH) synthesis in liver
cancer cells [24]. Therefore, despite the intensive efforts to investigate RRM2 function in
cancers before, the brand-new role of RRM2 in ferroptosis and iron homeostasis is still
worth pursuing. Moreover, the composite function of RRM2 cooperating with immune
cells, and the molecular mechanisms and detailed pathways of RRM2 in human cancers
remain enigmatic.

Given these limitations, we conducted an integrative bioinformatics analysis of RRM2
in pan-cancer. At first, we investigated the expression patterns of RRM2 and evaluated the
prognostic values of RRM2 in pan-cancer with public databases. Next, we explored the
key genes and signal pathways regulated by RRM2. Notably, we identified the relation
of RRM2 to the tumor microenvironment (TME), ICIs and researched its regulation with
immune infiltration and immunotherapy. Finally, we clarified the protein expression of
RRM2 in pan-cancer and researched the biological functions of RRM2 in bladder cancer
(BLCA) in vitro. These observations could be of significance for basic research as well as
clinical application and may improve precision for cancer immunotherapy.

2. Materials and Methods
2.1. Clinical Samples

A total of 32 matched bladder tumor and adjacent normal specimens were obtained by
radical nephrectomy in Huashan Hospital, Fudan University. All diagnosis was confirmed
by histopathological examination. The specimens were frozen in liquid nitrogen after
surgery for further research. All 32 patients had given written informed consent and a
normalized ethnic audit has been conducted.

2.2. Cell Culture, Quantitative Real-Time PCR (qRT-PCR) and Western Blot Assays

BLCA cell lines (T24, J82, UMUC3, RT4, 5637 and 253J) were obtained from the
Chinese Academy of Sciences (Shanghai, China). Simian Virus 40-immortalized human
uroepithelial cell (SVHUC) is the human normal urinary epithelial cell line, which is used as
a normal control in our study. RRM2 expression was detected by qRT-PCR and western blot
assays, respectively. Notably, qRT-PCR was carried out in triplicate with three independent
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experiments to evaluate RRM2 expression in BLCA cell lines and clinical specimens. The
reagents and consumables are listed in Table S1.

2.3. Cell Transfection, Cell Proliferation, Colony Formation Assays and IC50 Determination

RRM2 siRNA (Hanbio Biotechnology, Nanjing, China) was transfected T24 and
UMUC3 cells with Invitrogen Lipofectamine 3000 kit. The cell proliferation was mea-
sured after 24 h, 48 h, 72 h and 96 h by cell counting Kit-8 (CCK-8) at 450 nm following
incubation at 37 for 1 h. Colony formation assays were performed by seeding 500 cells/well
into 6-well plates. After incubating for 1–2 weeks, the formed spheres were counted
and photographed.

2.4. RRM2 Data Acquisition and Processing

RRM2 data and related information of 33 cancer types were collected from The Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/, accessed on 25 February 2022),
including 10363 tumor tissues and corresponding paired 730 para-carcinoma tissues. Mean-
while, the normal control gene profiles of normal tissues were downloaded from the
GTEx datasets (https://www.gtexportal.org/, accessed on 25 February 2022). RRM2 ex-
pression in TCGA and GTEx datasets was analyzed with transcripts per million (TPM)
using the same sequencing platform and library preparation to reduce potential batch
effects. TCGA and GTEx data were utilized to analyze differential RRM2 mRNA expression
between normal and tumor samples using the “beeswarm” and “ggpubr” R packages.
Two sets of t-tests were run and p < 0.05 indicated differential expression between tu-
mor and normal tissues. Microarray data were downloaded from the GEO database
(http://www.ncbi.nih.gov/geo/, accessed on 10 March 2022) and normalized by log2
transformation to perform RRM2 expression analysis.

2.5. Analysis of RRM2 Expression Profiles with Different Public Platforms

The protein expression profiles of RRM2 were explored in the Human Protein At-
las (HPA, https://www.proteinatlas.org/, accessed on 25 February 2022) and UALCAN
(http://ualcan.path.uab.edu/, accessed on 25 February 2022). IHC images of RRM2 (an-
tibody HPA056994) were obtained from HPA. As a web-based tool, UALCAN analyzes
transcriptome data from TCGA and MET500 data to confirm the protein expression of
RRM2 in pan-cancer.

2.6. Survival Analysis and Cox Regression Analyses

Kaplan-Meier (KM) curves were analyzed with TCGA datasets. The median of RRM2
expression was used as a cutoff value. The log-rank p-value and Cox p-value with a
hazard ratio (HR) were calculated to assess the prognostic value of RRM2, including
overall survival (OS), disease-specific survival (DSS), progression-free survival (PFS) and
disease-free survival (DFS). The “survival” and “forest plot” R packages were utilized to
visualize the survival analysis. Accordingly, the prognostic value of RRM2 was confirmed
in Kaplan-Meier Plotter (KM Plotter, http://kmplot.com/, accessed on 26 February 2022)
and PrognoScan (http://dna00.bio.kyutech.ac.jp/PrognoScan/index.html/, accessed on
26 February 2022).

2.7. RRM2 Genomic Alterations Analysis

Analysis of RRM2 genomic alterations among TCGA was calculated in cBioPortal
database (http://www.cbioportal.org/, accessed on 26 February 2022). The cBioPortal
for Cancer Genomics provides access to a large-scale cancer genomics dataset that can
be visualized, downloaded and analyzed. RRM2 genomic alterations included alteration
frequency, copy number alterations and mutations. In the “OncoPrint” and “Cancer Types
Summary” modules, 10953 cancer patients were analyzed for RRM2 genomic alteration
types and alteration frequency. Tumor mutation burden (TMB), microsatellite instability
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(MSI) and neoantigen (NEO) scores were available from UCSC XENA database and their
association with RRM2 expression was explored with Spearman’s correlation analysis.

2.8. RRM2-Interacting Genes and Protein-Protein Interaction (PPI) Network

GeneMANIA database (http://www.genemania.org/, accessed on 26 February 2022)
was applied to construct the gene-gene interaction network of RRM2. GeneMANIA is an
interactive and user-friendly website for building a gene-gene interaction network, which
provides gene function prediction hypotheses and identifies genes with comparable roles.
STRING database (https://string-db.org/, accessed on 26 February 2022) was utilized to
build a PPI network of RRM2 for construction, visualization and analysis. To generate the
PPI network, the Search Tool for the Retrieval of Interacting Genes (STRING) was applied
with the following input parameters: “evidence”, “experiments” and a 0.700 confidence
level. The first 100 RRM2-correlated genes with p < 0.05 were acquired from GEPIA2.0 (http:
//gepia2.cancer-pku.cn/#index, accessed on 26 February 2022) database with its “Similar
Genes Detection” function. GEPIA is a user-friendly web portal for gene expression analysis
based on TCGA and GTEx data. In the current study, the “Correlation Analysis” module of
GEPIA2 was applied to compute pair-wise gene expression correlations between RRM2
and the selected top 5 genes using the Pearson correlation method. Then with TIMER2.0
database (http://timer.cistrome.org/, accessed on 26 February 2022), the heatmap of the top
5 genes (CCNA2, CKAP2L, KIF11, MKI67 and PLK1) was acquired, containing the partial
correlation coefficient (cor) and p-value calculated by the purity-adjusted Spearman’s rank
correlation test. Ultimately, the RRM2 cooperated and associated gene, RRM1, was selected
by the intersection analysis with a Venn diagram.

2.9. Functional Enrichment Analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analy-
ses were performed to research the possible biological functions and signaling pathways
of RRM2. GO analysis is a powerful bioinformatics tool for determining RRM2′ biolog-
ical processes (BPs), cellular components (CCs) and molecular functions (MFs). KEGG
enrichment analysis was conducted by the Metascape portal with a comprehensive gene
list annotation and analysis resource for experimental biologists. The resulting enriched
pathways were visualized using the “ggplot2” R package. The single-gene Gene Set Enrich-
ment Analysis (GSEA) analysis of RRM2 was applied to investigate the potential signal
paths. The genes correlated with RRM2 (p < 0.05) were ranked and subjected to GSEA
analysis. The top 15 terms of GSEA from Reactome pathway were exhibited with adjust
p < 0.05 by “clusterProfiler” R package.

2.10. Immune Infiltration and Immune-related Genes Analysis

Based on RRM2 expression data, the “estimate” R package was used to explore the
abundance of estimated stromal and immune cells (StromalScore and ImmuneScore). Then
the composition of immune cell infiltration was assessed by the “GSVA” R package with
Spearman’s rho value.

Next, the XCELL algorithms were utilized to estimate the Natural killer T (NKT) cells
infiltration based on TIMER2.0. Spearman correlations between RRM2 and immune cell
markers were investigated in BLCA via TIMER. Then we collected information on RRM2
and immunomodulators, including 46 immune stimulators, 21 major histocompatibility
complex (MHC), 41 chemokines and 18 receptors. The immunotherapeutic response out-
comes of RRM2 in melanoma immunotherapy cohorts (Riza2017_PD1) and the correlation
of RRM2 with CTL were analyzed based on Tumor Immune Dysfunction and Exclusion
database (TIDE, http://tide.dfci.harvard.edu/, accessed on 5 March 2022)

2.11. Statistical Analysis

R software (version 4.0.1), SPSS (version 26.0) and GraphPad Prism (version 8.0)
were utilized to perform the statistical analysis. The rational statistical test was employed
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to compare two independent test series (Student’s t-test) or more test series (ANOVA
test). Data were shown as average values ± SEM and a two-sided p < 0.05 indicated
statistical significance.

3. Results
3.1. Overexpression of RRM2 in Pan-Cancer

RRM2 mRNA expression was first assessed in pan-cancers. High RRM2 expression
was observed in 19 cancers via TCGA: BLCA, BRCA, CESC, CHOL, COAD, ESCA, GBM,
HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, PCPG, PRAD, READ, STAD, THCA and UCEC
(Figure 1A). Consistently, overexpression of RRM2 was discovered in 28 cancers via GTEx-
TCGA: ACC, BLCA, BRCA, CESC, CHOL, COAD, ESCA, GBM, HNSC, KIRC, KIRP, LAML,
LIHC, LGG, LUAD, LUSC, OV, PAAD, PCPG, PRAD, READ, SKCM, STAD, TGCT, THYM,
THCA, UCS and UCEC (Figure 1B). Compared with paired para-cancerous samples in
TCGA, RRM2 expression also increased in the paired pan-cancer samples of 16 types of
cancers: BLCA, BRCA, CHOL, COAD, ESCA, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC,
PRAD, READ, STAD, THCA, and UCEC (Figure 1C).

Moreover, RRM2 protein expression was evaluated in CTPAC samples with UALCAN.
RRM2 protein expression increased in BRCA, COAD, OV, KIRC, UCEC, LUSC, LUAD,
PDAC, HNSC, GBM and LIHC (Figure 1D). Next, we confirmed RRM2 expression in GEO.
RRM2 mRNA expression was elevated in the following 20 types of cancers in corresponding
data sets, including ACC, BLCA, BRCA, CESC, COAD, CHOL, ESCA, GBM, HNSC, KIRC,
KIRP, LIHC, LUAD, OV, PAAD, PRAD, SARC, SKCM, STAD and UCEC (Figure 1E). Then
with IHC images from HPA database, we showed protein levels of RRM2 in several cancers.
Stronger staining of RRM2 was detected in BLCA, COAD, LIHC and PDAC tissues than in
corresponding normal tissues (Figure 2A). These findings substantiate that upregulated
RRM2 might be a paramount culprit in human cancers.

3.2. RRM2 Correlates with Tumor Stages and Prognosis in Pan-Cancer

We assessed the correlation of RRM2 with tumor stages in TCGA. As shown in
Figure 2B, RRM2 expression was significantly related to tumor stage in ACC, BRCA,
COAD, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, SKCM, THCA and OV. Remarkably, RRM2
overexpression leads to advanced tumor stages in KICH, KIRP and LUAD. Additionally,
ROC analysis illustrated that RRM2 had a good prediction accuracy (AUC > 0.90) for
BRCA, CHOL, COAD, ESAD, ESCA, KIRC, LIHC, LUAD, LUSC, OSCC, STAD and UCEC
(Figure S1). These findings suggest that RRM2 expression is correlated with tumor stages
in human cancers.

For assessing the prognostic value of RRM2, we estimated the OS with the univariate
Cox regression analysis in TCGA (Figure 3A). The results showed that RRM2 overexpres-
sion was significantly related to poor OS in ACC (HR = 4.30, p < 0.001), BLCA (HR = 1.45,
p = 0.014), KICH (HR = 8.20, p = 0.047), KIRC (HR = 1.97, p < 0.001), KIRP (HR = 3.29,
p < 0.001), LGG (HR = 2.13, p < 0.001), PAAD (HR = 1.83, p = 0.004), PRAD (HR = 5.11,
p = 0.046), UCEC (HR = 1.60, p = 0.027), UVM (HR = 5.33, p = 0.004). Only in THYM
(HR = 0.17, p = 0.031) did RRM2 high expression predict better OS. KM survival curves
were also constructed to confirm the prognostic value of RRM2. Consistently, the results
prompt that RRM2 high expression could lead to worsen OS in the above-mentioned
cancers, except in THYM (Figure 3B–O).



Cancers 2022, 14, 2938 6 of 24
Cancers 2022, 14, x  6 of 27 
 

 

 
Figure 1. Overexpression of RRM2 in BLCA. (A,B) RRM2 mRNA expression in pan-cancer based on 
TCGA (A) and GTEx−TCGA database (B) (Red color indicated statistical significance). (C) RRM2 
mRNA expression in paired tumor and adjacent normal tissues in TCGA database. (D) RRM2 
protein expression in pan-cancer obtained from UALCAN database (http://ualcan.path.uab.edu/, 
accessed on 25 February 2022). (E) RRM2 mRNA expression in pan-cancer based on GEO database. 
(* p < 0.05, ** p < 0.01, *** p < 0.001). 
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UALCAN. RRM2 protein expression increased in BRCA, COAD, OV, KIRC, UCEC, 

Figure 1. Overexpression of RRM2 in BLCA. (A,B) RRM2 mRNA expression in pan-cancer based on
TCGA (A) and GTEx−TCGA database (B) (Red color indicated statistical significance). (C) RRM2
mRNA expression in paired tumor and adjacent normal tissues in TCGA database. (D) RRM2 protein
expression in pan-cancer obtained from UALCAN database (http://ualcan.path.uab.edu/, accessed
on 25 February 2022). (E) RRM2 mRNA expression in pan-cancer based on GEO database. (* p < 0.05,
** p < 0.01, *** p < 0.001).
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Figure 3. Relationship of RRM2 expression with Overall Survival (OS). (A) Forest map shows the
univariate Cox regression analysis results for RRM2 in TCGA pan-cancer samples (Red color indicated
statistical significance). (B–O) Kaplan–Meier OS curves of RRM2 expression in the significantly
associated tumors.

DSS survival contributions of RRM2 in pan-cancer were exhibited in Figure 4A. RRM2
high transcriptional levels were also correlated with bad DSS in 10 types cancers: ACC
(HR = 4.55, p < 0.001), BLCA (HR = 1.64, p = 0.007), KIRC (HR = 3.01, p < 0.001), KIRP
(HR = 29.70, p < 0.001), LGG (HR = 2.19, p < 0.001), LIHC (HR = 2.04, p = 0.002), LUAD
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(HR = 1.81, p = 0.002), MESO (HR = 3.73, p < 0.001), PAAD (HR = 1.72, p = 0.022) and UVM
(HR = 8.39, p < 0.001). Coherently, KM analysis with a log-rank test also indicated RRM2 high
expression was clearly correlated with worse DSS (Figure 4B–I). Moreover, we explored the
effect of RRM2 expression on PFS and DFS (Figure S2). The results of forest plot suggested
that RRM2 high expression predicted poor PFS in ACC, BRCA, KICH, KIRC, KIRP, LGG,
LIHC, LUAD, MESO, PAAD, PRAD, SARC, THCA and UVM, but indicated good PFS in
COAD (Figure S2A). Meanwhile, a significant association between RRM2 expression and
adverse DFS was observed in KIRP, LUAD, PAAD, SARC, TGCT and THCA (Figure S2B).
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color indicated statistical significance). (B–K) Kaplan–Meier DSS curves of RRM2 expression in the
significantly associated tumors. (L) The prognostic value of RRM2 in GEO with PrognoScan database.



Cancers 2022, 14, 2938 10 of 24

Furthermore, we validated the prognostic value of RRM2 in PrognoScan and KM
Plotter databases. RRM2 high expression was linked to a dismal OS in several cancers from
GEO (Figure 4J), including BRCA (HR = 2.41, p < 0.001), GBM (HR = 1.94, p < 0.001), LUAD
(HR = 1.97, p < 0.001), LUSC (HR = 1.54, p = 0.047), PRAD (HR = 1.34, p < 0.001) and SKCM
(HR = 3.46, p = 0.002). Similarly, RRM2 high expression influenced DSS in BRCA (HR = 3.23,
p < 0.001) and COAD (HR = 0.062, p = 0.017). Likewise, the results from KM Plotter showed
that RRM2 high expression portends poor OS in BLAC, ESCA, KIRP, KIRC, LUAD, LIHC,
PDAC, SARC, STAD, READ, THYM and UCEC (Figure S3A–L). These results manifest that
RRM2 shows promise as a new prognostic marker for cancer patients and the relevance of
RRM2 to tumor stages may help uncover the new underlying mechanisms of tumors.

3.3. Genetic Alteration and Mutation Landscape of RRM2 in Cancers

Genetic and epigenetic alterations may induce changes in gene expression and they are
closely associated with tumorigenesis and progression. Genetic alterations of RRM2 in pan-
cancer samples were analyzed in cBioPortal. High RRM2 alteration frequencies occurred
in UCS, UCEC and BLCA (Figure S4A). Besides, we observed that all genetic alteration
cases of DLBC and KICH carried RRM2 gene deep deletions while ESAD and MESO
harbored amplifications. The 3D structure of the RRM2 protein was shown in Figure S4B.
The genome sites, types and numbers of RRM2 genomic alterations were depicted in
Figure S4C. Missense mutation of RRM2 is the primary type of RRM2 mutation and the
A128V/T alteration in the Ribonuc_red_sm domain is detected in four cases. The general
mutation count of RRM2 was presented in Figure S4D. Gene alteration analyses of RRM2
should therefore provide further insights into the roles of RRM2 in cancer progression.

3.4. Network of RRM2-Interacting Genes and Enrichment Analysis of RRM2-Related Partners

For pathway enrichment analyses, we investigated the RRM2 cooperated and cor-
related genes. We acquired the top 100 RRM2-associated genes in pan-cancer with the
GEPIA2 database. The correlation heatmap showed the top five genes (CCNA2, CKAP2L,
KIF11, MKI67 and PLK1) that were positively and significantly related to RRM2 in almost
all TCGA cancers (Figure 5A). As seen in Figure 5B, RRM2 expression was positively
related to CCNA2 expression (R = 0.76, p < 0.001), CKAP2L (R = 0.74, p < 0.001), KIF11
(R = 0.75, p < 0.001), MKI67 (R = 0.78, p < 0.001) and PLK1 (R = 0.74, p < 0.001). Then,
we utilized GeneMania and STRING databases for RRM2 to create the PPI network. The
results depicted that the top 20 potential target genes interacted with RRM2, including
RRM1, RRM2B, KIF11 and so on (Figure 5C,D). The common gene, RRM1, was picked via
Venn diagram analysis among the three datasets (GEPIA2.0, GeneMania and STRING) and
identified (Figure 5E). Next, cooperated genes in GeneMania and STRING were combined
to perform GO and KEGG analyses (Figure 5F) and several pathways like “cell cycle”, “p53
signaling pathway”, “GSH metabolism” and “drug metabolism” were enriched in KEGG
analysis, hinting that RRM2 may engage in tumor progression, as well as ferroptosis and
drug resistance.

GSEA analysis revealed that RRM2 was involved in immune-related signaling path-
ways in diverse cancers, especially for the antigen that activates the B cell receptor (BCR)
leading to generation of second messengers, CD22 mediated BCR regulation, FCGR3A
mediated IL10 synthesis, creation of C4 and C2 activators, initial trigging of complement,
binding and uptake of ligands by scavenger receptors, signaling by the BCR, complement
cascade, etc. (Figure 6A–F). These outcomes depict that RRM2 possibly has a major impact
on the tumor immune microenvironment (TIME).
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3.5. RRM2 Expression Correlates with Immune cells and Tumor Immune Infiltration

We estimated the immune and stromal components via ESTIMATE algorithms and
assessed the association between RRM2 and immune infiltrating via CIBERSORT algo-
rithms. Notably, among the 22 immune cells, the correlation matrix portrayed that RRM2
expression had a negative association with CD8+ T cells in various cancers, including AA,
BRCA, ESCA, LAML, PAAD, PRAD, SKCM and THCA (Figure 7A). In parallel, RRM2
expression had a positive and significant association with Tregs in KICH, KIRC, KIRP,
LIHC, PCPG, THCA and THYM (Figure 7A). Next, as Figure 7B indicated, compared to
patients with RRM2 low expression, RRM2 high expression presented higher immune and
stromal scores in KIRC and THCA (p < 0.001) but indicated lower immune and stromal
scores in CESC, ESCA, GBM, LUSC, SARC and UCEC (p < 0.05, Figure 7B). In addition,
the correlation coefficients landscape calculated by XCELL algorithms showed that RRM2
expression had a negative and significant association with the NKT cells infiltration in
the majority of cancers (Figure 7C). Figure 7D listed the representative scattergrams and
the results showed that RRM2 expression was negatively related to the NKT cells infil-
tration in BLCA (Cor = −0.341, p = 1.82 × 10−11), BRCA (Cor = −0.227, p = 4.85× 10−13),
GBM (Cor = −0.293, p = 5.17 × 10−4), PRAD (Cor = −0.258, p = 9.04 × 10−8), LUAD
(Cor = −0.266, p = 1.85 × 10−9), and UVM (Cor = −0.581, p = 3.09 × 10−8). The profiles
illustrate that RRM2 is putatively involved in tumor immune infiltration and functions
critically in the immune-oncological interactions.

3.6. The Relationships between RRM2 Expression and ICIs, TMB, MSI, NEO and CTL

ICIs participate in the immunosuppressive mechanism influencing the outcome of
immunotherapy, so we assessed the correlations between RRM2 expression and ICIs, in-
cluding CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT and SIGLEC15. Our
discoveries showed that RRM2 expression had a close and positive association with almost
all ICIs in BLCA, BRCA, HNSC, KIRC, LGG, LIHC, LUAD, OV and THCA, indicating that
RRM2 might enhance immunotherapy sensitivity in the above tumors (Figure 8A). TMB,
MSI and NEO have been considered to have excellent predictive value for immunotherapy.
In general, RRM2 was positively related to TMB in 16 types of cancers: ACC, BLCA, BRCA,
COAD, CHOL, KICH, KIRC, LGG, LUAD, LUSC, PAAD, PRAD, SARC, SKCM, STAD and
UCEC (p < 0.05, Figure 8B). Similarly, the positive correlation between RRM2 expression
and MSI achieved significance (p < 0.05) in five types of cancer, including COAD, LIHC,
TGCT, UCS and UCEC, but RRM2 was negatively related to MSI only in STAD and DLBC
(Figure 8C). As Figure 8D showed, seven TCGA cohorts had positive associations with
NEO, including BRCA, LGG, LUAD, LUSC, PRAD, STAD and UCEC.

Additionally, we found that patients with RRM2 high expression achieved clinical
benefits of PD-1 immunotherapy in melanoma and hence exhibited prolonged OS and PFS
in the Riza2017_PD1 clinical study (Figure 8E). Consistently, RRM2 elevated expression
was positively related to the level of CTL in BLCA, BRCA, COAD, HNSC, KIRC, LIHC,
LUAD, OV and UVM, while being negatively related to LAML (Figure 8F). Our results
imply that RRM2 might influence the efficacy of cancer immunotherapy.
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Figure 7. Correlation between RRM2 and immune infiltration in pan-cancer. (A) Correlations between
RRM2 expression level and immune cells in pan-cancer. (B) Correlation between RRM2 expression
and immune and stromal scores in multiple cancers. (C,D) Correlations between RRM2 expression
level and the infiltration level of NK T cells across TCGA cancers. Heatmap (C) and scatter plots (D)
of NK T cells infiltration level related to RRM2 expression were presented, utilizing the TIMER2.0
database. (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Figure 8. Correlation between RRM2 and immunotherapy. (A) Correlation of RRM2 expression
with immune checkpoints. (B−D) Correlation of RRM2 expression with TMB (B), MSI (C) and NEO
(D) (Red color indicated statistical significance). (E) Kaplan-Meier curves of survival ratios as a
measure of the PD1 immunotherapeutic response between high and low expression of RRM2 in in
Riza2017_PD1 clinical study of melanoma. (F) The correlation between the RRM2 expression and
CTL in TCGA cohorts. (* p < 0.05, ** p < 0.01, red color indicated statistical significance).

3.7. Relationship between RRM2 Expression with Immune-Related Genes

The association of RRM2 expression with immune-related genes in cancers showed
that RRM2 had a positive correlation with most chemokines, chemokine receptors, MHC
genes, and immunostimulatory genes across TCGA cancer types (Figure 9). Distinctly
positive associations between RRM2 expression and human leukocyte antigen (HLA)-I and
II molecular were observed in several tumors (Figure 9B). In these immunostimulatory
marker genes, CD276, MICB, NT5E, PVR and ULBP1 had a significantly positive correlation
with RRM2 expression in most tumor types (Figure 9C). In addition, we observed that
RRM2 expression was positively correlated with chemokines and chemokine receptors,
such as CCL5, CXCL6 and their receptors CCR5 and CXCR6 (Figure 9A,D).



Cancers 2022, 14, 2938 16 of 24

Cancers 2022, 14, x  18 of 27 
 

 

Figure 8. Correlation between RRM2 and immunotherapy. (A) Correlation of RRM2 expression with 
immune checkpoints. (B−D) Correlation of RRM2 expression with TMB (B), MSI (C) and NEO (D) 
(Red color indicated statistical significance). (E) Kaplan-Meier curves of survival ratios as a measure 
of the PD1 immunotherapeutic response between high and low expression of RRM2 in in 
Riza2017_PD1 clinical study of melanoma. (F) The correlation between the RRM2 expression and 
CTL in TCGA cohorts. (* p < 0.05, ** p < 0.01, red color indicated statistical significance.) 

Additionally, we found that patients with RRM2 high expression achieved clinical 
benefits of PD-1 immunotherapy in melanoma and hence exhibited prolonged OS and 
PFS in the Riza2017_PD1 clinical study (Figure 8E). Consistently, RRM2 elevated 
expression was positively related to the level of CTL in BLCA, BRCA, COAD, HNSC, 
KIRC, LIHC, LUAD, OV and UVM, while being negatively related to LAML (Figure 8F). 
Our results imply that RRM2 might influence the efficacy of cancer immunotherapy. 

3.7. Relationship between RRM2 Expression with Immune-Related Genes 
The association of RRM2 expression with immune-related genes in cancers showed 

that RRM2 had a positive correlation with most chemokines, chemokine receptors, MHC 
genes, and immunostimulatory genes across TCGA cancer types (Figure 9). Distinctly 
positive associations between RRM2 expression and human leukocyte antigen (HLA)-I 
and II molecular were observed in several tumors (Figure 9B). In these 
immunostimulatory marker genes, CD276, MICB, NT5E, PVR and ULBP1 had a 
significantly positive correlation with RRM2 expression in most tumor types (Figure 9C). 
In addition, we observed that RRM2 expression was positively correlated with 
chemokines and chemokine receptors, such as CCL5, CXCL6 and their receptors CCR5 
and CXCR6 (Figure 9A,D).  

 
Figure 9. Correlation between RRM2 and immune-related genes. (A–D) Correlation between RRM2 
and chemokine receptors (A), MHC genes (B), immune activated genes (C) and chemokines (D). (* 
p < 0.05, ** p < 0.01)  

Figure 9. Correlation between RRM2 and immune-related genes. (A–D) Correlation between RRM2
and chemokine receptors (A), MHC genes (B), immune activated genes (C) and chemokines (D).
(* p < 0.05, ** p < 0.01).

3.8. Validation of RRM2 Expression and Function in BLCA

Even more importantly, we calculated the correlations of RRM2 with clinicopatho-
logical parameters in TCGA-BLCA. Logistic regression analysis deciphered that RRM2
expression was correlated with tumor grade (p = 0.003) while it was not correlated with
tumor stage (p = 0.207) in BLCA (Table 1). Then we validated the prognostic role of RRM2
BLCA samples with multivariable Cox regression. We found that RRM2 was an indepen-
dent prognostic factor of OS (HR = 1.693, p = 0.030) and DSS (HR = 2.482, p = 0.004) in
TCGA-BLCA (Table 2). Moreover, RRM2 was correlated with diverse immune cell markers
in BLCA (Table S2), whereas a more real investigation of immune infiltrates in BLCA based
on IHC remains to explore.

Table 1. Correlation between RRM2 expression and clinicopathological features in TCGA-BLCA
patients (n = 539).

Characteristics Odds Ratio (OR) p Value

Age (>70 vs. ≤70) 0.854 (0.579–1.260) 0.428
Gender (Male vs. Female) 0.928 (0.598–1.438) 0.738
T stage (T3&T4 vs. T1&T2) 1.211 (0.789–1.864) 0.382

N stage (N1&N2&N3 vs. N0) 1.088 (0.711–1.669) 0.697
M stage (M1 vs. M0) 1.493 (0.436–5.332) 0.519

Pathologic stage
(Stage III&Stage IV vs. Stage I&Stage II) 1.305 (0.864–1.976) 0.207

Histologic grade
(High Grade vs. Low Grade) 6.447 (2.140–27.837) 0.003 **

** p < 0.01.
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Table 2. Multivariable Cox regression of RRM2 and clinical features of BLCA in TCGA.

Characteristics
OS DSS

HR (95% CI) p Value HR (95% CI) p Value

Age
(>70 vs. ≤70)

1.250
(0.780–2.002) 0.354 –

Gender
(Male/Female) – –

T stage
(T3&T4/T1&T2)

3.066
(1.045–8.995) 0.041 * 3.018

(0.872–10.445) 0.081

N stage
(N1&N2&N3/N0)

2.139
(1.255–3.646) 0.005 ** 2.777

(1.417–5.444) 0.003 **

M stage
(M1/M0)

1.317
(0.504–3.442) 0.574 1.453

(0.489–4.316) 0.501

Pathologic stage
(Stage III&IV/Stage I&II)

0.511
(0.157–1.663) 0.265 0.520

(0.125–2.155) 0.367

Histologic grade
(High Grade/Low Grade) – –

RRM2
(High Expression/Low

Expression)

1.693
(1.052–2.723) 0.030 * 2.482

(1.331–4.628) 0.004 **

* p < 0.05, ** p < 0.01.

In bioinformatics analysis, we found RRM2 was significantly differentially expressed
and predicted poor survival in BLCA. Meanwhile, RRM2 was related to immune infiltration
and immunotherapy in BLCA, so we assumed that RRM2 might function in BLCA. Thus,
we further confirmed the expression and function of RRM2 in BLCA through experiments.
In concurrence with the results of bioinformatic prediction, the RRM2 mRNA level was
also elevated in BLCA tumor tissues by qRT-PCR (Figure 10A). Additionally, qRT-PCR
results displayed that RRM2 expression was elevated in BLCA cell lines (T24, J82, UMUC3,
RT4, 5637 and 253J) relative to SVHUC (Figure 10B). As presented in Figure 10C-E, qRT-
PCR and western bolt results showed that RRM2 siRNA was transfected in T24 and
UMUC3 cells successfully. The original uncropped western blots were shown in Figure S5.
CCK-8 assays showed that blocking RRM2 could significantly inhibit BLCA cell growth
and proliferation (Figure 10F). Besides, after suppressing RRM2 expression, the tumor
inhibition rate was obviously increased after 48h-treatment with different concentrations
of cisplatin (Figure 10G). Accordingly, following RRM2 knockdown, the IC50 values of
cisplatin significantly decreased in T24 and UMUC3 cells (Figure 10H), implying that RRM2
may cause cisplatin resistance in BLCA. Colony assays exhibited that inhibiting RRM2
would reduce the cloning numbers of T24 and UMUC3 cells (Figure 10I). These findings
indicate that RRM2 plays an oncogenic role in BLCA.



Cancers 2022, 14, 2938 18 of 24Cancers 2022, 14, x  21 of 27 
 

 

 
Figure 10. Expression and function of RRM2 in BLCA. (A,B) RRM2 mRNA expression in BLCA 
paired tissues (A) and cell lines (B). (C–E) RRM2 siRNA transfection efficiency was detected by qRT-
PCR (C,D) and western blot (E). (F) T24 and UMUC3 cells’ growth and proliferation was explored 
by CCK-8 assays. (G,H) Down-expression of RRM2 could enhance the sensitivity of T24 and 
UMUC3 cells to cisplatin (G) and the bar graphs of IC50 were presented (H). (I) Blocking RRM2 
expression could decrease the colony number of T24 and UMUC3 cells. (* p < 0.05, ** p < 0.01, *** p < 
0.001)  

Figure 10. Expression and function of RRM2 in BLCA. (A,B) RRM2 mRNA expression in BLCA
paired tissues (A) and cell lines (B). (C–E) RRM2 siRNA transfection efficiency was detected by qRT-
PCR (C,D) and western blot (E). (F) T24 and UMUC3 cells’ growth and proliferation was explored by
CCK-8 assays. (G,H) Down-expression of RRM2 could enhance the sensitivity of T24 and UMUC3
cells to cisplatin (G) and the bar graphs of IC50 were presented (H). (I) Blocking RRM2 expression
could decrease the colony number of T24 and UMUC3 cells. (* p < 0.05, ** p < 0.01, *** p < 0.001).

4. Discussion

Over the past decades, we have witnessed a rapidly advanced and evolved under-
standing of human cancers. Recent advances in high-throughput sequencing for tumor
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genomes have revolutionized cancer research studies and provided a convenient approach
to precision medicine [25,26]. Pan-cancer analysis is applied to research TME signatures
during vital pathophysiology processes of tumors [27]. Therefore, although the initial
understanding of the role of RRM2 involves DNA synthesis, the potential carcinogenic
effect of RRM2 is worth more research and exploration. In this study, we elucidated
the comprehensive landscape of RRM2 in human cancers. With different bioinformatics
platforms, we investigated the expression pattern, prognostic significance, mutational land-
scapes, gene interaction network, signaling pathways, immune infiltration, and predicted
role in immunotherapy of RRM2 in tumors. We hope to provide a new perspective for
understanding RRM2 in cancers and new strategies for tumor immunotherapy.

Previous studies concurred that increased RRM2 activity was tightly associated with
tumor progression and malignancy [18,28]. For example, RRM2 elevated expression in mice
markedly cooperated with activated oncogenes and drove malignancy [29]. Zhang et al.
reported that RRM2 could promote CRC metastasis and invasion [14]. In accordance with
these studies, we found that RRM2 expression in tumor tissues was increased compared to
that in normal tissues across pan-cancer (Figure 1). High expression of RRM2 may lead to
advanced pathologic stage across TCGA cancers (Figure 2B). Besides, RRM2 had a good
prediction accuracy of diagnosis (AUC > 0.90) in pan-cancer (Figure S1). Furthermore, Cox
regression analyses and KM survival curves demonstrated that RRM2 predicted poor OS
and DSS in most cancers with TCGA and GEO (Figures 3 and 4). Likewise, PFS and DFS
analysis also showed that RRM2 was an unfavorable factor for tumor patients (Figure S2).
New insights into RRM2 might enlighten and expand the thinking of clinical diagnosis and
treatment with RRM2 inhibitors. Additionally, RRM2 inhibitors have been applied to treat
solid tumors and blood malignant tumors as a single agent or in combination with other
therapies [30,31]. In future updates, we hope that the RRM2 inhibitor could serve as a new
combination agent of therapy target in cancers.

PPI analysis indicated that RRM2 and its cooperated genes were primarily related to
the cell cycle, p53 signaling pathway, GSH metabolism, and drug metabolism processes
(Figure 5F), implying RRM2 may be involved in ferroptosis and drug resistance across
cancers. Consistent with this, Zhou et al. found a small-molecule blocking RRM2 could
inhibit epidermal cancer cell growth and overcome hydroxyurea and gemcitabine resis-
tance [32]. Markowitsch and others suggested that induction of ferroptosis might prevent
KIRC development and improve the sensitivity of Sunitinib [33]. GSEA analysis suggested
that RRM2-related genes were abundant in immune-related signals (B cell and BCR and
complement system) and hallmarks of cancer processes (MAPK and NF-KB activation) in
BRCA, LAML, LIHC, KIRC, KIRP and PRAD (Figure 6). These results suggest that RRM2
is strongly associated with TIME and malignant tumor hallmarks.

Furthermore, we estimated the immune compartments of cancers, and discovered that
RRM2 was correlated with the infiltrating immune cells. A significant association between
RRM2 and most immune cells was observed across TCGA cancers (Figure 7A). Stromal cells,
tumor cells and infiltrating immune cells constitute the bulk of the TIME, a critical factor of
tumor biology [34,35]. As the major components in TIME, immune infiltrating cells master
tumor suppression and immune escape [36]. Oncogenes can rebuild TIME and inhibit
antitumor immunity via interacting with immune cells or stromal cells [37,38]. In line with
our findings, it was reported that RRM2 facilitates tumor immune infiltration by inhibiting
ferroptosis in LUAD [39]. In KIRC, the strong overexpression of RRM2 was correlated with
T cell infiltration [40]. Continually, our preliminary study described that RRM2 expression
was related to the decreased infiltration of NKT cells, implicating the latent impact of RRM2
on tumorigenesis (Figure 7C). Ample evidence has supported that NKT cells constitute
a unique subset of T cells. NKT cells release inflammatory cytokines and modulate the
function of effectors and regulatory immune cells, thus impacting antitumor immunity [41].
Past literature pointed out that NKT cells were considered as an interesting target for
immunotherapy in CRC [42]. Next, we disclosed a close relationship between RRM2 and
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immune-regulated genes (Figure 9). It is prudent to explore the correlation between RRM2
and immune with a complete understanding of the mechanism of RRM2.

Another important finding in this study is that that RRM2 high levels might predict a
good response to immunotherapy (Figure 8A). We presented a strong link between RRM2
and ICI molecules in BLCA, BRCA, HNSC, KIRC, LGG, LIHC, LUAD, OV, THCA and
UVM. ICI therapy is an encouraging treatment for human tumors [43]. Unfortunately,
only a fraction of patients respond, presumably due to inadequate immune activation [44].
Hence, it becomes quite necessary to explore additional promising treatments which can
collaborate with ICIs. In agreement with our results, Xiong et al. have documented that
blocking RRM2 could enhance the antitumor efficiency of PD-1 blockade in renal cancer [45].
Subsequently, we disclosed that RRM2 expression was also correlated with TMB, MSI,
NEO and CTL in most cancers, predicting the benefits of immunotherapy (Figure 8). TMB,
MSI, NEO, and CTL emerge as effective immune-related therapeutic targets across cancers.
High TMB means that more tumor neoantigens are exposed, so high TMB consistently
selects for the benefit of ICIs blockade therapy [46]. MSI manifested DNA-mismatch
repair-deficiency and it is a marker for a good response to immunotherapy [47]. NEO is
mainly a tumor-specific antigen generated by mutations and is only expressed in tumor
cells, which is considered a breakthrough in immunotherapy [48]. CTL expresses the CD8
coreceptor and is the preferred immune cell for killing cancer cells, so the density of CTL
infiltrated is also a predictor for evaluating immunotherapy outcomes [49]. Briefly, our
current research delineates the relationships between RRM2 and immunotherapy strategies,
which could be instructive for clinicians. The role of RRM2 in immunology is complex and
even contradictory across different cancers, and further studies are awaited.

Lastly, we validated RRM2 expression and function in BLCA. As the ninth most
frequently diagnosed cancer worldwide, BLCA poses huge health hazards to society [1].
As urologists, we focus on urologic neoplasms. Regarding PRAD, it did not achieve
statistical significance in bioinformatics analysis. Meanwhile, the function of RRM2 in
renal cancer has been validated, so we did not select renal cancer to conduct further
validation. As regards BLCA, we found that RRM2 showed a significantly differential
expression and predicted poor survival of BLCA in bioinformatics analysis. RRM2 was
related to immune infiltration and immunotherapy in the bioinformatics analysis of BLCA,
so we assumed that RRM2 might function in BLCA. Besides, immunotherapy has been the
first-line treatment for BLCA patients who are unable to tolerate cisplatin chemotherapy.
However, the biomarker for BLCA immunotherapy is still lacking. Thus, BLCA is selected
for experimental analysis. Literature reported that RRM2 was a novel diagnostic marker
and a potential therapeutic target in BLCA, but they just justified this result in a tissue
microarray with IHC and conducted a single proliferation experiment in one BLCA cell
line UMUC3 [50]. Meanwhile, another two studies suggested that blocking RRM2 could
enhance BLCA cells’ sensitivity to gemcitabine [51,52]. Conversely, we determined that
RRM2 also could enhance BLCA cells’ sensitivity to cisplatin. We provided promising
applications of RRM2 in emerging immunotherapy. In line with their results, we uncovered
that RRM2 was indeed overexpressed in BLCA cell lines and tumor tissues with qRT-PCR,
indicating that RRM2 may exert an oncogenic function in BLCA (Figure 10A,B). More
importantly, we justified that blocking RRM2 with siRNA could significantly suppress
BLCA cancer cell growth with CCK-8 and colony assays (Figure 10F–I). This provided
further evidence that RRM2 might promote the progress and development of BLCA. Finally,
we substantiated that RRM2 could cause cisplatin resistance in BLCA, suggesting that
targeting RRM2 may enhance chemotherapy sensitivity in BLCA patients (Figure 10G–H).
These results validate our bioinformatics analysis results, unearth the cancer-promoting
role of RRM2, and prompt the therapeutic values of RRM2 in BLCA.

This article suggested that RRM2 may influence TME to regulate tumor progression.
We systematically analyzed RRM2 in human cancers. The innovations of our article lay
in the following aspects. At first, we centered on the hotspots of ferroptosis-related gene
RRM2 and immunotherapy. Next, we explored the correlation between RRM2 and TME. In
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particular, we discovered that RRM2 was correlated with predictors of immunotherapy,
which might provide a reference for guiding immunotherapy in cancers. Lastly, laboratory
verification was conducted in BLCA with our clinical samples and cancer cells.

However, there are limitations in this study. Firstly, our study is just a fishing expe-
dition that derives mainly from the computational analysis of genomic data. The exact
mechanism of RRM2 in cancers still needs to be tested in vivo and in vitro. Secondly, our
study only conducted experiments in BLCA, and the specific role of RRM2 in diverse
cancers remains to be elucidated. Further cellular mechanism experiments and animal
experiments are wanted. Thirdly, our study has the limitation of the biological functions of
RRM2 in connection with immunotherapy. For further research, it is worth co-culturing
tumor cells with either autologous or non-autologous immune cells, with LDH release, flow
cytometry, real-time imaging or cytokine release assays using the interference of RRM2. The
role of RRM2 in response to immunotherapy should be validated in clinical cancer patients.

5. Conclusions

In conclusion, we preliminarily estimated the expression and the prognostic value of
RRM2 in pan-cancer with bioinformatics prediction and experimental validation. Further,
we found that RRM2 might be a future biomarker and a reference to predict immune
response. These findings may aid in understanding the role of RRM2 and its clinical
application in cancers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14122938/s1, Table S1: Main reagents and consumable
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