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Abstract

Sucrose nonfermenting 1-related kinase (SNRK) is a serine/threonine kinase and a member of 

the adenosine monophosphate (AMP)-activated protein kinase (AMPK) family that is involved 

in the metabolic regulatory mechanisms in various cell types. SNRK is an important mediator 

in maintaining cellular metabolic homeostasis. In this review, we discuss the role of SNRK 

in metabolic tissues where it is expressed, including heart and adipose tissue. We discuss its 

role in regulating inflammation in these tissues and the pathways associated with regulating 

inflammation. We also discuss SNRK’s role in vascular development and the processes 

associated with it. Finally, we review SNRK’s potential as a target in various metabolic 

dysfunction-associated diseases such as cardiovascular diseases, diabetes, obesity, and cancer. 

This comprehensive review on SNRK suggests that it has therapeutic value in the suppression of 

inflammation in cardiac and adipose tissue.
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INTRODUCTION

During embryonic development and cellular differentiation, protein kinases play a vital 

role in maintaining cellular homeostasis. Protein kinases constitute an exceptionally large 

family that has been estimated to include more than 1000 mammalian proteins. The 

sequence similarity of protein kinases in their catalytic domains indicates that they have 

evolved from a common precursor protein[1]. Protein kinases play an important role in 

signal transduction by phosphorylating specific amino acids of downstream substrates and 

catalyzing the conversion of substrate proteins into phosphoproteins. The phosphorylation 

can be reversed by protein phosphatases. Protein phosphorylation is one of the common 

forms of cellular regulation during various cellular processes including metabolism, 

proliferation, differentiation, motility, survival, and death. Protein phosphorylation, first 

described in eukaryotes, is a post-translational modification of proteins whereby a phosphate 

group is covalently attached to a serine, threonine, or tyrosine residue[2,3]. Eukaryotic serine 

(S), threonine (T), and tyrosine (Y) kinases are grouped together in the eukaryotic protein 

kinase superfamily based on sequence homology in their kinase domains.

The two main groups of the superfamily, the serine/threonine kinases and the tyrosine 

kinases can be subdivided further into smaller families which are composed of enzymes 

that show similar substrate specificities and mode of regulation[4]. Serine/threonine kinases 

(STKs) transfer phosphate group from Adenosine triphosphate (ATP) to the OH (hydroxyl) 

group on the side chain of a serine or threonine amino acid residue in a protein, producing 

ADP and a phosphoprotein. STKs are involved in the regulation of cellular proliferation, 

programmed cell death (apoptosis), cell differentiation, and embryonic development[5]. 

Similar to STKs, tyrosine-kinase enzymes transfer a phosphate group from ATP to a tyrosine 

residue in a protein. Tyrosine-protein kinases are classified into two main groups: (1) 

receptor tyrosine kinases, which are attributed to transmembrane proteins involved in signal 

transduction and play key roles in growth, differentiation, metabolism, adhesion, motility, 

death, and oncogenesis[6]; and (2) cytoplasmic/non-receptor tyrosine kinases, which act 

as regulatory proteins, playing key roles in cell differentiation, motility, proliferation, and 

survival[7]. Several kinases are activated by auto- or trans-phosphorylation on at least one 

S/T/Y residue in the activation loop by a second kinase[8].

Sucrose nonfermenting 1-related kinase (SNRK) is a novel member of AMP-activated 

protein kinase (AMPK) subfamily of STKs. The AMPK family members share sequence 

homology with other members of the family in their catalytic domain[4]. SNRK was 

first identified in 1996 in 3T3-L1 adipocytes where its expression was observed during 

differentiation into an adipocyte-like cell[9]. SNRK is a monomeric enzyme containing 

a nuclear localization signal (NLS) domain, an ATP-binding domain, and an active S/T 

kinase domain with a conserved T-loop threonine residue (T173)[10] [Figure 1]. Kinases 
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that regulate SNRK activity have been identified. For example, liver kinase B1 (LKB1) 

phosphorylates multiple kinases especially the AMPK family, including SNRK. LKB1 

phosphorylates substrates (AMPK and AMPK-related kinases) at the T-loop threonine 

residue[11]. Unlike many AMPKs, SNRK does not require an additional stimulus for 

activation such as increased AMP:ATP[12] ratio within a cell. SNRK also phosphorylates 

several proteins including Rho-associated kinase (ROCK)[12–19]. Thus, SNRK regulation 

and its associated signaling partners and pathways are emerging areas of research. Further, 

SNRK’s role in various cell types in metabolic tissues such as cardiac and adipose is also 

emerging. We have compiled a list of publications that suggests SNRK’s role in numerous 

cell types, and its influence on the underlying cellular processes [Table 1]. In this review, 

we focus on SNRK’s role in the regulation of metabolism and inflammation in heart and 

adipose tissue, and the impact of SNRK’s dysregulation on metabolic and inflammatory-

associated disease conditions.

SNRK: STRUCTURE, EXPRESSION, AMPK FAMILY ASSOCIATION AND 

ACTIVATORS

SNRK structure

The AMPK family members have been extensively characterized. These kinase enzymes 

include AMPKα1, AMPKα2, MARK1/2/3/4, SIK1/2/3, NUAK1/2, BRSK1/2, and 

MELK[25]. The AMPK protein family contains similar domain organization, namely, an 

N-terminal kinase domain and an adjacent ubiquitin-associated (UBA) domain. SNRK is a 

novel member of the AMPK family, and a 2.9Å resolution crystal structure of its N-terminal 

fragment containing the kinase and adjacent UBA domain is now available[10].

The SNRK sequence is annotated to include a putative kinase domain (residues 24–270) and 

a hinge region (residues 271–291) which connects to the UBA domain (residues 292–344) 

[Figure 1]. The kinase domain consists of two lobes namely a N-lobe and a C-lobe. The 

N-lobe of the kinase domain consists of β-sheets [β2 to β5] and a prominent αC helix. 

The C-lobe of the kinase domain is mainly α-helical and contains the activation loop[10] 

[Figure 1]. The UBA domain of the SNRK is composed of three α helices (α1 to α3) and 

binds to the kinase domain through the hinge region. This binding facilitates interaction of 

both the N- and C-terminal lobes, which is unique compared to other UBA: kinase domain 

interactions in the AMPK family. The structure of the UBA domain in SNRK inhibits 

the kinase activity and thus regulates SNRK’s activity[10]. Further, the UBA domain is 

unique among AMPK family members, and this characteristic triggers and defines specific 

downstream signals[26–28].

SNRK activation by upstream kinases

SNRK possesses a conserved threonine (T) residue within its activation loop sequence. 

However, the identity of the activation loop sequence is not highly conserved among other 

AMPK-related kinases. LKB1 activates SNRK by phosphorylating its T-residue 173 (T173). 

The T residue in the activation loop is referred to as “T-loop,” and is part of the three 

residues Leu (L)-Arg (R)-T that is conserved in the AMPK protein family. An important step 

in LKB1 activation is its export from nucleus to the cytoplasm, and this nuclear transport 
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of LKB1 requires L-rich peptides. Kinases without a −2 L residue before the T-loop 

residue cannot get phosphorylated or activated by LKB1 substrate. LKB1 possesses a strong 

preference to phosphorylate T compared to the L residue at the −2 position[29] in the T-loop. 

Interestingly, SNRK and the 13 other AMPK subfamily kinases that are phosphorylated 

and activated by LKB1 (AMPKα1, AMPKα2, MARK1/2/3/4, SIK1/2/3, NUAK1/2, and 

BRSK1/2) has the L residue at the −2 position in the T-loop. LKB1 gets phosphorylated 

at S325, T366, and S431 residues by upstream kinases and is auto-phosphorylated at 

S31, T185, T189, T336, and S404[30] residues. Interestingly, mutation in any of these 

phosphorylation sites does not significantly affect its intracellular localization[31,32].

LKB1 was originally identified as a mutated gene in the inherited Peutz-Jeghers Syndrome 

(PJS), in which subjects are susceptible to developing benign and malignant tumors[33] in 

the gastrointestinal organs stomach and intestines. LKB1 protein is complexed with STE-

related adapter (STRAD), an inactive pseudokinase[34], and mouse protein 25 (MO25)[35], 

a repeat domain scaffold protein that is responsible for activation of AMPK family kinases. 

Phosphorylation of S307 residue in LKB1 facilitates the binding of LKB1 to the STRAD 

and MO25 complex, which enables the nucleocytoplasmic transport of LKB1-complex[36,37] 

LKB1:STRAD:MO25 complex and Mg-ATP results in a rapid (20 min) 5-fold activation of 

SNRK in the cytoplasm[11]. Therefore, the heterotrimeric complex of LKB1, STRADα or 

STRADβ, and MO25α or MO25β is required to obtain maximal activation of SNRK.

Role of SNRK in cardiomyocyte and adipocyte metabolism

To facilitate cell growth and maintenance, chemical reactions associated with cellular 

metabolism such as glucose, fatty acid, and amino acid metabolism occurs within a cell. 

During periods of stress such as low nutrient environment, the maintenance of cellular 

metabolism - in turn energy reserves in a cell - is critical. AMPK is a key sensor of energy 

needs in a cell. SNRK like AMPK is beginning to show similar critical roles in metabolism, 

and is observed in multiple tissues including adipose and cardiac tissues[13–19]. Central to 

maintaining cellular energy homeostasis is the control of ATP generation and utilization. We 

discuss next the emerging evidence regarding SNRK’s role in maintaining cellular energy 

homeostasis [Figure 2].

SNRK in cardiac metabolism—In the heart, the myocardium needs to function 

throughout the life of the organism. In the myocardium, cardiomyocytes (CMs) are the 

powerhouses that generate energy. In the prenatal or in utero heart, glucose and thus 

glycolysis is necessary for CMs growth. In late gestational and early postnatal stages, 

glucose uptake is significantly decreased, creating an intracellular glucose deprivation 

during development[38]. In the late phase of cardiac fetal development, circulating lactate 

contributes to the majority of cardiac oxygen consumption[39,40] while glucose and fatty 

acid oxidation (FAO) contribute relatively less[41,42]. In terms of Snrk, during embryonic 

development, it is expressed at both mRNA and protein levels in tissues that have high 

demand for metabolic activity[19]. The heart is comprised of vascular endothelial cells 

(ECs) and smooth muscle cells, in addition to CMs, all of which express SNRK[15]. Loss 

of Snrk in all tissues [global knockout (KO)] results in neonatal lethality with enlarged 

hearts observed at E17.5 and P0[15]. Microarray analysis of E17.5 hearts revealed systemic 
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metabolic dysregulation[15]. Glycogen, a polysaccharide (serves as glucose storage) was 

decreased in E17.5 Snrk global KO hearts. Similarly, lipid storage deposits demonstrated by 

oil red O (ORO) staining was also less in E17.5 Snrk global KO heart tissue. Circulating 

lipid plasma levels were also lower in Snrk global KO mice. Thus, global loss of Snrk results 

in defects associated with cardiac tissue energy sources.

The phospho-AMPK-phospho-acetyl-CoA carboxylase (ACC)[15] is one of the key signaling 

pathways associated with cardiac metabolism in neonates and adults. AMPK decreases 

FAO by phosphorylation of ACC1 at S79 and ACC2 at S212 residue. ACC enzymes 

generates malonyl CoA from acetyl CoA (a byproduct of FAO pathway). Phosphorylation 

of ACC is inhibitory and thus prevents the generation of malonyl CoA. This relieves the 

inhibition on a transporter (carnitine palmitoyltransferase) that allows acyl CoA to enter 

mitochondria for b-oxidation and tricarboxylic acid (TCA) cycle to generate acetyl CoA 

and ATP respectively. In P0 Snrk global KO hearts, pAMPK and pACC levels were down 

compared to wild type hearts suggesting malonyl CoA accumulation and thereby inhibition 

of carnitine palmitoyltransferase and loss of b-oxidation or FAO[15]. Thus, SNRK promotes 

FAO via the pAMPK-pACC pathway in the neonate P0 hearts.

As the transition from the neonate to postnatal stage ensues, the heart of a newborn will 

adapt to the changing environment which is characterized by an increase in contractile 

demand due to the rapid growth and increase in activity of the newborn[43]. This results 

in an increase in energy demand that can be provided by FAO and mitochondrial ATP 

production. The high fatty acid content of the maternal milk in many species is an effective 

way to supply the high energy demand of the newborn heart. As the newborn heart matures, 

the utilization of FAO to meet the overall energy production needs increases, and thus 

becomes the dominant substrate in the adult heart. Under normal metabolic conditions, over 

95% of ATP generated in the heart is derived from oxidative phosphorylation. Only 5% 

of the remaining comes from glycolysis and to a lesser extent from the TCA cycle[44]. 

Accordingly, the high-energy phosphate pool in the heart, ATP, is relatively small and can 

be exhausted within a few seconds. Therefore, cardiac work depends strongly on ATP 

generation, and impairments in this process can rapidly induce contractile dysfunction. Of 

the ATP generated in the adult heart, 70% to 90% is produced by the oxidation of fatty 

acids (or FAO). The remaining 10% to 30% comes from the oxidation of glucose and lactate, 

as well as small amounts of ketone bodies and certain amino acids[45,46]. Because Snrk 
global KO mice die at or before birth, studying SNRK function in adult requires conditional 

deletion of SNRK in cardiac tissue using the CRE-LoxP system. Cardiomyocyte-specific 

(myh6-CRE) Snrk KO mice (Snrk cmcKO) show cardiac functional deficits at 6 months 

and die at 9 months. No neonatal lethality was observed in these mice[15]. Neonate hearts 

from the Snrk cmcKO mice showed higher ORO retention and no change in pACC-pAMPK 

signaling pathway. However, adult Snrk cmcKO hearts at 6 months showed no change 

in ORO but showed higher pACC (unpublished data) levels. Thus, the switch in energy 

source for the heart from glucose in neonates to fatty acids in adults may partly reflect 

SNRK’s role at these time points. In terms of cell type, where SNRK function is critical 

in the heart, there is little doubt that SNRK-CM function is dominant. This is supported 

by the following evidence: (1) Snrk cmcKO show profound cardiac functional deficits at 

6 months, die at 9 months, and when stressed by Angiotensin II (Ang II) at 4 months, 
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they show cardiac function deficits within 14 days and die; (2) Snrk endothelial (TIE2) cell 

conditional KO (Snrk ecKO) do not show cardiac functional deficits at 6 months, are alive, 

and when stressed with Ang II at 4 months do not show cardiac functional deficits; and 

(3) SNRK knockdown cardiomyocytes in vitro show metabolic deficits, and NMR (nuclear 

magnetic resonance)-based metabolomic analysis revealed SNRK is essential for alanine, 

aspartate, and glutamate metabolism [Figure 3] as well as TCA cycle metabolism and it also 

regulates metabolites involved in lipid synthesis such as glycerol[47]. It is also noteworthy 

that pAMPK-pACC levels were significantly altered in Snrk ecKO neonate hearts and also 

in adult hearts (unpublished data). But, despite these alterations, the SNRK in CMs seem to 

compensate for cardiac function, and thus prevents functional deficits.

As for the targets of SNRK that are involved in cardiac function, we had previously 

reported that ROCK was a putative SNRK substrate in CMs [Figure 2], and showed 

that Fasudil (ROCK inhibitor) can rescue cardiac functional deficits in Snrk cmcKO 

hearts[13]. ROCK signaling pathway[13] activation is also implicated in major cardiovascular 

disorders such as atherosclerosis, restenosis, hypertension, pulmonary hypertension, and 

cardiac hypertrophy[48]. Tribbles homologue 3 (Trib3) is another substrate of SNRK in the 

heart [Figure 2], and SNRK overexpression in the heart decreases oxygen consumption 

and improves cardiac function[16]. Trib3 is also a known inhibitor of AKT signaling[49] 

and metabolic flux is maintained by PPARα-dependent UCP3 (uncoupling protein 3) 

downregulation[16]. Thus, SNRK improves cardiac mitochondrial efficiency and decreases 

mitochondrial uncoupling[16]. Collectively, SNRK acts as a cardiomyocyte-centric metabolic 

sensor in cardiac tissues to maintain cardiac function and homeostasis, and is a novel 

candidate to target in order to improve cardiac health.

SNRK in adipocyte metabolism—Adipose tissue is a loose connective tissue composed 

of adipocytes, cells which contain either a single large lipid droplet (white adipose tissue) 

or multiple lipid droplets (brown adipose tissue). Adipocytes release fatty acids into the 

bloodstream via lipolysis of lipids. Adipose is a highly dynamic tissue and contains 

adipocytes of various size referred to as small and large adipocytes. The properties of 

adipocytes cells have been extensively explored for the relationship between cell size 

and various disease conditions such as inflammation[50,51], insulin resistance[52,53], and 

diabetes[54,55]. The correlation between its size and cellular function as well as in metabolic 

disease concluded that the size of the adipocyte is an important factor in predicting 

pathophysiological conditions[56].

The most known and recognized function of adipose is its role in the storage and 

release of lipid species, particularly free fatty acids[57]. SNRK is ubiquitously and 

abundantly expressed in both white adipose tissue (WAT) and brown adipose tissue (BAT)
[19]. Phosphoproteomic analysis revealed SNRK knockdown in adipocytes significantly 

decreased phosphorylation of 49 proteins by 25% or more and increased phosphorylation 

of 43 proteins by onefold or higher. Among these proteins, several were involved in the 

inflammatory pathways. Pathways such as mTOR signaling were implicated in addition to 

those that reduce adipocyte function[19]. In adipocytes, acute inhibition of mTOR signaling 

by rapamycin increases insulin-stimulated glucose uptake, but chronic inhibition of mTOR 

signaling (rapamycin) impairs insulin-stimulated glucose uptake[58]. Thus, SNRK’s role 
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in regulating insulin-mediated glucose uptake is context-dependent. In support of this 

hypothesis, a recent study, from Li et al.[17], reported that SNRK controls insulin signaling 

through Protein Phosphatase 2 Regulatory Subunit B’Delta (PPP2R5D) phosphorylation 

[Figure 2], which subsequently influences protein phosphatase 2A (PP2A) activity and 

phosphorylates AKT in both WAT and BAT. PPP2R5D is one of the four major Ser/Thr 

phosphatases implicated in the negative control of cell growth and division. This implies that 

SNRK activates insulin-stimulated AKT phosphorylation and glucose uptake in adipocytes. 

Further, SNRK, specifically in adipocytes, maintains body weight but it does not change 

the size of the WAT depot[18]. SNRK keeps circulatory triglycerides and free fatty acids in 

check in order to regulate the body weight. These data imply that SNRK is a potential target 

for interference in adipocytes to check body weight.

SNRK and inflammation—Tissue inflammation is a key protective mechanism to 

promote repair caused by ischemia and to prevent further damage. SNRK appears to control 

tissue inflammation especially by suppressing the inflammatory pathways mediated through 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling[14,22] 

[Figure 2]. To restore normal tissue architecture, post-injury inflammation occurs in three 

distinct phases. In the early proinflammatory first phase, components of the innate immune 

response initiate the repair by mobilizing the recruitment of key inflammatory cells. In 

the second phase, the proinflammatory response begins to diminish and inflammatory cells 

such as macrophages switch phenotype to a reparative mode. In the final phase, tissue 

homeostasis is reestablished when the inflammatory cells either withdraw from the site of 

injury or are abolished through apoptosis. However, the degree and duration of the response 

varies, and this dictates whether the final outcome of the inflammation will be beneficial or 

harmful. A prolonged inflammatory response has negative consequences such as activation 

of a fibrotic response where excessive and aberrant accumulation of collagenous connective 

tissues occurs in the organs that can weaken tissue function, and in some cases, lead to organ 

failure (e.g., chronic hepatitis B)[22,59,60].

Often, inflammation is associated with fibrosis in cardiac, adipose and renal 

tissues[8,14,22,61]. Evidence in recent years point to a strong link between chronic low-grade 

inflammation in the heart and metabolic dysregulation[62–64]. In the case of heart failure 

and cardiac hypertrophy, the progression of inflammation usually involves a local rise of 

cytokines in cardiac cells such as CMs, ECs, and fibroblasts and the activation of the 

proinflammatory transcription factor nuclear factor NF-κB[14,65,66]. In the cardiac system, 

inflammation is often associated with the deposition of collagen, leading to fibrosis in the 

heart. Removal of Snrk in CMs increases the phosphorylation of NF-κB p65 and increases 

proinflammatory cytokine signaling which is partially mediated through Akt. This suggests 

that SNRK represses inflammation signaling in CMs, which when unchecked, progresses 

to fibrosis and death. However, when Snrk is deleted in cardiac ECs, these hearts show 

increases in NF-κB p65 and proinflammatory cytokine signaling, which does not progress 

to fibrosis. These data collectively suggest that SNRK in CMs compensates for SNRK 

loss of function in ECs[14], and also implies crosstalk signaling between CMs and ECs in 

cardiomyocyte remodeling.
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Healthy adipose tissue is vital for metabolic homeostasis, whereas dysfunctional adipose 

is a contributing factor for metabolic disorders such as obesity, type 2 diabetes mellitus, 

and cardiovascular diseases[67–69]. SNRK expression is high in the metabolic adipose 

tissue. In the adipocytes, SNRK protein is localized to lysosomes, the site for degradation 

of large intracellular organelles or assembly of protein aggregates[19]. Adipocyte-specific 

SNRK represses inflammation in WAT through the JNK and IKKβ signaling pathways. 

Under obesity conditions, the expression level of SNRK is low because of obesity-induced 

adipose inflammation and/or lipid toxicity. Removal of SNRK specifically in adipocytes 

leads to metabolic disturbances with decreased energy expenditure, higher body weight, 

and increased insulin resistance[18,19], suggesting that SNRK regulates and controls these 

metabolic pathways.

In the renal system, SNRK in glomerular ECs binds directly to p65 subunit of NF-κB 

(activated by Ang II) to suppress inflammatory signaling. Activated NF-κB plays a critical 

role in renal damage which occurs as a result of unchecked inflammation and fibrosis[22]. 

These evidences suggest that SNRK acts as a repressor of inflammation in cardiac, adipose, 

and renal tissues, all of which are critical for the maintenance of organismal homeostasis and 

function.

Role of SNRK in vascular development

During embryonic development, vascular networks permeate the entire body and this 

conduit is used for the circulation of metabolites and removal of waste products. The 

vascular system emerges as one of the earliest networks in the embryo to support the rapid 

growth of tissues. The adult vasculature is generally quiescent but retains the capacity to 

shift from this dormant state to an expansion and remodeling state. This occurs during 

normal physiological conditions such as wound healing or pathological states such as 

tumor neovascularization. The differentiation of angioblasts (precursor cells) into ECs and 

the de novo formation of a primitive vascular network is called vasculogenesis. After 

primary vascular plexus is formed, a second process during development occurs wherein 

more ECs are generated via a process called angiogenesis which is the growth of new 

blood vessels from existing vasculature[70]. Thus, vasculogenesis and angiogenesis are 

the two predominant sequential coordinated processes for blood vessel formation during 

development[70,71].

SNRK in vasculogenesis—The initial loss of function studies in vivo for Snrk was 

performed in the vertebrate zebrafish model system. Zebrafish offers various advantages 

as a model system including established genetics, loss and gain of function technology, 

transparency of embryos, fluorescent transgenic reporter lines, ex vivo development of 

embryos, and several others[72–74]. During embryonic development, angioblasts migrate 

from lateral plate mesoderm to the midline, differentiate in arterial or venous endothelial 

cells and coalesce to form cord-like structures which eventually mature to form the major 

axial blood vessels, namely dorsal aorta (DA) and posterior cardinal vein (PCV)[75]. The 

kinase function of SNRK was shown to be essential for angioblast migration and is 

required for localization and maintenance of these cells in the lateral plate mesoderm[76]. 

SNRK also functions later (19–22 h post-fertilization) during angioblast differentiation 
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to arteries and veins in zebrafish where it is involved with Notch signaling-mediated 

arterial or venous (A/V) specification. Studies in zebrafish reveals that within 2 h of the 

formation of angioblasts, angioblasts begin their migration to the dorsal midline, and by 

18 h post-fertilization, angioblasts coalesce at the midline to form the two major axial 

vessels (DA & PCV)[77,78]. Thus, sufficient number of angioblasts are needed in the 

embryo to facilitate this process. As described earlier, most kinases are counter balanced 

by phosphatases. In the lateral plate mesoderm, dual-specific phosphatase 5 (DUSP5), a 

member of MAPK phosphatases was identified as a vascular-specific gene in 2 independent 

microarray studies[74,79]. Subsequent analysis shows that Dusp-5 phosphatase and SNRK 

kinase function together in maintaining angioblast populations during embryonic vascular 

development[20]. Thus, the signaling pathway and the targets that are regulated by SNRK 

and DUSP5 are likely to reveal more understanding of the basic vasculogenesis process 

during vertebrate organogenesis.

SNRK in angiogenesis—The main mediator of angiogenesis is the arrangement of 

ECs in tip and stalk cells[80]. Tip cells containing filopodia invade surrounding tissue 

leading to the path of neo-vessel formation. Vascular endothelial growth factor and Notch 

signaling pathways are vital for tip cell differentiation[80]. Most of our current knowledge 

about the morphological processes and molecular regulation of angiogenesis are from the 

developing zebrafish embryos or the vascularization of postnatal mouse retina[80,81]. In 

zebrafish, the accessibility of embryos for live imaging provided unprecedented observations 

which have unraveled new concepts in angiogenesis. Analysis of the zebrafish head and 

trunk vasculature reveals that SNRK controls patterning of vessels in both locations[20]. 

In retina, the segregation of vascular and avascular compartments and the visualization 

of the progressive expansion of blood vessels from the center to periphery makes it an 

attractive model to study tip versus stalk cell formation during angiogenesis. In this model, 

endothelial SNRK was found to be essential for vascular patterning in that it controls vessel 

diameter and vascularization area in the retina[21]. This regulation is partially mediated 

through transcription factor hypoxia-inducible factor-1a (HIF1α), which is induced under 

a physiological drop in oxygen concentration below 60 mmHg, a condition referred to as 

hypoxia. The hypoxia state in tissue often induces angiogenesis. Similarly, during both acute 

and chronic myocardial ischemia, angiogenesis is stimulated. Ischemia-driven angiogenesis 

is primarily an adaptive physiological response to either an increase in tissue mass or 

elevated oxygen consumption[82]. Under ischemic condition, HIF1α is upregulated and was 

shown to interact directly to SNRK promoter[21]. This binding results in transcriptional 

upregulation of SNRK mRNA, which then promotes angiogenesis by activating ITGB1 

(β1 integrin)-mediated EC migration[21]. Thus, SNRK plays a vital function in developing 

vasculogenesis and ischemic angiogenesis. However, its exact role and the underlying 

mechanisms associated with facilitating normal angiogenesis remains unknown.

Role of SNRK in disease

Inflammation and metabolic dysregulation are major contributing factors to disease. Because 

SNRK participates in both processes, it is considered an important target for intervention. 

Based on SNRK’s preponderance as a repressor of cellular functions, we consider SNRK as 

a checkpoint in cells. Thus, therapeutic approaches that support SNRK agonist development 
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is preferred. Further, SNRK’s role at the interface of inflammation and metabolism will 

benefit conditions such as heart failure or diabetes. We hypothesize that molecules such as 

SNRK that work at interfaces of inflammation-metabolism will help reduce the progression 

of the disease. In addition, SNRK’s ability to suppress inflammation in multiple systems, 

such as cardiac, adipose, and renal, opens avenues for therapeutic development in these 

organ systems.

SNRK in heart failure—Progressive heart failure (HF) is a chronic condition, and 

current therapies targeting HF are insufficient. HF is a leading cause of morbidity and 

is associated with increasing mortality rate worldwide. HF is often accompanied with 

significant perturbations in energy metabolism that can affect both cardiac energy supply 

and efficiency[83]. HF is also associated with several underlying comorbidities including 

dilated cardiomyopathy, myocardial infarction, hypertension, and myocarditis. Metabolic 

changes or dysfunctions in cardiac tissue are one of the main reasons for HF progression. 

Prolonged exposure of metabolic stress in the heart decreases its functional ability, 

especially by reducing mitochondrial function, which is the main energy generating source 

in the heart. Mitochondrial dysfunction appears to be a vital target for direct intervention to 

improve cardiac function because it primarily uses fatty acids for ATP production[84]. SNRK 

is involved in the regulation of the mitochondrial substrate usage and oxygen consumption 

to maintain cardiac energy and functioning[16]. Progressive HF reduces free fatty acid 

breakdown resulting in less ATP production, more inflammation, and increased fibrosis. 

SNRK in CMs regulates cardiac energy homeostasis by maintaining FAO[15] [Figure 4]. 

Loss of functionally active SNRK in CMs makes the heart vulnerable and the mice succumb 

in approximately 9 months. Any additional stress such as angiotensin II (Ang II) accelerates 

HF and the mice dies in two weeks post Ang II infusion. Cardiac functional parameters 

are severely compromised with upregulation of inflammation and fibrosis markers[14] in 

the heart tissue. HF is typically associated with cardiac remodeling where inflammation 

and fibrosis are thought to play crucial roles[60]. These studies suggest that maintaining 

SNRK function in CMs is key to preventing HF. In the heart, in addition to CMs, ECs are 

also present in higher numbers than previously thought[85]. Interestingly, when SNRK was 

deleted in ECs, the hearts from these mice did not show cardiac function deficits in wild type 

state or in Ang II-induced state. As mentioned earlier, the NF-κB pathway was activated in 

these hearts [Figure 4], but no fibrosis was observed[14]. These studies suggest an overriding 

role for SNRK in CMs and its compensation of functional defects elicited by other cell 

types in the heart. Further, SNRK in CM keeps inflammation and fibrosis under check 

which allows the heart to continue its function. These studies suggest important concepts 

that require more investigation as it relates to SNRK’s role in HF, which include: (1) SNRK-

mediated cell-cell communication in the heart; (2) pharmacological activation of SNRK 

selectively in CMs to suppress inflammation and metabolic dysregulation; and (3) SNRK 

activation in CMs to promote cardiac output via mitochondrial or other mechanisms. Some 

of SNRK’s cardiac function are reminiscent of mitochondrial sirtuin proteins specifically 

SIRT3, wherein Sirt3 knockout mice are highly sensitive to stress, which leads to cardiac 

hypertrophy, fibrosis, and increased mortality[86]. Compounds such as Honokiol that activate 

mitochondrial Sirt3, block and reverse cardiac hypertrophy in mice[87] and show protective 

cardiac function[88] could be candidates for testing in Snrk cmcKO mice. Collectively, the 
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therapeutic value of SNRK-CMs-mediated signaling to prevent HF is an emerging area of 

translational research in cardiovascular medicine.

SNRK in diabetes—Diabetes mellitus is often referred to as a metabolic condition that 

results in high blood glucose levels. Type 1 diabetes (T1D) is a severe form of the disease 

and is often referred to as juvenile diabetes or “insulin-dependent diabetes” which is the 

result of loss of insulin-hormone producing islet cells in the pancreas which normally 

promotes glucose metabolism. Type 2 diabetes (T2D), the most common form of diabetes, 

is also referred to as adult onset diabetes or “non-insulin-dependent diabetes.” In T2D, the 

insulin receptor is defective and insulin produced by the pancreatic cells cannot function 

to facilitate efficient glucose metabolism. This is often referred to as “insulin-resistance” 

state. Insulin secreted by pancreas influences other organs including muscle (glucose uptake 

and storage), liver (decrease glucose production), and adipocytes (increased lipogenesis). 

SNRK’s connection to diabetes was first identified by studying its role on adipocytes[19]. 

SNRK is abundantly expressed in adipose tissue (WAT and BAT), and its expression is 

induced by insulin. SNRK knockdown in adipocytes promotes lipolysis, impairs glucose 

uptake[17], and activates NF-κB inflammatory signaling pathway. Thus, SNRK, like in 

CMs, seems to function in adipocyte as a repressor of adipocyte inflammation. The 

specific mechanism utilized by SNRK to prevent insulin resistance in adipose tissue is 

through protein phosphatase 2 regulatory subunit B’ delta (PPP2R5D) phosphorylation, 

which impacts PP2A activity and phosphorylation of AKT[17] [Figure 4]. The SNRK-AKT 

connection is intriguing given that this signaling nexus was also observed in heart tissues 

from Snrk cmcKO mice[14]. Thus, further investigations is needed into the direct versus 

indirect regulation of SNRK-AKT pathway in CMs and adipocytes.

Obesity is a key risk factor for insulin resistance T2D[89]. Interestingly, in humans 

and mouse models of obesity, adipose SNRK expression levels are diminished. Further, 

adipocyte-specific deletion of Snrk causes inflammation in WAT along with ectopic lipid 

deposition in liver and muscle[18]. Homozygous loss of Snrk in adipocytes decreases 

the expression of uncoupling protein 1 (UCP1), PR domain containing 16 (PRDM16), 

and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in 

BAT. One of the primary functions of adipocytes is to insulate the body, a process also 

referred to as “thermogenesis”. All three molecules UCP1, PRDM16, and PGC-1α play an 

important role in BAT thermogenesis[18]. To increase heat production, lipids in adipocytes 

are catabolized, a process that gets dysregulated in obese conditions, which results in 

increased inflammation and insulin resistance. Adipocyte-specific deletion of Snrk cause 

impairment in adaptive thermogenesis in BAT leading to decreased energy expenditure, 

elevated body weight, and insulin resistance. Importantly, a significant association in SNRK 
genetic variants and obesity risk was identified in humans[18]. These studies collectively 

make a case for SNRK as a novel target for treating obesity and insulin resistance-related 

metabolic disorders including diabetes.

SNRK in cancer—Reprogramming of cellular energy metabolism is one of the principal 

hallmarks of cancer[90]. We think that tumor cells can exploit SNRK’s role in controlling 

metabolic pathways in various tissues. For example, LKB1, an upstream regulator of SNRK 
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function, has been identified as a critical cancer suppressor protein and is mutated in 

several types of cancers[91–96]. LKB1 may inhibit cancer cell growth through regulation of 

HIF-1 under hypoxic condition. Hypoxia is an important characteristic in most cancers, and 

induces the expression of HIF-1 transcription factor. HIF-1 can subsequently activate genes 

that permit cancer cells to survive and grow in the hypoxic tumor environment[97]. HIF1α 
binds to the SNRK promotor during ischemia, and induces it expression. SNRK protein is 

found in both cytoplasm and in the nucleus and regulates genes involved in DNA synthesis 

and cell cycle regulation [Figure 4]. Overexpression of Snrk decreases cell proliferation, 

whereas downregulation of Snrk increased cell proliferation in colon cancer cell lines. 

Mechanistically, SNRK inhibits the proliferation of colon cancer cells through upregulation 

of calcyclin-binding protein (CacyBP) and β-catenin degradation[12]. CacyBP is a tumor 

suppressor which has been implicated in reducing cancer cell proliferation through 

regulating cell cycle G1 check point in breast[98], gastric[99], and kidney cancers[100].

Another tumor type that depends extensively on host metabolism are ovarian cancer cells[23]. 

Adipocytes in the omentum (fat layer underlying the belly) microenvironment[101] provide 

fatty acids as source of energy to ovarian cancer cells to support their rapid growth, 

progression, and metastasis[24]. In ovarian cancer, the expression of SNRK is lower in 

metastatic tumors and is differentially expressed depending on the stage of the disease. This 

suggests that SNRK has specific roles in the disease progression of ovarian cancer[98] and 

may have diagnostic value for stratifying ovarian tumors of varying types. However, much 

work is needed to realize SNRK’s full potential and its importance in cancer biology.

In summary, therapeutic strategies directed towards the enhancement of SNRK function 

could significantly improve the clinical conditions associated with inflammation and 

metabolic dysfunction.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

A considerable amount of evidence supports the notion that SNRK activation may act as 

a suppressor of inflammation and metabolic processes. Inflammation suppression comes 

with direct inhibition of NF-κB-mediated inflammatory signaling, one of the signature 

pathways that SNRK controls. SNRK’s role in regulating glucose and fatty acid metabolism 

is considered significant for the function of cardiac and adipose tissues. Given that 

mitochondria is a major source of ATP production in the cell, it is not surprising that SNRK 

is involved in regulating mitochondrial bioenergetic potential in CMs. Emerging evidence 

in SNRK biology also suggests that it plays a defining role in cell-cell communications 

in various tissues that will extend beyond adipose, renal, and cardiac tissues. In adipose 

tissues, SNRK plays a predominant anti-inflammatory role. In renal tissues, endothelial 

SNRK protect the kidney epithelium from becoming fibrotic. In the cardiac tissues, CMs 

SNRK is necessary for protecting ECs from undergoing fibrosis. In addition, SNRK role 

in phosphorylating proteins (substrates) whether directly or indirectly to either promote or 

inhibit its target activity/signaling pathway will need extensive evaluation and is the future of 

SNRK signaling. Finally, SNRK’s role in causative human disease phenotypes will cement 

the importance of this molecule from a translational biology perspective. The next 10 years 

of SNRK biology will be interesting and exciting to witness, and our group along with many 
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others will benefit from this knowledge which we hope one day will impact patients’ lives in 

the form of SNRK-centric novel treatments.
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Figure 1. 
Schematic diagram of SNRK. A linear schematic of the various domains in SNRK is 

depicted. The numbers on top of the bars denote amino acid. UBA: Ubiquitin-associated 

domain; SNRK: sucrose nonfermenting 1-related kinase
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Figure 2. 
The role of SNRK in maintaining tissue homeostasis. Phosphorylation or signaling of 

SNRK to maintain homeostasis in three systems - cardiac system, adipose system, and 

inflammatory system is shown. The arrow indicates whether the phosphorylation is 

activating (black) or inhibiting (red) for the function of the target protein. The proteins 

under each system have been implicated to communicate with SNRK in that system. 

SNRK: sucrose nonfermenting 1-related kinase; Trib3: tribbles homologue 3; PPARα: 

peroxisome proliferator-activated receptor α; UCP3: uncoupling protein 3; ACC: Acetyl-

coA carboxylase; AMPK: adenosine monophosphate-activated protein kinase; ROCK: Rho-

associated kinase; ERK: extracellular-signal-regulated kinase; IL-10: interleukin 10; NF-κB: 

nuclear factor kappa-light-chain-enhancer of activated B cells; IL-6: interleukin 6; TNF-α: 

tumor necrosis factor α; PRDM16: PR domain containing 16; UCP1: uncoupling protein 

1; PGC1α: peroxisome proliferator-activated receptor-γ co-activator 1α; PPP25RD: protein 

phosphatase 2 regulatory subunit B’Delta; mTOR: mammalian target of rapamycin; AKT: 

protein kinase B
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Figure 3. 
SNRK in cardiac metabolism. The role of SNRK in various metabolic pathways involved in 

cardiac functioning is depicted. SNRK: sucrose nonfermenting 1-related kinase
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Figure 4. 
Important functions of SNRK. The important function of SNRK in various signaling 

paradigms, and consequence associated with that in respective tissues is depicted. The 

arrows indicate activation (black) and inhibition (red). SNRK: sucrose nonfermenting 1-

related kinase
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Table 1.

The role of SNRK in various cellular systems is shown

System Function Role of SNRK in the system Ref.

Cardiac system Cardiac metabolism Regulates cardiac metabolism through phospho-acetyl-CoA carboxylase (ACC) and 
phospho-AMPK signaling pathway

[15]

Cardiac functioning Regulates Rho-associated kinase (ROCK) signaling pathway and mitochondrial 
efficiency through uncoupling protein 3 (UCP3) and mitochondrial uncoupling

[13,16]

Cardiac inflammation Represses inflammation by regulates NF-κB phosphorylation [14]

Adipose system Adipocyte glucose 
metabolism

Regulates insulin signaling mediated glucose uptake through PPP2R5D and Akt 
phosphorylation

[17]

Adipocyte inflammation Represses inflammation in white adipose tissue through JNK and IKKβ pathways [19]

Adipose thermogenesis Represses WAT inflammation and regulate BAT thermogenesis through UCP1 and 
PGC1α

[18]

Vascular system Vasculogenesis Maintain angioblast populations and control angioblast numbers in embryonic 
vascular development through DUSP5

[20]

Angiogenesis Promote endothelial angiogenesis by activating ITGB1 (β1 integrin)-mediated 
endothelial cell migration

[21]

Renal system Kidney inflammation Represses inflammation by directly interacting with NF-κB phosphorylation [22]

Colorectal 
system

Colon cancer Inhibits colon cancer cell proliferation through upregulation of calcyclin-binding 
protein (CacyBP) and β-catenin degradation

[12]

Ovarian system Ovarian cancer Omental adipocytes transport fatty acids for rapid growth, progression, and 
metastasis of ovarian cancer cells

[23]

Neuronal system Neuron apoptosis Regulates low K+- induced apoptosis in cerebral neurons [24]

SNRK: sucrose nonfermenting 1-related kinase; AMPK: AMP-activated protein kinase; NF-κB: nuclear factor kappa-light-chain-enhancer of 
activated B cells; PPP2R5D: serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit delta isoform; Akt: protein kinase-B; JNK: Jun 
N-terminal kinase; IKKβ: IκB kinase β subunit; WAT: white adipose tissue; BAT: brown adipose tissue; PGC1α: peroxisome proliferator-activated 
receptor γ isoform α; DUSP5: dual-specificity phosphatase 5; ITGB1: Integrin beta-1
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