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Hemispheric Regional Based 
Analysis of Diffusion Tensor 
Imaging and Diffusion Tensor 
Tractography in Patients with 
Temporal Lobe Epilepsy and 
Correlation with Patient outcomes
Mahdi Alizadeh1,2, Lauren Kozlowski3, Jennifer Muller1,2, Neha Ashraf1, Shiva Shahrampour2, 
Feroze B. Mohamed2, Chengyuan Wu1,2 & Ashwini Sharan1,2

Imaging in the field of epilepsy surgery remains an essential tool in terms of its ability to identify 
regions where the seizure focus might present as a resectable area. However, in many instances, an 
obvious structural abnormality is not visualized. This has created the opportunity for new approaches 
and imaging innovation in the field of epilepsy, such as with Diffusion Tensor Imaging (DTI) and 
Diffusion Tensor Tractography (DTT). In this study, we aim to evaluate the use of DTI and DTT as a 
predictive model in the field of epilepsy, specifically Temporal Lobe Epilepsy (TLE), and correlate their 
clinical significance with respect to postsurgical outcomes. A hemispheric based analysis was used to 
compare the tract density, as well as DTI indices of the specific regions of interest from the pathologic 
hemisphere to the healthy hemisphere in TLE patients. A total of 22 patients with TLE (12 males, 10 
females, 22–57 age range) underwent either a craniotomy, Anterior Temporal Lobectomy (ATL), or a 
less invasive method of Selective Laser Amygdalohippocampectomy (SLAH) and were imaged using 
3.0 T Philips Achieva MR scanner. Of the participants, 12 underwent SLAH while 10 underwent ATL. The 
study was approved by the institutional review board of Thomas Jefferson University Hospital. Informed 
consent was obtained from all patients. All patients had a diagnosis of TLE according to standard 
clinical criteria. DTI images were acquired axially in the same anatomical location prescribed for the 
T1-weighted images. The raw data set consisting of diffusion volumes were first corrected for eddy 
current distortions and motion artifacts. Various DTI indices such as Fractional Anisotropy (FA), Mean 
Diffusivity (MD), Radial Diffusivity (RD) and Axial Diffusivity (AD) were estimated and co-registered to 
the brain parcellation map obtained by freesurfer. 16 consolidated cortical and subcortical regions were 
selected as regions of interest (ROIs) by a functional neurosurgeon and DTI values for each ROI were 
calculated and compared with the corresponding ROI in the opposite hemisphere. Also, track density 
imaging (TDI) of 68 white matter parcels were generated using fiber orientation distribution (FOD) 
based deterministic fiber tracking and compared with contralateral side of the brain in each epileptic 
group: left mesial temporal sclerosis (LMTS) and right MTS (RMTS)). In patients with LMTS, MD and 
RD values of the left hippocampus decreased significantly using two-tailed t-test (p = 0.03 and p = 0.01 
respectively) compared to the right hippocampus. Also, RD showed a marginally significant decrease in 
left amygdala (p = 0.05). DTT analysis in LMTS shows a marginally significant decrease in the left white 
matter supramarginal parcel (p = 0.05). In patients with RMTS, FA showed a significant decrease in the 
ipsilateral mesial temporal lobe (p = 0.02), parahippocampal area (p = 0.03) and thalamus (p = 0.006). 
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RD showed a marginally significant increase in the ipsilateral hippocampus (p = 0.05) and a significant 
increase in the ipsilateral parahippocampal area (p = 0.03). Also, tract density of the ipsilateral white 
matter inferior parietal parcel showed a marginally significant increase compared to the contralateral 
side (p = 0.05). With respect to postsurgical outcomes, we found an association between residual 
seizures and tract density in five white matter segments including ipsilateral lingual (p = 0.04), 
ipsilateral temporal pole (p = 0.007), ipsilateral pars opercularis (p = 0.03), ipsilateral inferior parietal 
(p = 0.04) and contralateral frontal pole (p = 0.04). These results may have the potential to be developed 
into imaging prognostic markers of postoperative outcomes and provide new insights for why some 
patients with TLE continue to experience postoperative seizures if pathological/clinical correlates are 
further confirmed.

Neurologic diseases, such as epilepsy, often cause long-term debilitation for patients leading to deficits in brain 
function and frequent seizures1. Although epilepsy may arise from a vast number of causes including genetic, 
immune, and infectious, temporal lobe epilepsy (TLE) is among one of the most common types of this disease. 
Patients with TLE experience chronic, recurrent focal seizures that are typically unprovoked; however, patients 
with TLE do not always have simple partial seizures, and may also experience complex partial seizures that spread 
to other regions of the brain2. TLE is typically managed medically at the onset of the disease with various antiep-
ileptic medications, but for those patients with intractable seizures failing to respond to numerous antiepileptic 
agents, surgery such as anterior temporal lobectomy (ATL) or selective laser amygdalohippocampectomy (SLAH) 
may be considered2. As previously mentioned, there are numerous causes that may lead to TLE, but the most fre-
quent disease etiology that is refractory to medical management and responsive to surgical management is mesial 
temporal sclerosis (MTS), also commonly known as hippocampal sclerosis (HS)3.

Imaging in the field of epilepsy has been a lasting challenge, specifically, with regards to identifying the seizure 
focus as a resectable area for potential procedures4. This has created the opportunity for new approaches and 
imaging innovation in the field of epilepsy such as diffusion tensor imaging (DTI). DTI measures the magnitude 
and direction of the diffusion of water along 3 principle eigenvectors (x, y and z directions), and also provides 
insight into the microstructure of both gray and white matter by measuring water diffusion5.

The information provided by DTI acquisition allows for the quantification of various diffusion parametric 
maps as well as the generation of 3-dimentional (3D) white matter fiber tractography5. Diffusion tensor tractog-
raphy (DTT) is a computational procedure that reconstructs major fiber bundles in 3D space based on their ani-
sotropy properties. It is a visual and quantitative tool for presenting white matter tracts from DTI data6,7. White 
matter studies using DTI usually rely on the comparison of scalar measures that quantify the diffusion within a 
voxel. The most common measures, which are based on the DTI model, are fractional anisotropy (FA), which 
describes the degree of anisotropy within a voxel and can be attributed to the orientation of the axon fiber, and 
the mean diffusivity (MD), which quantifies the magnitude of diffusion. Other relevant scalar measures include 
axial diffusivity (AD) and radial diffusivity (RD) which estimate the diffusion parallel and perpendicular to the 
principle diffusion axis6,7. Reduction in FA represents the disorganization of axon fiber, leading to unrestricted or 
isotropic diffusion. Increased MD indicates a disorganization in structure, RD is a good indicator of myelin dam-
age, and AD is an indicator of axonal damage such as axonal swelling, Wallerian degeneration, and axonal injury8.

DTI has grown to be a frequently utilized technique to study tractography in numerous neurological diseases 
and to visualize white matter pathways in the human brain due to its non-invasive nature. For instance, DTI has 
presented itself as an invaluable tool in measuring deficits in white matter such as in aging, and has been widely 
used as a clinical application in the study of Parkinson’s disease as well9.

There has also been a vast expansion in the use of DTI in the study of TLE, specifically enhancing our knowl-
edge of epilepsy as a network disorder. The use of DTI for TLE patients has demonstrated disruptions in the 
structural integrity of cerebral white matter extending beyond just the temporal lobe and into several surrounding 
regions bilaterally, even in patients with unilateral MTS10. This has provided great insight for surgical planning in 
order to clearly lateralize the epileptic focus and aid in the delineation of disrupted white matter tracts extending 
into adjacent structures. However, more recent DTI studies describe the influence of these abnormalities in white 
matter tracts on cognitive networks leading to functional decline, specifically regarding language and memory11. 
The emerging DTI literature has also shown an understanding of the structural plasticity within the white matter 
tracts, demonstrating the utility of DTI in following adaptive changes and reorganization of function both pre and 
post-surgery. Although there has been development in DTI studies for TLE, a lack of clarity remains involving the 
correlation between the white matter abnormalities shown on tract density and the post-surgical outcomes with 
regards to seizure freedom.

Thus, there has been increasing application of DTI-based tractography as a clinical technique to better study 
pathological alterations to white matter structures and trace the axonal pathways involved in TLE. However, the 
available data regarding the relationship between preoperative DTI tractography and postoperative seizure out-
come is scarce. In this study, we aim to evaluate the use of DTI as a predictive model for TLE in the setting of MTS. 
Note that up until now, there are still no reference value ranges for DTI and DTT measures in normal, healthy 
people. Therefore, related studies have been performed with the comparison between the contralateral (normal) 
and ipsilateral (abnormal) sides, or between the normal subjects (with no neurological diseases) and the patients6. 
A hemispheric based analysis was used to compare the DTI and DTT measures of specific regions of interest from 
the pathologic side to the healthy side in TLE patients. By correlating these quantitative measures with surgical out-
comes through postoperative follow up, measuring the amount of seizure free time since the procedure, we propose 
the use of DTI and DTT as an imaging technique to generate a postoperative prognosis in TLE patients.
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Methods
Participants.  In this retrospective single-center study, a total of 22 patients with TLE (12 males, 10 females, 
22–57 age range) underwent either anterior temporal lobectomy (ATL) or selective laser amygdalohippocampec-
tomy (SLAH) and were scanned prior to surgery. There were no differences between patients undergoing ATL 
versus SLAH. The mean duration of drug resistant seizures was 18.3 years. The mean time of follow up after 
surgery was 1.3 years. On pre-operative MRI, 15 TLE patients were found to have left mesial temporal sclerosis 
(MTS) and 7 had right MTS. Of the participants, 12 underwent SLAH while 10 underwent ATL. At a 6 month 
follow up after surgical treatment, no seizures were reported from 12 patients, but 10 patients continued to expe-
rience seizures. The study was approved by the institutional review board (IRB) of Thomas Jefferson University 
Hospital. All methods were performed in accordance with the relevant guidelines and regulations approved by 
IRB. Informed consent was obtained from all patients. All patients had a diagnosis of TLE according to standard 
clinical criteria.

Imaging.  Subjects were scanned in a 3.0 T Philips Achieva MR scanner using an 8-channel head coil. DTI 
images were acquired axially using a single-shot echo planar imaging (EPI) sequence in the same anatomical loca-
tion prescribed for T1-weighted images. The T1-weighted imaging parameters used were: FOV = 24.0 cm, voxel 
size = 1.0 × 1.0 × 1.0 mm3, matrix size = 512 × 512, TR = 12 ms, TE = 6 ms and slice thickness = 1 mm. The DTI 
parameters used were: FOV = 23.0 cm, number of directions = 15, number of reference scans (b0) = 1, b = 850 s/
mm2, voxel size = 1.8 × 1.8 × 2.0 mm3, matrix size = 128 × 128, TR = 8.9 s, TE = 62 ms, number of averages = 1.

DTI and T1 post-processing.  The raw data set of diffusion volumes were first corrected for eddy current 
distortions using the FSL FDT diffusion toolbox and motion artifacts using FSL FLIRT (FMRIB’s Linear Image 
Registration Tool). Each directional diffusion image was aligned to the b0 volume (reference image) based on the 
3D rigid body registration algorithm with 6 degrees of freedom and a correlation ratio as cost function to mitigate 
motion artifacts. Eigenvalues (λ1, λ2, λ3) and eigenvectors (v1, v2, v3) of the diffusion tensor matrix were computed 
from the pre-processed DTI volumes for each subject using FSL FDT diffusion toolbox. Various DTI indices such 
as FA, MD, RD and AD were generated. The FA, MD, RD and AD maps for TLE patients were then co-registered 
to the brain parcellation map in freesurfer space based on the affine transformation algorithm and normalized 
mutual information as cost function implemented in SPM12 (Fig. 1).

FreeSurfer (http://surfer.nmr.mgh.harvard.edu) was used to obtain surface meshes of the boundary between 
grey matter and white matter from T1 anatomical brain images. FreeSurfer provides parcellation of anatomical 
regions of the cortices and subcortical regions in both hemispheres. 16 consolidated cortical and subcortical 
regions were selected as regions of interest (ROIs) by a functional neurosurgeon. These consolidated regions 
included cingulate, hippocampus, amygdala, parahippocampal, basal ganglia, mesial temporal, lateral temporal, 
thalamus, cerebellum, precuneus, entorhinal, cuneus, insula, frontal lobe, parietal lobe and occipital lobe.

Figure 1.  Illustration of the processing pipeline developed for DTI and DTT analysis.

http://surfer.nmr.mgh.harvard.edu
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DTI values for each ROI were calculated and compared with the corresponding ROIs in the opposite hemi-
sphere. Additionally, track density imaging (TDI) of 68 white matter parcels were generated using fiber orienta-
tion distribution (FOD) based deterministic fiber tracking and compared with the contralateral side of the brain 
in each epileptic group (LMTS and RMTS). FOD was estimated using the constrained spherical deconvolution 
(CSD) model implemented in MRtrix (http://www.mrtrix.org/), which has been shown to provide robust results 
compared to other existing deterministic tractography algorithms12–14.

Results
DTI and tractography findings.  The mean values of pre-operative FA, MD, AD, RD and tract density 
for selected ROIs were calculated and compared to the contralateral side of the brain. In patients with LMTS 
(Table 1), MD and RD values of the left hippocampus were found to be significantly lower when compared to the 
right hippocampus using a two-tailed t-test (p = 0.03 and p = 0.01 respectively). Additionally, RD showed a mar-
ginally significant decreased in left amygdala (p = 0.05) compared to the right amygdala in patients with LMTS. 
DTT analysis in LMTS patients showed a marginally significant decrease in the left white matter supramarginal 
parcel (p = 0.05). In patients with RMTS (Table 2), FA was significantly lower in the ipsilateral mesial temporal 
lobe (p = 0.02), parahippocampal region (p = 0.03) and thalamus (p = 0.006). RD showed a marginally significant 
increase in the ipsilateral hippocampus (p = 0.05) and significant increase in the ipsilateral parahippocampal 
region (p = 0.03). Additionally, the tract density of the ipsilateral white matter inferiorparietal parcel demon-
strated a marginally significant increase when compared to the contralateral side (p = 0.05).

DTI and tractography relation to clinical outcomes.  When comparing the DTI indices between TLE 
responders (n = 12) and non-responders (n = 10) to surgical treatments, no significant differences were observed 
in any of the consolidated parcels. However, looking at the tract density of white matter parcels, significant 
increases were observed in five distinct white matter parcels (Table 3) in non-responders. The anatomical loca-
tions of these parcels are shown in Fig. 2. These regions include ipsilateral lingual (p = 0.04), ipsilateral temporal 
pole (p = 0.007), ipsilateral pars opercularis (p = 0.03), ipsilateral inferior parietal (p = 0.04) and contralateral 
frontal pole (p = 0.04).

FA MD (10−3mm2/s) AD (10−3mm2/s) RD (10−3mm2/s) Tract Density

Hippocampus
LH 0.21 ± 0.005 

(p = 0.87)
1.22 ± 2.51E-5 
(p = 0.03)

1.45 ± 4.8E-5 
(p = 0.07)

1.08 ± 1.5E-5 
(p = 0.01) —

RH 0.21 ± 0.004 1.09 ± 1.28E-5 1.3 ± 2.59E-5 0.97 ± 5.8E-6 —

Amygdala
LH 0.21 ± 0.003 

(p = 0.66)
1.02 ± 3.89E-5 
(p = 0.18)

1.23 ± 4.66E-5 
(p = 0.2)

0.89 ± 1.8E-5 
(p = 0.05) —

RH 0.22 ± 0.004 0.9 ± 4.22E-5 1.1 ± 4.4E-5 0.8 ± 1.2E-5 —

WM supramarginal parcel
LH — — — — 148.22 ± 12.61 

(p = 0.05)

RH — — — — 240.64 ± 15.82

Table 1.  DTI and DTT findings in patients with LMTS. LH = Left Hemisphere; RH = Right Hemisphere.

FA MD (10−3mm2/s) AD (10−3mm2/s) RD (10−3mm2/s) Tract Density

Hippocampus
LH 0.2 ± 6.06E-4 

(p = 0.98)
1.05 ± 4.5E-6 
(p = 0.09)

1.26 ± 1.24E-5 
(p = 0.2)

0.95 ± 2.17E-6 
(p = 0.05) —

RH 0.21 ± 1.2E-3 1.12 ± 2.6E-6 1.34 ± 7.94E-6 1.01 ± 1.38E-5 —

Mesial temporal lobe
LH 0.27 ± 2.37E-4 

(p = 0.02)
0.95 ± 4.2E-6 
(p = 0.09)

1.2 ± 7.89E-6 
(p = 0.19)

0.82 ± 2.7E-6 
(p = 0.06) —

RH 0.23 ± 5.27E-4 1.03 ± 8E-6 1.28 ± 1.11E-5 0.91 ± 7.29E-6 —

Para hippocampal
LH 0.27 ± 2.4E-3 

(p = 0.03)
0.9 ± 1.5E-5 
(p = 0.11)

1.16 ± 3.46E-5 
(p = 0.34)

0.7 ± 7.73E-6 
(p = 0.03) —

RH 0.21 ± 4.6E-4 1.03 ± 1.5E-5 1.26 ± 3.4E-5 0.9 ± 9.93E-6 —

Thalamus
LH 0.36 ± 5.28E-4 

(p = 0.006)
0.88 ± 4.4E-6 
(p = 0.19)

1.22 ± 4.71E-6 
(p = 0.55)

0.71 ± 4.33E-6 
(p = 0.08) —

RH 0.32 ± 5.06E-5 0.94 ± 6.9E-6 1.25 ± 7.32E-6 0.8 ± 6.52E-6 —

WM inferiorparietal parcel
LH — — — — 160.33 ± 76.72 

(p = 0.05)

RH — — — — 271.86 ± 84.44

Table 2.  DTI and DTT findings in patients with RMTS. LH = Left Hemisphere; RH = Right Hemisphere.

http://www.mrtrix.org/
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Discussion
This study shows that DTI and DTT analysis has the potential to aid in the delineation of disrupted white matter 
tracts extending into adjacent structures. However, DTI studies describe the influence of these abnormalities in 
white matter tracts within cognitive networks leading to functional decline, specifically regarding language and 
memory2. The emerging DTI literature has also shown an understanding of the structural plasticity within the 
white matter tracts, demonstrating the utility of DTI in following adaptive changes and reorganization of func-
tion both pre and post-surgery. This study helps to better understand the pathological alterations in white matter 
structures, and in tracing axonal pathways involved in TLE. However, available data regarding the relationship 
between preoperative DTI tractography and postoperative seizure outcome remains scarce.

Left and right MTS patients exhibit similar functional and clinical dysfunction, such as depressed mood, 
emotional dysregulation, and memory deficits15. However, previous studies indicated that the left and right MTS 
patients involved distinct pathological and etiological substrates15. Anatomical connectivity analysis showed dif-
ferent connectivity patterns in cortical-limbic networks as well as within the cerebellum in left MTS compared to 
right MTS16. Tractography analysis also suggests bilateral, widespread white matter changes in patients with left 
TLE, and mostly unilateral white matter changes in patients with right TLE compared to controls17.

Patients with LMTS had significantly lower MD and RD values of the left hippocampus when compared to 
the contralateral side, likely due to the sclerosis of this structure in the mesial temporal lobe of the pathological 
hemisphere18. Additionally, as the hippocampus is a part of the limbic system, it plays a crucial role in long-term 
memory and spatial memory allowing for navigation. This can lead to clinical deficits in LMTS patients such as 
failure to consolidate short into long term memories caused by the hippocampal sclerosis.

In addition to the hippocampal findings, the RD value in patients with LMTS was significantly lower in the left 
amygdala compared to the right amygdala. This significance is suspected to be due to the amygdala’s involvement 

Non- Responders Responders Prob > |t|

Ipsilateral lingual 255.36 ± 84.55 175.78 ± 63.57 0.04

Ipsilateral temporal pole 426.52 ± 119.8 279.86 ± 50.75 0.007

Ipsilateral pars opercularis 257.73 ± 47.84 192.87 ± 58.38 0.03

Ipsilateral inferior parietal 309.55 ± 103.73 198.56 ± 76.21 0.04

contralateral frontal pole 282.74 ± 73.92 175.42 ± 103.45 0.04

Table 3.  Tract density measures of WM parcels with significant differences between two groups.

Figure 2.  Cross-sectional images of the white matter parcels with significant differences in tract density 
(p < 0.05) between responders (n = 12) and non-responders (n = 10) to the surgical treatments. These regions 
include ipsilateral lingual (red), ipsilateral temporal pole (green), ipsilateral pars opercularis (blue), ipsilateral 
inferior parietal (yellow) and contralateral frontal pole (cyan).
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in the limbic system along with the hippocampus19. Although MTS typically involves sclerosis of the hippocam-
pus, it is not unreasonable to conclude that this pathological process will involve other structures located medially 
within the temporal lobes of the brain as well as neuronal connections projecting to other structures involving the 
limbic system, such as the amygdala. Like the hippocampus, the amygdala plays a primary role in memory con-
solidation, both memory formation and storage, but also processes emotional reactions, which similarly, leads to 
clinical deficits in LMTS patients20. As a part of the limbic system the amygdala also sends projections to numer-
ous other structures within the brain such as the hypothalamus and thalamic nuclei which may be involved in the 
clinical pathology as well.

In addition to the DTI findings in LMTS patients, DTT analysis yielded a marginally significant difference 
showing a decrease in the left white matter supramarginal parcel compared to the right. The supramarginal gyrus 
is not part of the limbic system like the other structures showing significant decreases in DTI values. However, the 
supramarginal gyrus is located in the parietal lobe which is adjacent to the temporal lobe21. With extension of the 
sclerotic structure beyond the temporal lobe in the pathologic hemisphere into surrounding areas, the supramar-
ginal gyrus may be affected, as in this case, Additionally, as neuronal connections traverse the brain to reach the 
mesial temporal lobe, fibers may cross through or near the supramarginal gyrus as well leading to the significant 
decrease in the DTT versus the DTI value on the diseased side.

Patients with RMTS had a significantly lower FA value in the ipsilateral mesial temporal lobe, parahippocam-
pal area, and thalamus, with ipsilateral referring to the pathological hemisphere. The RD value was significantly 
higher in the ipsilateral hippocampus and parahippocampal area as well. As previously described, the lower val-
ues in the mesial temporal lobe are likely due to the presence of mesial temporal sclerosis in the pathological hem-
isphere18. The presence of mesial temporal sclerosis also explains the lower values seen in the parahippocampus as 
well as it is the region of the brain surrounding the hippocampus, also involved in the limbic system, and has been 
shown to be affected by this sclerotic process in temporal lobe epilepsy22. The increase in ipsilateral RD values 
for the hippocampus and parahippocampus is related to the meaning of the RD value as it measures increases in 
white matter with demyelination which occurs with MTS. Lower FA values in DTI analysis were also exhibited 
in the thalamus, likely due to the numerous neuronal connections between the thalamus and hippocampus as 
the thalamus acts as a relay station for information between different areas within the brain23. This relationship 
between the thalamus and hippocampus may have led to this result due to extension of the hippocampal sclerosis 
beyond just the hippocampus and involving the surrounding structures and connections.

Additionally, the ipsilateral inferior parietal parcel was marginally significant in DTT analysis when compared 
to the contralateral side in RMTS patients. This finding may be consistent with the fact that the inferior parietal 
lobule is adjacent to the temporal lobe, and the angular gyrus, a part of the inferior parietal lobule, is a direct 
extension of the middle temporal gyrus18. Therefore, due to the close proximity and likely axonal connections 
between the inferior parietal parcel and the mesial temporal lobe, it is likely that this area of the brain was affected 
by an extension of MTS, especially involving the fibers crossing between structures in DTT analysis.

In relation to clinical outcomes, no significant difference was seen in any consolidated parcels in comparison 
to TLE patients who responded to surgical treatments versus those who did not respond. However, significant 
increases are observed in surgical treatment non-responders when looking at tract density of the following white 
matter parcels: ipsilateral lingual, ipsilateral temporal pole, ipsilateral pars opercularis, ipsilateral inferior parietal, 
and contralateral frontal pole. The significant decreases exhibited in tractography on the ipsilateral hemisphere as 
the pathological process are likely attributed to direct effects of the sclerotic disease such as the ipsilateral tempo-
ral pole in TLE patients18. These findings may also be attributed to extensions of the disease process/disruptions 
in connections to adjacent structures, for instance, the ipsilateral lingual gyrus which joins the parahippocampal 
gyrus and is a continuation of the tentorial surface of the temporal lobe22.

While this yielded several novel results, there are limitations to the study that may lead to additional findings 
in the future. For instance, all images used in this study were pre-operative scans. In the future, analyzing the 
post-operative scans and correlating the results with clinical outcomes as well as surgical changes may also result 
in novel findings. Correlating both pre and post-operative scans with cognitive measures, such as language and 
memory, may also lead to additional novel findings. Thus, the significant changes observed may be skewed due to 
different factors such as age, gender, duration of drug resistant seizures, duration of seizure onset, follow up delays 
and so on. By having a larger sample size, the analysis can be done as a function of these covariates to minimize 
DTI and DTT inter-subject variability. Although this was not the case, each analysis showed clear differences and 
patterns, supporting the conclusion that DTI and DTT have the potential to be used as prognostic markers and 
differentiate the epileptogenic networks between responders and non-responders. Also, use of antiepileptic drugs 
and heterogeneity in TLE etiology have been shown to affect DTI. Earlier age of onset has been associated with 
decreased hippocampal volumes. As a population-based study of TLE, patients with several different pathologies 
were excluded in this study. However, heterogeneity of pathology, disease duration, seizure frequency and sever-
ity, and age of disease onset may also lead to attenuated detection of changes in TLE. Further studies on more 
homogeneous groups are needed to control for these potential confounders24,25.

There is also the need to acquire high resolution DTI at a higher field strength, with improved radiofrequency 
coils and multiband DTI techniques, which will allow for the imaging of small voxels while still maintaining a 
relatively short imaging time. Using a voxel size of 1.8 × 1.8 × 2 mm3, it is certainly possible that a single voxel 
will contain numerous fibers which may not have the same orientations. Different tracts may cross within a single 
voxel; therefore, imprecise data may be obtained.

The fiber tracts of the brain were generated using a deterministic streamline approach. This method has 
proven to be an effective algorithm capable of estimating the trajectories of white matter tracts in the brain and 
the cord26–28. However, deterministic fiber tracking has limitations, particularly in voxels where fibers are cross-
ing, bending or kissing. The origin of this crossing fibers challenge lies in the fact that DTI requires a relatively 
low number of diffusion weighted directions, causing the tract to terminate or be generated inaccurately. One 
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way to resolve this problem is to use advanced diffusion imaging techniques with higher number of gradient 
directions such as High Angular Resolution Diffusion Imaging (HARDI) or Neurite Orientation Dispersion and 
Density Imaging (NODDI)29,30 in conjunction with probabilistic fiber tracking. Probabilistic fiber tracking evalu-
ates all possible propagation directions to generate the neural tracts. With more gradient directions and therefore 
a higher angular resolution, more accurate production of fibers is possible. The optimal number of diffusion 
weighted directions is still unresolved and depends on different factors such as the robustness of the post process-
ing algorithms, voxel size, reasonable acquisition time for clinical applications and scan parameters (e.g., TE)12,13.

Conclusion
These results may have the potential to be developed into imaging prognostic markers of postoperative out-
comes and provide new insights for why some patients with TLE continue to experience postoperative seizures 
if pathological/clinical correlates are further confirmed. On the contrary, areas predicting unfavorable postsur-
gical outcome were distinct, suggesting different configuration of epileptogenic networks between responders 
and non-responders. These preliminary results are very encouraging and warrant further studies with a larger 
population.
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