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Oligodendrocytes exert a profound influence on neural circuits by accelerating
action potential conduction, altering excitability, and providing metabolic support. As
oligodendrogenesis continues in the adult brain and is essential for myelin repair,
uncovering the factors that control their dynamics is necessary to understand the
consequences of adaptive myelination and develop new strategies to enhance
remyelination in diseases such as multiple sclerosis. Unfortunately, few methods exist
for analysis of oligodendrocyte dynamics, and even fewer are suitable for in vivo
investigation. Here, we describe the development of a fully automated cell tracking
pipeline using convolutional neural networks (Oligo-Track) that provides rapid volumetric
segmentation and tracking of thousands of cells over weeks in vivo. This system
reliably replicated human analysis, outperformed traditional analytic approaches, and
extracted injury and repair dynamics at multiple cortical depths, establishing that
oligodendrogenesis after cuprizone-mediated demyelination is suppressed in deeper
cortical layers. Volumetric data provided by this analysis revealed that oligodendrocyte
soma size progressively decreases after their generation, and declines further prior to
death, providing a means to predict cell age and eventual cell death from individual
time points. This new CNN-based analysis pipeline offers a rapid, robust method to
quantitatively analyze oligodendrocyte dynamics in vivo, which will aid in understanding
how changes in these myelinating cells influence circuit function and recovery from injury
and disease.

Keywords: oligodendrocyte, in vivo cell tracking, automation, deep learning, two photon imaging, injury/repair,
cuprizone

INTRODUCTION

Advances in genetically encoded fluorescent indicators, CRISPR-mediated gene editing and
multiphoton microscopy provide unprecedented opportunities for studying cellular dynamics at
single-cell resolution in the brains of living animals. While these approaches hold the potential for
profound discoveries about brain function, they also come with a host of quantitative challenges.
In particular, living brain tissue is unstable; tissue warping disrupts image quality and uneven
refractive indices increase noise and produce anisotropic distortions during longitudinal image
acquisition (Lecoq et al., 2019). Moreover, large multi-dimensional datasets are cumbersome
to quantify, and often require specialized software for 4D visualization and manual curation
(Pidhorskyi et al., 2018). As imaging tools become more advanced and enable researchers
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to delve deeper into the brain in vivo (Horton et al., 2013), the
challenges associated with quantification of enormous datasets
become more acute. Further advances depend critically on the
availability of robust analysis platforms to rapidly extract multi-
dimensional observations about cellular dynamics.

Developing rigorous analysis tools for in vivo investigation
of oligodendrocytes is particularly important. Oligodendrocytes
enhance the speed of action potential conduction by ensheathing
neuronal axons with concentric wraps of membrane, support
neuronal metabolism and control neuronal excitability (Simons
and Nave, 2016; Larson et al., 2018). While the population
of neurons in the brain remains relatively stable throughout
life (Bhardwaj et al., 2006; Ming and Song, 2011), new
oligodendrocytes are generated in the adult CNS, allowing for
dynamic alteration of myelin patterns in both healthy and
pathological conditions (El Waly et al., 2014). This dynamism
highlights the need for automated, longitudinal tracking tools
to quantify the location, timing and extent of myelin plasticity
within defined circuits in response to particular behavioral
paradigms, as well as the regeneration of oligodendrocytes after
demyelination (Bergles and Richardson, 2015). In this study, we
sought to develop fully automated methodologies to overcome
the analytic challenges associated with longitudinal tracking of
oligodendrocytes in vivo.

Currently, most available cell tracking algorithms are designed
for in vitro analysis and are not readily adaptable to in vivo
conditions (van Valen et al., 2016; Zhong et al., 2016; Nketia
et al., 2017; Lugagne et al., 2020; Wang et al., 2020). The few
in vivo tracking algorithms that exist are modality specific and
cannot be readily adapted to our fluorescent longitudinal datasets
(Acton et al., 2002; Nguyen et al., 2011; Wang et al., 2015).
The closest in vivo tools that can be applied to oligodendrocyte
datasets are those developed for analyzing calcium imaging
(Pachitariu et al., 2017; Giovannucci et al., 2019). However,
calcium imaging tools normally work best with high-frame rate
videos taken over seconds, rather than image volumes collected
on a weekly basis. Traditional tracking approaches are also
often unsuited for the analysis of longitudinal in vivo imaging
datasets. Many techniques, such as the use of template matching
(Brunelli, 2009), optical flow estimation (Horn and Schunck,
1981), or Kalman filters (Kalman, 1960), rely on intensity
coherence patterns and unobstructed continuous object motion,
which are disrupted by local tissue movements between imaging
sessions and challenged by the low sampling frequency typical
for imaging myelin dynamics. To provide an improved means
of longitudinal volumetric tracking in vivo, we opted to use
convolutional neural networks (CNN), which are known to
find accurate efficient solutions to high-dimensional problems,
and have recently demonstrated improvements over traditional
tracking methods (Hur and Roth, 2020). Convolutional kernels
allow CNNs to adaptively assess local features and global
spatial relationships to make tracking decisions that are more
perceptual, or human-like, enabling CNNs to find solutions
beyond the traditional constraints of intensity coherence and
continuous object motion. Moreover, additional techniques
such as transfer learning can help trained CNN models
generalize to entirely new imaging challenges with minimal

new training data (Zhuang et al., 2020), extending their use
to other contexts.

Here, we describe the development of Oligo-Track, a fast
and reliable cell tracker for in vivo semantic segmentation of
oligodendrocyte dynamics across cortical layers in longitudinal
imaging experiments. We validated our algorithm using the
cuprizone model of demyelination in vivo and show that
Oligo-Track outperforms traditional analytic approaches in
extracting dynamics of oligodendrogenesis at greater depths than
previously available with manual annotation. Moreover, this
approach generated volumetric segmentations of tracked cells
that were inaccessible to human analysis, due to the considerable
time investment required for manual volumetric tracing. This
volumetric data revealed that oligodendrocyte soma size varies
predictably with age and proximity to death, allowing additional
information about the timing of oligodendrogenesis and cell
death to be extracted from fixed timepoint imaging experiments.

MATERIALS AND METHODS

Animal Care and Use
All animal experiments were performed in strict accordance with
protocols approved by the Animal Care and Use Committee at
Johns Hopkins University. Female and male adult mice were used
for experiments and randomly assigned to experimental groups.
All mice were healthy and did not display any overt behavioral
phenotypes, and no animals were excluded from the analysis.
Generation and genotyping of BAC transgenic lines from Mobp-
EGFP (GENSAT) have been previously described (Hughes et al.,
2018). Mice were maintained on a 12 h light/dark cycle, housed
in groups no larger than 5, and food and water were provided
ad libitum (except during cuprizone-administration, see below).

Cranial Windows
Cranial windows were prepared as previously described
(Holtmaat et al., 2012; Hughes et al., 2018; Orthmann-Murphy
et al., 2020). Mice aged 7–10 weeks were deeply anesthetized with
isoflurane (5% with 1 L/min O2 induction; 1.5–2% with 0.5 L/min
maintenance), the head shaved, and the scalp removed to expose
the skull. The skull was cleaned and dried and a position over
somatosensory cortex (−1.5 mm posterior and 3.5 mm lateral
from bregma) was marked for drilling. A custom aluminum
headplate with a central hole was cemented onto the skull (C and
B Metabond) and fixed in place with custom clamping headbars.
A 2 mm × 2 mm square or 3 mm × 3 mm circle of skull was
removed using a high-speed dental drill. A coverslip (VWR, No.
1) the size of the craniotomy was put in its place and sealed with
cyanoacrylate glue (Vetbond and Krazy glue).

In vivo Two Photon Microscopy
In vivo imaging was performed as previously described
(Orthmann-Murphy et al., 2020). After 2–3 weeks of recovery
from cranial window surgery, baseline images of the cortex were
acquired with two photon microscopy on a Zeiss LSM 710
microscope (average power at sample <30 mW with 1.58 µs pixel
dwell time). Image stacks were 425 µm × 425 µm × 550 µm or
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850 µm× 850 µm× 550 µm (1024× 1024 pixels; corresponding
to layers I–IV), relative to the pia. Each stack was recorded at 8-
bit data depth with four frame averaging. Mice were subsequently
imaged weekly for up to 12 weeks.

Cuprizone Treatment
Directly following baseline two photon image acquisition, mice
were switched from regular diet to a diet consisting of milled,
irradiated 18% protein chow (Teklad Global) supplemented with
0.2% w/w bis(cyclohexanone) oxaldihydrazone (“cuprizone,”
Sigma). Control mice received only the milled chow. After
3 weeks, mice returned to regular pellet diet for the duration of
the recovery period (Orthmann-Murphy et al., 2020).

Analytic Pipeline Overview
Timeseries acquired from our two-photon imaging setup were
first registered using ImageJ’s correct 3D drift plugin (Schindelin
et al., 2012; Parslow et al., 2014), which accounted for major
alignment shifts from week to week. Registered timeseries were
then analyzed crop-by-crop, with 50% overlap between adjacent
crops, using our segmentation CNN (Seg-CNN) which identified
cell somata on a voxel-wise basis. These cell somata were then
extracted as individual seeds for our tracking CNN (Track-
CNN) that identified the location of each seeded cell soma
on a subsequent time point. In parallel, we also developed a
cell tracking method based on traditional imaging informatics
approaches that used the structural similarity index (SSIM)
(Wang et al., 2004) and local tissue movement calculations to
track cells. This heuristic model was used as a baseline to assess
the improvements of our Track-CNN approach. Cells tracked
by either Track-CNN or our heuristic method were also curated
by human researchers using syGlass virtual reality software
(Pidhorskyi et al., 2018) to assess the accuracy of tracking. Some
of these curated traces were also returned to the training pipeline
to improve our deep learning approaches in a positive-feedback
loop (Figure 2A).

Training Data Generation
All training data was curated by a human expert using syGlass
software to provide point coordinates. To obtain volumetric
segmentations, we trained an ilastik random forest regressor
(Berg et al., 2019) to procure an over-sensitive voxel-wise
segmentation model. Then, we excluded every ilastik identified
object that did not overlap with a ground truth point coordinate
to eliminate false positives in our over-sensitive ilastik model.
Datasets were pooled from 12 animals and multiple treatment
conditions. Image scales were standardized to 0.83 µm/pixel
in XY and 3 µm/pixel in Z. Data was cropped to the
appropriate input size for each respective neural network: Seg-
CNN 256 × 256 × 64 voxels, and Track-CNN 128 × 128 × 32
voxels. Overall, Seg-CNN was trained with 6,828 training
volumes and 759 validation volumes, each containing up to two
dozen cells depending on the location of the crop within the
larger volume. Track-CNN was trained with 38,696 volumes
and a validation set containing 4,300 volumes. Each volume
for Track-CNN was associated with one tracked cell across

two timeframes, as indicated by a pair of ground truth point
coordinates in the manually curated dataset.

Segmentation CNN Training and
Inference
Segmentation CNN employed a UNet architecture (Ronneberger
et al., 2015) with 3D convolutional kernels built in PyTorch
1.6 (Paszke et al., 2017). The neural network took as input a
256 × 256 × 64 voxel volume containing fluorescently labeled
oligodendrocytes in a single image channel (Figure 2B). The
downsampling branch of the CNN contained five convolutional
blocks with 5 × 5 × 5 filters, batch normalization, and max
pooling to downsample the data and extract local features. The
upsampling branch employed the same blocks in reverse. Max
pooling operations were replaced by trilinear upsampling and
1× 1× 1 convolutions to resize the image back to the same input
size while extracting global spatial features (Supplementary
Figure 1). A final 1 × 1 × 1 convolution reduced the output to
a two-channel volume which was softmaxed with a threshold of
0.5 to two classes corresponding to background and cell soma.
Training was performed using a batch size of 2 for 30 epochs
on an RTX 2080 Ti GPU and reached optimal performance after
∼3 days. Loss was calculated as cross entropy and optimized
using an Adam optimizer with weight decay (Loshchilov and
Hutter, 2019) set at a learning rate of 10−5. During inference on
unseen data, entire timeseries were fed to the neural network one
timepoint at a time. Our algorithm then acquired 256× 256× 64
voxel crops from these volumes with 50% overlap to ensure
all regions were assessed. Each crop was fed to Seg-CNN
individually. The output segmentations of individual crops, with
50% overlap, were summed together and binarized before being
stitched back into a full volume. The final analyzed timeseries is
saved and returned to the user (Figure 2B).

Track-CNN Training and Inference
Track-CNN employed a similar architecture to Seg-CNN except
for a filter size of 7 × 7 × 7 for each convolution and a
three channel 128 × 128 × 32 voxel input for our “seed-based”
training approach. Seed-based training was employed to draw the
attention of our CNN to individual cells in a volume by marking
a cell of interest with a binary mask, or “seed” (Figure 3A). The
input is thus a three-channel volume where channel 1 contains a
raw fluorescence volume cropped from timepoint t and centered
around a cell soma of interest. Channel 2 contains the binary
mask/seed to indicate the cell of interest on timepoint t. All
adjacent cells excluding the seed are set to a lower value. Finally,
channel 3 contains a raw fluorescence volume cropped from
timepoint t + 1 but centered around the same position as in
channel 1 (Figure 3A). In summary, this input provides the raw
fluorescence from two consecutive timepoints and also indicates
which cell we wish to track from timepoint t to timepoint t + 1
using the binary mask in channel 2. Thus, the ground truth for
optimization is a binary volumetric mask indicating the location
of the cell of interest on timepoint t + 1 (Figure 3A). Training
was performed using a batch size of 4 for 18 epochs on an RTX
2080 Ti GPU and reached optimal performance after ∼5 days.
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Loss was calculated as cross entropy and optimized using Adam
optimizer with weight decay (Loshchilov and Hutter, 2019) set
at a learning rate of 10−5 that was dropped to 10−6 at 13
epochs. During inference, volumes were cropped around each
cell of interest in timepoint t along with seed masks and crops
from timepoint t + 1 to form a three-channel input for Track-
CNN. This is repeated until all cells on timepoint t are assessed.
Unassociated cells on t + 1 are then added as newly formed
oligodendrocytes to our list of candidate cells, and the analysis
continues until all consecutive timepoints are tested (Figure 3A).

Post-processing
To prevent misalignment of tracks, we included one major post-
processing step in our analytic pipeline. We first noticed that,
given a human tracked dataset, we could predict the location of
a cell body on a subsequent timepoint within ∼10 pixels error
by using the local directional vector of the tracks of five nearest
neighbor cells from timepoint t to t + 1 (Figures 3B,C). Thus,
given that Track-CNN accurately tracks the majority of cells
between consecutive timepoints, we can use the average local
vector shift of the five nearest neighbors of any cell to correct
for tracks that have severely gone off-target (>12 pixel difference
from predicted directional vector endpoint). These gross errors
can then be re-evaluated. If an unassociated cell exists at the
location of the predicted vector endpoint on t + 1, then the
wrongly associated track now points to this unassociated cell.
Otherwise, the track is terminated. We also included minor post-
processing steps comprising of: (1) a minimum size threshold of
100 voxels for objects to be considered a cell soma; (2) objects that
only exist on a single frame (excluding the first and last frame) are
dropped, as they were likely to be debris.

Heuristic Baseline Method
Since no baseline methods exist for comparison, we developed an
approach to assess the extent to which deep learning outperforms
traditional imaging informatics methods. We developed a
tracking program in MATLAB R2020a (Mathworks) where cells
are cropped from timepoint t and assessed on a pair-wise basis
to identify whether its’ nearest neighbors on t + 1 correspond
to the same cell at timepoint t. To determine this association,
we employed a few simple heuristics and rules: (1) successful
tracking required a structural similarity index (SSIM) greater
than 0.2 between cropped volumes from different timepoints.
SSIM is an indicator of similarity that considers structure,
intensity, and contrast-based differences between images. We
applied the assumption that if a cell exists at t + 1, the overall
local environment should look rather similar at timepoint t, thus
a correct association would have a moderate to high SSIM. (2)
Similar to the post-processing used for Track-CNN, we estimated
the average vector of all nearest neighbors to model local tissue
movement in a cropped field of view from t to t + 1. This allowed
us to evaluate if the current track from t to t + 1 flows in the
same direction as the local shift of neighboring tracked cells. If the
proposed track does not align with the local shift of neighboring
tracked cells, then the track is terminated.

SNR Calculation
Since there is no standard for defining signal-to-noise ratio (SNR)
in fluorescence imaging (Zhu et al., 2012), we adapted a standard
logarithmic signal-processing SNR equation for our usage:

SNR = 10 ∗ log
(Psignal

Pnoise

)
Where we defined Psignal as the average signal (meaningful input)
and Pnoise as the standard deviation of the background noise.
However, since we have no reference image to define what perfect
signal is in any raw dataset, we defined our signal to be any pixels
above a certain value j and noise to be any pixels below that value.

ŜNRj = 10 ∗ log j
(Psignal ≥ j

Pnoise < j

)
Where, Psignal is defined as the mean of all values above j, and
Pnoise is defined as the standard deviation of all values below j.
Since j would otherwise be arbitrarily determined, we chose to
calculate j from the entire image volume using Otsu threshold
for binarization (Otsu, 1979), providing us with a reference
free metric of SNR.

Statistical Analysis
All statistical analysis was performed using Python statsmodels
and scipy libraries. N represents the number of animals used in
each experiment, unless otherwise noted. Data are reported as
mean ± SEM or median ± SEM as indicated, and p < 0.05 was
considered statistically significant. Level of significance is marked
on figures as follows: ∗ denotes p < 0.05; ∗∗ denotes p < 0.01; ∗∗∗
denotes p < 0.001.

Code Availability
Packaged software code for Oligo-Track is readily available
at github.com/Bergles-lab/Xu_Bergles_2021_Oligo_Track along
with instructions for use. The algorithm is prepared to work
independent of Linux and Windows operating systems, with
minimum Python 3.6.

RESULTS

Quantifying Oligodendrocyte Dynamics
in vivo Using CNN-Assisted Cell Tracking
To visualize individual oligodendrocytes in the cerebral cortex,
cranial windows were surgically implanted in mice that express
EGFP under control of the Mobp promoter/enhancer (Hughes
et al., 2018; Orthmann-Murphy et al., 2020; Figure 1A). Using
two photon microscopy, the somata and cytosolic processes of
oligodendrocytes could be resolved up to a depth of ∼400 µm
from the pial surface (Figures 1B,C), providing the means
to quantify changes in both the number and distribution of
oligodendrocytes over weeks to months with repeated imaging.
The dramatic increase in density of oligodendrocytes with depth
(Figure 1C) presents challenges for unambiguous identification
and increases the time necessary to mark and track cell
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FIGURE 1 | In vivo imaging of oligodendrocytes. (A) Cranial windows were surgically implanted in adult Mobp-EGFP mice in which only oligodendrocytes express
EGFP. (B) Orientation of oligodendrocytes from imaging surface to white matter. Oligodendrocytes in upper cortical layers myelinate horizontally aligned axons, while
those in deeper cortical layers are aligned perpendicularly to pial surface. Standard imaging range of two-photon and three-photon microscopy highlighted with
approximate gradients (Theer and Denk, 2006; Lecoq et al., 2019) (C) XY maximum projections of 100 µm thick volumes at indicated depths (0–100 µm,
100–200 µm, 200–300 µm, and 300–400 µm). Layer depths as estimated in somatosensory cortex (Narayanan et al., 2017). Oligodendrocyte density increases
rapidly with depth, increasing the time needed for manual tracking. Scale bar: 50 µm.

positions throughout a time series. To overcome this quantitative
challenge, we trained two sequential CNNs employing a UNet
architecture (Supplementary Figure 1), which we termed Seg-
CNN and Track-CNN, to follow oligodendrocytes in vivo during
repetitive bouts of imaging over many weeks (Figure 2A).

Images were first acquired over a 850 µm× 850 µm× 550 µm
volume and then registered across time using ImageJ’s correct 3D
drift plugin (Schindelin et al., 2012; Parslow et al., 2014) to adjust
for small offsets. Seg-CNN was then used to perform semantic
segmentation to identify the position of all oligodendrocyte
cell bodies within the imaging volume at each timepoint in
the timeseries. This process was completed sequentially on
256 × 256 × 64 voxel volumes that were adaptively cropped
with 50% spatial overlap to reduce the amount of computer
memory required to perform the computations (Figure 2B).
The resulting binary segmentations were then re-stitched to
create a stacked timeseries. Image stacks from sequential time
points were then analyzed using Track-CNN, which employs
a “seed-based” inference approach to determine whether any
specific cell of interest exists in a subsequent timepoint. For all
comparisons, we defined a tracked cell (or cell track), as a set
of locations where a binary object was determined to be the
same cell over subsequent timepoints by an algorithm or human
researcher. The displacement vector for any cell thus starts at
a soma on timepoint t and ends at the same tracked soma on
t + n. Cell identification in Track-CNN is accomplished by
providing a three-channel input to the CNN, which includes (1)

a crop of raw fluorescence from timepoint t centered around
a cell of interest, (2) a binary seed-mask that emphasizes the
current cell of interest, and (3) a crop of raw fluorescence from
timepoint t + 1 that is centered around the cell on t. This
allows the CNN output to be a volumetric segmentation of the
same cell on timepoint t + 1, given a masked cell of interest
on timepoint t (Figure 3A). Additional post-processing was
performed using local tissue movement vectors to detect gross
errors in tracking between sequential timepoints (Figures 3B,C).
This post-processing used the observation that the displacement
vector for any cell can be predicted within 10-pixel accuracy
using the average displacement vectors of the nearest five tracked
cells (Figure 3C). Thus, any cells with displacement vectors that
varied drastically from predicted vectors, calculated from nearest
neighbor tracks, could be classified as incorrect associations.
Overall, during training, Seg-CNN performance plateaued after
∼30 epochs, demonstrating accurate segmentation of cell somata
relative to ground truth (Jaccard overlap index ∼0.7) and
detection of cells across all volumes (95% sensitivity, 91%
precision; Supplementary Figure 2A). Track-CNN performance
plateaued after∼5 epochs with highly accurate track associations
(98% accuracy, 99% sensitivity, and 99% precision with no post-
processing; Supplementary Figure 2B).

To determine if this CNN-based method outperforms a
heuristic cell tracking method that employs similarity metrics and
local tissue movement modeling, similar to the post-processing
mentioned above, we tested both algorithms for their ability to
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FIGURE 2 | Computational neural network analysis pipeline. (A) Overview of the sequential CNN multi-object tracking pipeline Oligo-Track (top). CNNs marked in
green. Overview of heuristic baseline method (orange) for comparison to Oligo-Track (bottom). Compatibility with optional syGlass curation provides validation of
tracking in both pipelines (blue). Curated tracks can also be reintroduced into training pipeline for refinement of CNNs. (B) Seg-CNN pre-processing extracts
cropped regions from larger volumes with 50% overlap for computational efficiency at each timepoint t to t + n. Cropped regions are restitched to form timeseries.
Scale bar: 50 µm.

extract biological trends of spontaneous cell regeneration in the
cuprizone model of demyelination (Chang et al., 2012; Baxi et al.,
2017; Hughes et al., 2018; Orthmann-Murphy et al., 2020). In
this model, mice are fed cuprizone for 3 weeks, resulting in
loss of >95% of oligodendrocytes in the upper layers of cortex,
which are progressively regenerated as the mice are returned
to a normal diet (Figure 4A). Both CNN and heuristic models
detected the general trend of cell loss during the first 3 weeks of
cuprizone treatment and subsequent oligodendrogenesis during
recovery, as assessed relative to human counting (Figure 4B).
However, closer examination revealed that Oligo-Track provided
a more accurate accounting of cell dynamics. In particular, the
heuristic method greatly mis-identified existing cells as being
newly formed (Figure 4C), suggesting disrupted tracking. This
conclusion was further supported by the increased number of
wrongly terminated cell tracks by the heuristic algorithm at each
timepoint (Figure 4D), suggesting that the heuristic approach
often failed to identify existing oligodendrocytes in subsequent
time points. We also assessed the difference in track length
(persistence of cells during the time series) between ground
truth and machine outputs (Figure 4E). Positive values in this
plot indicate under-tracking, where the machine failed to track
a cell in subsequent timepoints, while negative values indicate
over-tracking, where the machine tracked a cell onto additional
timepoints despite cell elimination determined in the ground
truth. This graph reveals that Track-CNN markedly reduced
the total rate of over-tracked segments errors two-fold from
the heuristic algorithm (Figure 4F). Moreover, the severe error
rate (under or over-tracking for >1 timepoint) decreased almost
five-fold. Together, these findings indicate that Oligo-Track

provides substantial benefits for following oligodendrocytes in
longitudinal 3D imaging datasets.

CNN-Based Analysis Retains Tracking
Ability Despite Changes in Image Quality
Many factors can influence image quality in vivo, limiting the
ability to accurately assess cell dynamics. Cranial windows can
become obscured by local inflammation at later (or earlier)
timepoints, resulting in incorrect track associations by both
humans and machines. Image scale, cellular debris, and laser
power also commonly vary between experiments and impair
implementation of standardized analyses. To assess the impact of
these factors on our tracking algorithm, we started by first varying
image scale, using bilinear interpolation to up- or down-sample
raw data before performing Track-CNN analysis. The algorithm
struggled with up-sampling beyond two-fold (Figures 5A,B)
showing that, optimally, input data should be scaled to the
same 0.83 µm/pixel XY and 3 µm/pixel in Z resolution as the
training dataset.

We then assessed the impact of cranial window/image quality
on tracking, using a custom reference free signal-to-noise (SNR)
metric. We chose two representative imaging volumes, one from
a mouse with an optimal cranial window, and one from a mouse
with a window that had not yet become optically clear. The
obscured window reduced the detection of fluorescence at lower
cortical depths. Our average SNR metric clearly delineated the
depth-dependent decay of image quality, as the SNR in maximum
projections of the obscured volume dropped rapidly after a depth
of 200 µm (Figures 5C,D). This image quality decay was verified
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FIGURE 3 | Track-CNN processing steps. (A) Crops are taken from each pair of timepoints t and t + 1 centered around a cell denoted by magenta arrow on channel
1. Channel 1 contains raw fluorescence from timepoint t. Channel 2 contains seed mask of cell of interest (magenta arrow). Adjacent segmented cells are set to a
lower value (green). Channel 3 contains raw fluorescence from timepoint t + 1. Cropped images are concatenated together to form input to network. The network
output is a semantic segmentation indicating the location of the seed masked cell on timepoint t + 1. This procedure is repeated for all cells on all consecutive
timepoints. Scale bar: 30 µm. (B) Example showing local coherence in how tracked cells in a local region shift between timepoint t (green) and t + 1 (magenta),
allowing for predictive post-processing using displacement vectors of each tracked cell from timepoint t to t + 1 (white arrows). Scale bar: 30 µm. (C) Distribution of
distances from predicted to actual location of cell on timepoint t + 1 given any cell on timepoint t. The prediction is generated by taking the average displacement
vector of five nearest neighbor tracks. Differences between predicted and actual location were typically within six pixels.

visually, and while Seg-CNN still generalized and was able to
identify oligodendrocyte somata in deeper layers despite the
reduction in SNR, it was clear that many cells were obscured
from view from both machine and human trackers (Figure 5C).
By visual assessment, we set a threshold of SNR ∼ 1.5 dB as a
limit under which image quality becomes a concern for Oligo-
Track analysis. Fluctuations in SNR between timepoints can
lead to disrupted tracking as cells are arbitrarily obscured and
falsely labeled as terminated or newly formed. This threshold was
incorporated into our pipeline and offers users a warning during
implementation of the algorithm.

Segmentation CNN was also able to avoid some fluorescent,
non-cellular components or weak cellular autofluorescence
associated with cells other than oligodendrocytes, which can
be difficult for non-deep learning approaches (Supplementary
Figure 3A). However, the overwhelming density of brightly
autofluorescent debris, such as lipofuscin found near the pial
surface, were sometimes detected as false positives by Seg-
CNN (Supplementary Figure 3B). We suggest that researchers
using this software in areas with dense debris or lipofuscin
perform manual error correction on the Oligo-Track outputs

or employ additional pre-processing techniques to eliminate
debris fluorescence. For instance, the broad emission spectrum
of lipofuscin enables digital subtraction of debris when using
multi-channel imaging (Cornea, 2001), although these pre-
processing techniques can still be limited when imaging in aged
tissue (Moreno-García et al., 2018; Yakovleva et al., 2020). We
also determined that while low imaging power impairs cell
detection, post hoc adjustments of the intensity histogram toward
higher values recovered some undetected cells (Supplementary
Figure 3C). Finally, we found that Track-CNN was robust to
some variations in noise and motion blur. This was assessed
by applying sequentially larger standard deviations of noise
(10, 40, and 50) and increasing the rotation range of random
motion artifacts (4, 6, and 10 degrees) using the Torchio python
library (Pérez-García et al., 2021; Supplementary Figures 3D,E).
Together, this analysis shows that Oligo-Track can maintain
performance despite changes in environmental variables that
affect the distribution of the data. Moreover, we demonstrated
that pre-processing of input data, such as intensity adjustments
and the exclusion of regions with high debris or low SNR, can
reduce instances of inaccurate tracking.

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 April 2021 | Volume 15 | Article 667595

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-667595 April 5, 2021 Time: 20:15 # 8

Xu et al. Automated Tracking of Cortical Oligodendrocytes

FIGURE 4 | CNN-based tracking outperforms heuristic tracking. (A) Diagram illustrating cuprizone induced oligodendrocyte loss and recovery during the imaging
period. (B) Overall normalized trends for human, CNN and heuristic tracking methods on test timeseries withheld from training data. (C) Number of new cells
detected per timepoint for each method. (D) Number of cells terminated per timepoint for each method. (E) Track difference (length of track in ground truth – length
of track by machine count) comparing ground truth to CNN and heuristic methods, respectively. (F) Comparison of major errors, defined as under- or over-tracking
for >1 timepoint, and total errors by CNN and heuristic methods.

CNN Detects Layer-Specific Suppression
of Oligodendrogenesis at Extended Depth
To assess the capacity of our pipeline to extract biological trends,
we used the fully automated system to analyze oligodendrocyte
dynamics for up to 12 weeks in cuprizone treated and non-treated
control mice. As anticipated, cuprizone treatment resulted in
a predictable time course of oligodendrocyte degeneration and

subsequent regeneration after mice were no longer exposed to the
drug, while control mice gradually added oligodendrocytes over
several weeks (Orthmann-Murphy et al., 2020; Figures 6A,B;
and Supplementary Videos 1, 2). Moreover, when cells
were segregated into 100 µm thick blocks from the pial
surface, greater suppression of oligodendrocyte regeneration
was observed in the deeper layers of the cortex (Figure 6C),
as reported previously (Orthmann-Murphy et al., 2020). The

Frontiers in Cellular Neuroscience | www.frontiersin.org 8 April 2021 | Volume 15 | Article 667595

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-667595 April 5, 2021 Time: 20:15 # 9

Xu et al. Automated Tracking of Cortical Oligodendrocytes

FIGURE 5 | Oligo-Track enables robust cell tracking under different experimental conditions. (A) Input image for Track-CNN used in (B) to assess impact of different
rescaling on Track-CNN performance. Cell of interest denoted by magenta arrow. Scale bar: 30 µm. (C) Representative XY maximum projections at indicated SNR
values and depths in a volume with optimal image quality (left), and a volume with a less transparent cranial window (right). Overlay of cells detected by Oligo-Track in
Magenta. Scale bar: 30 µm. (D) Plotting average SNR across depth of optimal quality and degraded quality volumes. Dashed gray line indicates human perceptual
limit for reliably tracing data. Also represents point at which algorithm will provide warning to user.

sensitive detection of Oligo-Track allowed rapid extension
of the analysis by another 100 µm (300–400 µm block),
revealing that regeneration was even less efficient than in
the area above, providing further evidence of the depth
dependent decline in oligodendrocyte regeneration in the
somatosensory cortex.

It is possible that the higher demand for oligodendrocyte
regeneration in deeper cortical layers outstrips the regenerative
capacity of OPCs (Hughes et al., 2013; Streichan et al., 2014).
If the extent of oligodendrogenesis is limited by the availability
of local cues or accumulation of myelin debris, then newly
generated cells should preferentially appear in regions with
lower initial oligodendrocyte density (and lower oligodendrocyte
death) (Orthmann-Murphy et al., 2020). Our prior studies
indicate that new oligodendrocytes do not regenerate in locations
where previous cells had died, suggesting possible inhibition of
proliferation by myelin debris after cell death (Lampron et al.,
2015; Gruchot et al., 2019). As a measure of sparsity, we calculated
the average distance from each cell to its ten nearest neighbors.
We limited our analysis to the first 300 µm of the cortex to
avoid errors in sparsity calculations due to the lack of tracked

nearest-neighbor cells past 400 µm depth. Given this measure,
we found that there was no strong correlation between sparsity,
cell death or regeneration (Figures 6D,E and Supplementary
Video 3), suggesting that cell death and regeneration are
not strongly influenced by local oligodendrocyte density at
baseline. Rather, global gradients of inhibitory factors such
as cytokines released by astrocytes, which become persistently
reactive in deeper layers of the cortex after cuprizone mediated
demyelination (Orthmann-Murphy et al., 2020), may inhibit
oligodendrocyte precursor cell differentiation (Skripuletz et al.,
2008; Zhang et al., 2010; Su et al., 2011; Chang et al., 2012;
Kirby et al., 2019).

Volumetric Segmentation Enables
Identification of Newly Born
Oligodendrocytes
Oligodendrocytes undergo dramatic morphological changes as
they transition from progenitors to mature myelinating cells,
accompanied by an elaboration of myelin forming processes
and changes in soma size (Kuhn et al., 2019). To quantify the
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FIGURE 6 | Local oligodendrocyte density does not correlate with region specific suppression of regeneration. (A) Normalized values for baseline and newly formed
oligodendrocytes across weeks of cuprizone treatment and recovery. Bars indicate cell numbers averaged across animals for each week. (B) Normalized values for
baseline and newly formed cells in no treatment condition. (C) Cortical depth-specific changes in oligodendrocyte regeneration showing suppressed regeneration in
deeper layers. Volume split into four sections based on depth (0–100 µm, 100–200 µm, 200–300 µm, and 300–400 µm). (D) Cell sparsity (average distance to 10
nearest neighbors) of stable and newly formed oligodendrocytes at baseline and week 2 of recovery shows no obvious clustering patterns at any timepoint.
(E) Sparsity of cells that will die within 1 week (red) at week 1 and week 3 of cuprizone also shows no obvious clustering patterns at any timepoint. Cells pooled from
n = 4 cuprizone treated and n = 3 control mice.

time course of these somatic changes, we analyzed volumetric
morphological data provided by Oligo-Track, from longitudinal
imaging datasets where the birth date of newly formed
oligodendrocytes was known. We limited our investigation to the
first 300 µm of the cortex, as photon scattering often reduced the
brightness of cells in deeper cortical layers, resulting in inaccurate
measurement of cell somata volume. Future measurements from
deeper layers will require depth-dependent normalization to
account for light-scattering. Analysis of the first 300 µm of
the cortex revealed that oligodendrocyte soma size was highly
correlated with cell age. Most newly formed oligodendrocytes
had larger cell bodies than stable cells at any timepoint
across all depths (Figure 7A and Supplementary Video 4).
Projecting this across cell age, the soma volume of newly formed
oligodendrocytes decayed exponentially over subsequent weeks

from first appearance (Figures 7B,C; p < 0.001 at 1 week,
p = 0.027 at 2 weeks; Kruskal–Wallis test with Dunn’s post hoc
analysis). Moreover, the average volume of newly generated
cells, post-cuprizone injury, was significantly higher compared
to stable mature cells in control animals up to 3 weeks after
oligodendrogenesis (Figure 7D; 1.6± 0.04 fold change p < 0.001
and D = 1.29 at 1 week, 1.4 ± 0.04 fold change p < 0.001 and
D = 0.85 at 2 weeks, 1.2± 0.03 fold change p < 0.001 and D = 0.33
at 3 weeks, 1.0± 0.03 fold change p = 0.39 and D = 0.07 at 4 weeks;
Kruskal–Wallis test with Dunn’s post hoc analysis and Cohen’s
effect size calculation). To confirm that this size difference is not
associated with cuprizone induced changes, we also compared the
volume of spontaneously generated oligodendrocytes in control
animals with their stable counterparts and found that newly
formed cells also had significantly larger cell somata (Figure 7D;
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1.7 ± 0.09 fold change p < 0.001 and D = 1.22 at 1 week,
1.4± 0.07 fold change p < 0.001 and D = 1.1 at 2 weeks, 1.3± 0.06
fold change p < 0.001 and D = 0.54 at 3 weeks, 1.0 ± 0.05 fold
change p = 0.28 and D = 0.09 at 4 weeks; Kruskal–Wallis test
with Dunn’s post hoc analysis and Cohen’s effect size calculation).
Thus, the increased soma size of newly formed oligodendrocytes
is an innate biological phenomenon, rather than a response to
cuprizone exposure.

Given the substantially larger cell somata of newly formed
oligodendrocytes, we assessed the predictive power of cell soma
size as an indicator of cell age. To examine the probability that a
cell soma of a certain volume is exactly a certain age or within
a range of ages, we plotted the kernel density estimate (KDE)
for each distribution of soma volumes at different timepoints
(Figure 7E). The KDE offers a normalized estimate of the
probability density function such that we can visualize the
probability of multiple conditions simultaneously. For example,
we observed that a cell with a soma volume greater than
5,000 µm3 has an almost 100% chance of being exactly 1 week old
from time of differentiation. Similarly, cell somata between the
range of 3,500–5,000 µm3 are most likely less than 2 weeks old,
while somata larger than 3,000 µm3 are likely newly generated
cells within the first 3 weeks post-differentiation (Figure 7E).
Finally, by comparing the mean soma volume of stable control
oligodendrocytes to newly formed cells at multiple timepoints,
we also confirmed the statistical significance of the predictive
relationship between soma volume and cell age (Figure 7F;
p < 0.001 all comparisons; 1-way ANOVA with Tukey’s Honest
Significant Difference post hoc test).

Oligodendrocyte Death Can Be
Predicted From Soma Size
Oligodendrocyte death is typically preceded by nuclear
condensation and shrinkage of the soma (Bortner and
Cidlowski, 2002; Miller and Zachary, 2017). To determine
if the soma size analysis could also be used to predict whether
an oligodendrocyte will later degenerate, we plotted the soma
volumes of all cells later observed to degenerate. After multiple
weeks of cuprizone treatment, the median soma volume of all
cells shrank significantly (Figures 8A–C, Supplementary Video
4; p < 0.001 at 1, 2, and 3 weeks), consistent with the high
degree of oligodendrocyte degeneration observed in the cortex.
When compared to oligodendrocytes at comparable timepoints
in control mice, soma size was also significantly smaller after
extended cuprizone treatment (Figure 8D; 0.78 ± 0.012 fold
change p < 0.001 and D = 0.4 at 1 week, 0.75± 0.013 fold change
p < 0.001 and D = 0.57 at 2 weeks, 0.7 ± 0.017 fold change
p < 0.001 and D = 0.69 at 3 weeks; Kruskal–Wallis test with
Dunn’s post hoc analysis and Cohen’s effect size calculation),
consistent with progression to apoptosis. A possible confounding
factor for this volumetric analysis is that cuprizone treatment
itself may reduce EGFP expression over time, which could lead to
under-estimations of cell soma volume. To account for possible
cuprizone-induced changes, the volumetric measurements in
Figure 8D were also normalized to the mean intensity of all
oligodendrocytes in each respective cuprizone treated timepoint

(Figure 8D). Given the large statistical power when sampling
thousands of cells, we additionally defined a significant difference
in soma volume as one having a medium to large effect size (>0.5
Cohen’s d), which only occurred at 2 and 3 weeks of cuprizone
treatment. Assessing the predictive power of soma volume again,
we attempted to predict the likelihood that a cell would die within
the next subsequent week given that the cell is smaller than a
certain soma volume. While not as striking as the predictive
power for newly formed oligodendrocytes, the probability that
cells with somata below 500 µm3 would disappear within 1 week
was over 90% (Figures 8E,F). Together, this analysis reveals
that the size of oligodendrocyte somata calculated using deep
neural networks can be used to predict, without prior or later
longitudinal imaging data, whether a cell was recently generated
and whether it is likely to degenerate.

DISCUSSION

To facilitate analysis of oligodendrocyte dynamics in the adult
brain we designed Oligo-Track, a deep learning pipeline that uses
two sequential CNNs to allow cell tracking in volumetric imaging
datasets. This methodology provides a substantial improvement
over traditional imaging informatics approaches as it was faster,
less subject to user bias and less influenced by factors that
commonly deteriorate image quality, allowing reliable automated
cell tracking over time series spanning multiple weeks. This
automated volumetric analysis enabled us to increase the number
of oligodendrocytes analyzed in deeper layers of the mouse cortex
and to identify newly formed oligodendrocytes and those that are
in the process of degenerating simply based on soma size at a
single time point without longitudinal tracking information.

This CNN tracking pipeline follows a two-step approach
to optimize multi-object tracking (MOT). We first setup a
detection step, where oligodendrocytes are identified in a volume,
followed by an association step, to link tracked cells across time
frames (Ciaparrone et al., 2020). Unlike other deep learning
MOT approaches, which often only use CNNs to generate
bounding boxes or extract features (Ciaparrone et al., 2020), we
employed two sequential CNNs that both performed semantic
segmentation in the MOT detection and association stages (Seg-
CNN and Track-CNN, respectively). The output of this pipeline
provides not only the location of all tracked cells, but also the
volume of each cell soma. This volumetric tracking was made
possible by training our association network (Track-CNN) with a
seed-based learning approach. Previous studies have shown that,
when given input data containing several cells, one can mark cells
of interest with a binary mask, or “seed”, to draw the attention
of CNNs (Xu et al., 2019). This forces a semantic classifier to
not only learn to identify oligodendrocyte somata, but also to
identify the somata of individually marked cells of interest across
different timepoints.

From a computational standpoint, there are several
advantages to this automated approach. Roughly estimating
the time for manual analysis with syGlass, a 3D virtual reality
based visualization tool, we found that a 10-week, 10-timepoint
dataset with a size of 800 × 800 × 300 µm per timepoint
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FIGURE 7 | Newly generated oligodendrocytes can be identified by cell soma volume. (A) Soma volume of stable and newly formed oligodendrocytes at baseline,
1 week recovery, and 2 weeks recovery across different cortical depths. (B) Representative example of the change in soma size of newly formed oligodendrocyte
tracked across 4 weeks of recovery. Scale bar: 20 µm. (C) Plot of decrease in soma volume for 250 cells over weeks relative to time of cell generation. Red dots are
mean ± SEM. (D) Comparison of soma volume in newly formed oligodendrocytes during recovery compared with stable cells in non-treated mice. Also includes
comparison of soma volume between spontaneously formed oligodendrocytes and stable cells in non-treated mice. All values are normalized to the mean soma
volume of stable control cells at each matched timepoint. (E) Kernel density estimate for each distribution of soma volumes at indicated timepoints. These
normalized distributions help visualize the probability that a cell with a certain soma volume is within a certain age range post-oligodendrogenesis. (F) Distribution of
soma volumes of cells that are 1, 2, and 3 weeks old relative to cells in mice that are not treated with cuprizone at matched timepoints. Cells pooled from n = 4
cuprizone treated and n = 3 control mice. See Supplementary Table 1 for statistical tests and significance level for each comparison. ***p < 0.001.

would take a researcher approximately 6 h to identify and
track all oligodendrocytes within this volume. This estimate
only considers the time to place point coordinates and does
not include the considerable additional time it would take to
trace every voxel to generate volumetric segmentations. This
estimate also does not consider how much longer manual
analysis would take without access to specialized VR software
(e.g., syGlass). By comparison, Oligo-Track requires ∼20 min
for Seg-CNN segmentation (∼2 min per timepoint) and ∼25–
35 min for Track-CNN associations for the same volume across
10 timepoints, for a total analysis time of 45–55 min, more than
six times faster than achieved with VR-assisted manual tracking,
just for cell identification. This processing time is also purely
computational, so manual labor time is reduced to almost zero,

and offers fully volumetric segmentations. Total runtime will
vary depending on cell density, number of timepoints, the size of
volumes during inference and the exact computer configuration.

Standardization of methodology is also an important
advantage of the CNN analysis approach. Inter-researcher
disagreements on manual tracing methodologies often arise
during the quantification of fluorescent data, as fluorescence
does not offer as many contextual clues as natural scene images
for human decision-making (Xu et al., 2019). Moreover, human
inconsistencies may also pervade the use of traditional tracking
algorithms, as excessive parameter tuning by researchers may
overfit algorithms to specific datasets and prevent accurate cross-
experiment comparisons. Oligo-Track offers standardization
by enabling researchers to apply the same algorithm across
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FIGURE 8 | Oligodendrocyte death can be predicted from cell soma volume. (A) Volume of cell somata within 1 week of dying (red) at baseline, 1 week cuprizone,
and 2 week cuprizone timepoints. (B) Representative example of cell soma shrinkage throughout cuprizone treatment, resulting in eventual death. Scale bar: 20 µm.
(C) Plot of soma volume decrease for 860 cells during cuprizone treatment. (D) Plot of average soma volume of dying cells at each timepoint of cuprizone treatment
relative to timepoint matched cells from control mice. All values are normalized to the mean soma volume of stable control cells at each matched timepoint.
(E) Overall distribution of soma volumes for non-treated cells and cells within 1 week of death during cuprizone treatment. (F) Probability that a cell soma below a
certain volume is within 1 week of death. Cells pooled from n = 4 cuprizone treated and n = 3 control mice. See Supplementary Table 1 for statistical tests and
significance level for each comparison. ***p < 0.001.

multiple datasets, while relying on the diversity of its training
data to provide generalizability rather than having tunable
parameters. Finally, as many researchers do not yet have access
to 4D visualization/tracking tools, Oligo-Track standardizes the
approach to longitudinal cell tracking by removing the reliance
on specialized proprietary software. Losing dimensionality
can be extremely detrimental to manual quantification speed
and accuracy, as cells can often lie on top of one another
or shift in unpredictable ways that can be missed if viewing
4D data in lower dimensional space. Thus, our open-source
quantification algorithm reduces tracking inconsistencies
between individual researcher annotations by providing a
standardized tracking platform.

Although there are clear technical advantages of using CNNs
to track cells over time, the decision to use deep learning
as an underlying analytic framework comes with additional
considerations. Deep learning is often criticized for its “black
box” nature, as researchers are unable to understand the intricate
decision-making process of millions of weighted connections
in a CNN, resulting in sometimes unpredictable behavior

(Heaven, 2019; Yampolskiy, 2019). For example, as we see in
our own network, it was difficult to define the exact level of
debris avoidance that the neural network was capable of, and
why certain debris were more likely to be identified as false
positives. Additionally, we noted that CNN performance was
suboptimal when image scaling or intensity of input volumes
was beyond the range of values in the training dataset. This
variability in performance could be addressed in future work
by data augmentation techniques, such as pixel size scaling,
random noise injections, and histogram equalization, to improve
the generalizability of our current model beyond our standard
imaging setup. Moreover, data augmentation could also include
the introduction of data containing high levels of real or synthetic
debris during CNN training, which could enable improved
accuracy in avoiding biological debris. Currently, we partially
addressed the unpredictability of deep learning by using VR-
based 4D manual curation post-CNN analysis to ensure accuracy
in unpredictable scenarios. We also used these post hoc manually
curated datasets to further improve the CNNs, highlighting a
major advantage of deep learning approaches. CNN models are

Frontiers in Cellular Neuroscience | www.frontiersin.org 13 April 2021 | Volume 15 | Article 667595

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-667595 April 5, 2021 Time: 20:15 # 14

Xu et al. Automated Tracking of Cortical Oligodendrocytes

extraordinarily data hungry and can be continuously improved
with new training data that help generalize to new imaging
conditions (Klabjan and Zhu, 2020). For instance, while Oligo-
Track has only been trained on cells up to 400 µm depth in
the cortex, it will be possible to further train these networks
to imaging conditions in deeper cortical layers. This training
advantage is not available for traditional algorithms that may
require extensive manual fine-tuning for extrapolation to slight
variations in imaging conditions.

While the main limiting factor for developing deep learning
technologies is the generation of large ground-truth training
datasets to reach optimal performance levels, there are a growing
number of methods by which researchers can reduce this high
data demand of CNNs. For instance, transfer learning techniques
have demonstrated how a network that is pretrained on a large
dataset can be rapidly adapted to a new dataset with minimal new
training data (Zhuang et al., 2020). Given the large database that
our network was trained on, and the relatively similar features of
cells that express fluorescent proteins, our pretrained CNN can
serve as a basis for additional tool development, in which transfer
learning is used to adapt this model to other cell types, where
ground truth training data may not be readily available.

Automated quantitative tools will play a growing, critical role
in the age of big data that is spurned by advances in biological
imaging technologies. Of note for oligodendrocyte biology, three
photon imaging promises to take us deeper in vivo (Horton et al.,
2013; Lecoq et al., 2019), allowing us to examine the dynamics of
these myelinating cells in layers 5 and 6 of the cortex and perhaps
even into the white matter of the corpus callosum. Additionally,
block-face imaging presents us with the opportunity to examine
distributions of oligodendrocytes across the entire mouse brain,
correlating myelination patterns with neuron type and brain
region (Ragan et al., 2012; Amato et al., 2016; Winnubst et al.,
2019). To match the scale of these imaging technologies, an
important extension of the current work is to extract not only
positional information about cells in vivo, but also the entire
structure of cells. For oligodendrocytes, that means the soma,
cytosolic branches, and individual myelin sheaths formed by each
cell. As highlighted in this study, gaining quantitative access
to even a single parameter, such as soma volume, can greatly
extend biological understanding, allowing robust predictions to
be made with limited data. Here, the strong correlations we
observed between soma size, age, and survival provide us with
a tool to infer the regenerative capacity of oligodendrocytes
on fixed timepoint experiments acquired from individual tissue
sections or from block-face imaging (Ragan et al., 2012).
By extension, having access to the complete morphological
structures of thousands of oligodendrocytes in the brain would
enable us to assess complex region-specific differences in adaptive
myelination, regenerative capacity and survival across the brain
in mice subjected to different interventions.

Deep learning is well situated to provide us with the
adaptable, reliable tools needed for the analysis of enormous
new imaging datasets that can no longer be practically annotated
using a manual brute force selection approach. Computational
power is growing rapidly each year with new GPUs and the
development of dozens of new deep learning techniques. Here,

we demonstrate one powerful application of deep learning to
resolve a multi-dimensional tracking challenge, which not only
facilitates analysis of oligodendrocyte dynamics, but also extends
our quantitative limits to extract novel insight into regional
differences in regenerative capacity and allows predictions to
be made about future behaviors. Having access to more cellular
features and dynamics will bring us closer to understanding the
events that underlie myelin regeneration that will aid in the
discovery of therapeutics for treating demyelinating diseases.
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Supplementary Figure 1 | CNN architecture for Seg-CNN and Track-CNN. UNet
architecture used for both Seg- and Track-CNN. Downsampling branch extracts
local features, upsampling branch extracts global spatial features.

Supplementary Figure 2 | Training and validation performance for both CNNs.
(A) Seg-CNN loss, Jaccard overlap metric (Jaccard, 1912), precision, and
sensitivity over 30 epochs. Curves associated with training and validation datasets
are indicated. Loss descended stably without overfitting. All other metrics
improved as anticipated. (B) Track-CNN loss, accuracy, precision, and sensitivity
calculated per epoch. Accuracy, precision, and sensitivity only calculated on
validation dataset for computational efficiency. Loss decreased stably
without overfitting.

Supplementary Figure 3 | Robustness of CNN-based cellular tracking. (A)
Example of debris avoidance by Seg-CNN (yellow circles). Arrows indicate debris
that was not avoided. Scale bar: 30 µm. (B) High intensity, dense debris is more
likely to be detected as false positives. Arrows indicate debris that was not
avoided. Scale bar: 30 µm. (C) Seg-CNN detections in image set with low laser
power (left) and after gain adjustment (right). Arrows indicate initially undetected

cells at low laser power. Scale bar: 25 µm. (D) Effect of different standard
deviations of random noise on Track-CNN performance. (E) Effect of changing the
rotation range (in degrees) of random motion artifacts on Track-CNN performance.
Scale bar: 30 µm.

Supplementary Video 1 | Cell tracking across two stable timepoints. Timepoint t
(left) and t + 1 (right). Magenta indicates the cell that is currently undergoing
assessment by Track-CNN. After assessment, a color is assigned to the cell on t
and t + 1 to represent a tracked cell across timepoints. If the cell is untracked (or
dies between timepoints), the cell soma is set to pure white on t.

Supplementary Video 2 | Cell tracking across cuprizone injury timepoints.
Timepoint t (left) and t + 1 (right). Magenta indicates the cell that is currently
undergoing assessment by Track-CNN. After assessment, a color is assigned to
the cell on t and t + 1 to represent a tracked cell across timepoints. If the cell is
untracked (or dies between timepoints), the cell soma is set to pure white
on t.

Supplementary Video 3 | Cell sparsity over weeks of cuprizone treatment and
recovery. Newly formed cells marked in green (left) and cells that will die within a
week marked in red (right) starting from baseline followed by 3 weeks of cuprizone
treatment and subsequent recovery.

Supplementary Video 4 | Soma size of dying and newly formed cells over weeks
of cuprizone treatment. Newly formed cells marked in green (left) and cells that will
die within a week a marked in red (right) starting from baseline followed by
3 weeks of cuprizone treatment and subsequent recovery.
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