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Abstract: Several protocols exist for generating megakaryocytes (MKs) and platelets from human
induced pluripotent stem cells (hiPSCs) with limited efficiency. We observed previously that meso-
derm induction improved endothelial and stromal differentiation. We, therefore, hypothesized
that a protocol modification prior to hemogenic endothelial cell (HEC) differentiation will improve
MK progenitor (MKP) production and increase platelet output. We further asked if basic media
composition affects MK maturation. In an iterative process, we first compared two HEC induc-
tion protocols. We found significantly more HECs using the modified protocol including activin
A and CHIR99021, resulting in significantly increased MKs. MKs released comparable platelet
amounts irrespective of media conditions. In a final validation phase, we obtained five-fold more
platelets per hiPSC with the modified protocol (235 ± 84) compared to standard conditions (51 ± 15;
p < 0.0001). The regenerative potency of hiPSC-derived platelets was compared to adult donor-
derived platelets by profiling angiogenesis-related protein expression. Nineteen of 24 angiogenesis-
related proteins were expressed equally, lower or higher in hiPSC-derived compared to adult platelets.
The hiPSC-platelet’s coagulation hyporeactivity compared to adult platelets was confirmed by throm-
boelastometry. Further stepwise improvement of hiPSC-platelet production will, thus, permit better
identification of platelet-mediated regenerative mechanisms and facilitate manufacture of sufficient
amounts of functional platelets for clinical application.

Keywords: regenerative medicine; human induced pluripotent stem cells (hiPSC); mesoderm in-
duction; platelets; megakaryocytes; angiogenesis; human platelet lysate (HPL); advanced therapy
medicinal product (ATMP); ROTEM

1. Introduction

Platelets fulfill essential functions in hemostasis, thrombosis, innate immunity, vascu-
lar integrity, and regeneration after injury [1,2]. More than 100 million blood donations
worldwide are necessary annually to meet the clinical need for blood products [3]. Ap-
proximately 1.5 million platelet transfusions are required to prevent bleeding or correct
thrombocytopenia of <150 × 109/L due to numerous conditions every year [4]. Various
efforts have been made to overcome dependence on donor-derived platelets, in part due to
the increasing need for blood products and decreasing blood donor availability according
to demographic changes [5,6].

The demand of platelets in an adult, under steady state, was estimated at around
35 billion platelets/day [7,8]. Platelets share a common megakaryocyte erythroid progeni-
tor (MEP) with red blood cells, which can produce mature megakaryocyte (MK) progeny.
Within human bone marrow, at least 1000 platelets were estimated to be released per single
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MK over time. Several billion MKs are required to produce 2–3 × 1011 platelets for one
unit of platelets for clinical use based on an estimated release of <50 platelets per MK
in vitro [6]. Various methods have been tested to improve platelet production for research
and therapy. CD34+ hematopoietic stem/progenitor cells (HSPCs) have been the traditional
source for in vitro platelet propagation [9]. More recently, pluripotent embryonic stem
cells (ESCs) and induced pluripotent stem cells (iPSCs) were recognized as a self-renewing
source of all mature cell lineages including blood cells and particularly platelets [10,11].
Established 2D standard protocols for initiating platelet production use feeder-free culture
of human iPSCs (hiPSCs) with either direct hemogenic endothelial cell (HEC) induction
by bone morphogenetic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) or
vascular endothelial growth factor (VEGF) [12–14], or additional transcription factor gene
transfer [15]. Accelerated Wnt-signaling via addition of the glycogen synthase kinase 3β
inhibitor CHIR99021 (CHIR) during early mesoderm specification was shown to drive
hiPSCs towards definitive hematopoiesis [16–18]. Alternative embryoid body (EB)-based
protocols were established including sophisticated MK lineage forward reprogramming
strategies [19–21]. A mesoderm bias might be expected in EBs, even in the absence of a
dedicated mesoderm induction [22]. Human iPSC sacs were described to permit particu-
larly efficient forward-programmed platelet propagation with a VEGF-only HEC induction
protocol [23]. Several recent protocols took advantage of improved 3D bioreactor strate-
gies [13,15,19,21,23]. A comprehensive overview of 3D MK and platelet culture protocols
was published elsewhere [24,25]. In the majority of the protocols, the specification of
hiPSCs towards MKs was obtained via exposure to the morphogen BMP-4 and the growth
factor bFGF, with or without VEGF to initiate HEC formation [12–14,19–21]. Mesoderm
induction support by CHIR-mediated Wnt signaling may also result in increased MK
production [15].

We focused on platelet production due to our interest in the regenerative potential
of human platelets [26]. We observed recently that mesoderm induction in advance of
subsequent lineage specification was beneficial for several middle germ layer-derived cell
types including stromal cells [27] and vascular endothelial cells [28]. We included activin
A [29], BMP-4, CHIR, and VEGF as an initial two-day mesoderm induction step in our
protocol. We found that this protocol significantly increased HEC differentiation resulting
in improved MK production. Results were further validated by performing a direct parallel
comparison of standard vs. improved platelet production in a selected efficient and
affordable MK maturation medium. The coagulatory function of hiPSC-derived platelets
was compared to adult donor-derived platelets by rotational thrombelastometry (ROTEM).
The regenerative hiPSC-platelet proteome was multiplexed revealing a rich lineage-specific
angiogenesis-related cargo.

2. Results
2.1. Improving HEC Differentiation and MK Progenitor (MKP) Production from hiPSCs

In a first series of experiments, we compared HEC induction from two independent
randomly selected hiPSC strains with and without an initial two-day induction phase
(Figure 1A). Cells differentiation under improved conditions assumed a more dense ap-
pearance at day 2 before replacing the induction medium by standard HEC induction
medium. On day 7, in situ reporter staining using an anti-human CD31 antibody [28]
revealed more HECs in cultures with initial induction (Figure 1B). A significant increase of
CD31+/CD34+ cells was detected by flow cytometry compared to standard conditions on
day 7 (at the end of stage I; Figure 1C and Appendix A Figure A1). On day 14, an increased
amount of round-shaped floating cells was observed in cultures after initial induction
(Figure 1B). During stage II, floating cells derived from the culture supernatants were
harvested, counted, and analyzed by flow cytometry. The total count of CD61+/CD41a+

MKPs per 1 x 106 input hiPSCs was significantly increased to 29 ± 21 × 106 compared to
standard conditions with 1.9 ± 1.4 × 106 (both mean ± SD; Figure 1D).
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Figure 1. Production of hemogenic endothelial cells (HECs) and megakaryocyte progenitors (MKPs) from hiPSCs. (A)
Experiment outline of hiPSC differentiation towards MKPs via HECs without (Standard) or with initial two-day (stage
0) induction including activin A and CHIR99021 (+AC) in APEL (Albumin Polyvinylalcohol Essential Lipids) medium
containing activin A, bone morphogenetic protein-4 (BMP-4), CHIR99021 (ABC), and vascular endothelial growth factor
(VEGF). Regular stage I and stage II media for HEC induction (HEC-i.) and MKP induction (MKP-i.) are composed as
indicated (see Table 1). Floating MKPs were harvested on days 9, 12, and 14 as indicated by purple arrows. (B) Cell
morphology documented on days 0, 2, 7, and 14 during hiPSC to MKP differentiation. Representative pictures from four
replicates of clone UCB144-CT2-C are shown. In situ CD31 reporter staining on day 7 highlighting HECs (purple). Depicted
reporter staining results corresponding to 66% and 20% CD31+/CD34+ cells with improved vs. standard conditions,
respectively, as analyzed by flow cytometry (Appendix A Figure A1). On day 14, round-shaped floating cells (indicated by
orange arrows) were more prominent after initial induction (+AC). Scale bars: 200 µm. (C) CD31+/CD34+ cells as detected
by flow cytometry after improved compared to standard conditions on day 7 (n = 12; p < 0.0001). (D) CD61+/CD41a+ MKPs
after induction (+AC) per 1 × 106 starting hiPSCs compared to standard conditions (n = 12; p < 0.0001). Results from hiPSC
clones UCB144-CT2-C (grey circles) and BIHi001-A (black diamonds); unpaired t-tests, **** p < 0.0001 (C,D).

2.2. Expansion, Maturation and Platelet Production of hiPSC-MKs in Different Media Conditions

We next asked whether MKPs generated by the improved protocol respond to stan-
dard maturation conditions by producing mature MKs. We selected two frequently used
reference media supplemented with thrombopoietin (TPO) plus stem cell factor (SCF) and
a commercial kit containing an ‘MK supplement’ plus heparin [12,30,31]. The final stage
III culture phase beyond day 9 + 9 was done on an orbital shaker at moderate rotation
(60 rpm) to induce shear stress supporting platelet release (Figure 2A).
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Figure 2. Expansion and maturation of hiPSC-derived megakaryocytes (MKs) in different media conditions. (A) Exper-
imental outline using the improved induction conditions. Megakaryocyte progenitors (MKPs) derived from stage II at
days 9, 12, and 14 (purple arrows) were harvested and matured into MKs in stage III for up to 12 additional days in three
different media (StemSpan, IMDM or APEL), supplemented as indicated. From day 9 + 10 on, MKs were cultured under
dynamic conditions at 60 rpm. Cells were harvested, counted, and analyzed by flow cytometry (platelet counts are shown
in Figure 3B,C). (B) The total amount of CD61+/CD41a+/CD42b+ maturing MKs revealed no significant difference after
culture in the three different media (StemSpan, down pointing triangle; IMDM, squares; APEL, upward pointing triangles;
three different mean value lines representing the three media; symbol color depicts the two independent hiPSC clones
UCB144-CT2-C, grey and BIHi001-A, black; n = 4, p > 0.05; two-way ANOVA, multiple comparisons). (C) MKs showed
various maturation stages, indicated by two or more nuclei (deep purple), independent of media conditions (May–Grünwald
Giemsa stain, MGG; top row, lower magnification inserts). Characteristic MK immunophenotype CD42b (green), CD61
(red); nuclear DAPI stain (blue; lower row). Representative pictures of two replicates of clone BIHi001-A are shown after
harvest on day 9 + 7 (stage III) and stained as specified.

The hiPSC-derived HECs differentiated into CD61+/CD41a+/CD42b+ MKs irrespec-
tive of basic media conditions. A trend towards lower differentiation efficiency of the
cord blood-derived hiPSC clone was observed over time. Up to 33 ± 12 × 106 MKs
(mean ± SD) per 1 × 106 input hiPSCs were obtained with peak levels around days 5–7
of the stage III culture (Figure 2B). The multinucleated MKs expressed glycoprotein Ib
(CD42b) and integrin β3 (CD61) under all three media conditions tested (Figure 2C). Pro-
platelet formation was observed in all three media conditions at the end of stage III culture
(cumulative day 9 + 12; Figure 3A). We obtained 4–43 platelets at the end of culture stage
III in TPO/SCF-supplemented IMDM (19 ± 15) compared to 5–11 platelets in APEL-based
(6 ± 2) and 2–23 platelets in StemSpan-based (10 ± 8; all mean ± SD) media conditions
(Figure 3B). We also observed certain experimental variability and no significant differ-
ence in the number of platelets generated per 1 x 106 input hiPSCs (290 ± 150 × 106,
430 ± 260 × 106 and 340 ± 190 × 106 in StemSpan, IMDM and APEL-based media, respec-
tively; mean ± SD; Figure 3C).
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Figure 3. Human iPSC-derived megakaryocytes (MKs) produce pro-platelets and release platelets in all media conditions.
(A) MKs with pro-platelet structures on day 9 + 12 (stage III) after dynamic culture in supplemented StemSpan, IMDM, and
APEL media. Representative immunofluorescence images of MKs from one hiPSC clone (UCB144-CT2-C) stained with
CD42b (green), CD61 (red), and DAPI (nuclei, blue) are shown. Pro-platelets are indicated by white arrows. (B) Platelet
counts on day 9 + 12 (stage III) calculated per input MK were significantly increased after culture in supplemented IMDM
medium, compared to StemSpan (p = 0.046) and APEL medium (p = 0.0273; both unpaired t-tests * p < 0.05 and ** p < 0.01).
(C) Additional analysis showed comparable platelet counts per 1 × 106 input hiPSCs (p > 0.05) in all media conditions.
Results from two independent hiPSC clones (UCB144-CT2-C, grey circles, and BIHi001-A, black diamonds; n = 8, measured
in duplicates).

2.3. Validation That the Modified Protocol Improves Platelet Production from hiPSCs

Based on the results described so far, we selected the IMDM-based stage III medium
conditions for a final validation experiment comparing cultures with and without initial
activin A and CHIR-containing induction in parallel in one pass (Figure 4A). We used
10-color flow cytometry to create high content single cell-based data throughout MK differ-
entiation. Datasets from stage II cultures with or without initial induction at culture days 9,
12, and 14, respectively, of a representative experiment, were accumulated for t-distributed
stochastic neighbor embedding (tSNE) defining major single cell-based phenotype map
(Figure 4B).
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Figure 4. Validation of improved platelet production from hiPSCs. (A) Platelet production from hiPSCs comparing the
improved protocol (stage 0, +AC) followed by hemogenic endothelial cell induction (HEC-i., stage I) and megakaryocyte
progenitor induction (MKP-i., stage II) to a standard protocol, both finished with platelet production in IMDM supplemented
with TPO and SCF (stage III). From day 9 + 10 on, MKs were cultured under dynamic conditions on an orbital shaker at
60 rpm. Cells were analyzed by flow cytometry. (B) Color code legend for t-distributed stochastic neighbor embedding
(tSNE) plots defining MKs, MKPs, megakaryocyte erythroid precursors (MEP), myeloid cells (myeloid), indetermined
CD34+/45NEG cells (indet. CD34; reduced CD31 expression compared to early HECs) and other cells not allocated to main
hematopoietic populations within the 10-color flow cytometry panel (others). Phenotypic identifiers as depicted in the
legend insert. (C) Individual tSNE plots for stage II MKP culture constituents measured on days 9, 12, and 14 in cultures
with (+ AC) and without initial induction, respectively. Results are depicted using the same tSNE color code. (D) The
total amount of CD61+/CD41a+/CD42b+ MKs was significantly increased on day 9 + 3 (p = 0.0191), day 9 + 7 (p = 0.0037)
and day 9 + 12 (p = 0.0052; paired t-tests) using the improved protocol (green boxes) compared to standard conditions
(blue boxes). Results from two independent hiPSC clones (n = 6). (E) Platelet counts per input hiPSC on day 9 + 12 were
significantly increased using the improved protocol (p < 0.0001, unpaired t-test). Symbols depict two independent hiPSC
clones (UCB144-CT2-C, grey circles and BIHi001-A, black diamonds, n = 7; measured in duplicates in D and E, * p < 0.05, **
p < 0.01 and **** p < 0.0001).
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Applying the tSNE map to individual culture analyses demonstrated the continuous
development of MKs at the expense of MKPs over time. Cultures using the improved
protocol showed 45% MKPs already at day 9 (stage II) compared to only 5% in standard
cultures. Until day 14, the MK content rose to 50% in improved cultures, accompanied
by a marked reduction in MKPs, and to 24% MKs with minimum decline in MKPs in
standard cultures in this representative experiment, respectively. Results recapitulated the
significantly higher amount of MKs in improved cultures compared to parallel standard
cultures. We observed an almost disappearance of CD235a+ MEPs and HECs, and an
increase of myeloid progenitors in both protocols to 22% and 33%, respectively, over time.

A small population of up to 1% CD34+/CD45DIM HSPCs appeared under both con-
ditions at later culture stages. Cultures in the improved protocol included the highest
percentage of MKs and less unidentified ‘other’ cells compared to standard cultures (maxi-
mum 20% vs. maximum 56%, respectively) on day 14 (Figure 4C). Flow cytometry on day
9 + 7 confirmed that significantly more triple-positive CD61+/CD41a+/CD42b+ MKs were
generated per 1 × 106 starting hiPSCs using the improved protocol (27 ± 11 × 106 MKs)
compared to standard cultures (3.0 ± 0.6 × 106 MKs; both mean ± SD) also in this valida-
tion experiment (Figure 4D). Representative flow cytometry dot plots of CD41a+/CD42b+

MKs during stage III culture are depicted in Appendix A Figure A2. As a consequence,
significantly higher platelet counts, normalized per one million input hiPSCs, could be
generated through improved initial induction (235 ± 84 × 106 versus 51 ± 15 × 106; mean
± SD) within 21 days (Figure 4E). The validation experiments confirmed the initial ob-
servation that equal amounts of 10–17 platelets were released per MK irrespective of the
origin of MKs. These platelets showed typical round morphology with a 2–4 µm diameter,
expressed CD61 and contained a variable amount of mitochondria (Figure A3).

2.4. Human iPSC-Derived Platelets Are Functional and Contain Angiogenesis-Related Proteins

Testing of in vitro produced platelet function is challenging not only due to the risk
of platelet activation during sample manipulation but also because of frequently limited
hiPSC-derived platelet numbers [32]. Out of a series of contemporary methods we chose
the viscoelastometric ROTEM point-of-care test to analyze the procoagulant potential of
platelets. We have successfully implemented this method previously to estimate hemocom-
patibility of ex vivo propagated stromal cells [33]. Healthy adult donor-derived patelets
reduced the clot formation time of pooled blood group AB plasma significantly in a dose-
dependent manner. Both improved and standard culture hiPSC-derived platelets did
not accelerate clot formation significantly due to highly variable results with only some
preparations reducing the time to clot formation (Figure 5A). Maximum clot firmness was
unaffected irrespective of the hiPSC-platelet dose added. Healthy adult donor platelets
increased the maximum clot firmness dose-dependently with most significant effects at
108 platelets per 300 µL test plasma, a level corresponding to a physiological platelet count
of 333,000 platelets/µL (Figure 5B).
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Figure 5. Analysis of coagulation and angiogenesis-related protein expression in adult healthy donor- and hiPSC-derived
platelets. (A,B) Clot formation potential of standard culture vs. improved (+AC) hiPSC-derived platelets was compared to
adult donor-derived platelets using rotational thromboelastometry (n = 4–12 platelet samples as indicated by individual
result icons; n = 28 control plasma tests of the same AB plasma pool illustrating individual variability; hiPSC platelets
derived from clones UCB144-CT2-C, grey circles and BIHi001-A, black diamonds; two-way ANOVA, multiple comparisons,
** p < 0.01 and **** p < 0.0001; ns, not significant). (A) Clot formation time induced by adding increasing numbers of platelets
as indicated to 300 µL AB plasma control. (B) Maximum clot firmness in the absence (AB plasma) or presence of increasing
number of platelets as indicated. Analysis was standardized to 2 × 107 input platelets per membrane and measured in
duplicate spots. (C) Several angiogenesis-related proteins were significantly increased (angiopoietin 2, p < 0.0001;
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amphiregulin, p = 0.0002; tissue factor, p = 0.0005; endoglin, p < 0.0005; endostatin, p < 0.0005; IGFBP2, p = 0.0004; VEGF,
p < 0.0001) or decreased (angiogenin, p < 0.0001; angiopoietin 1, p = 0.0006; EGF, p < 0.0001; PDGF-AB/BB, p = 0.0014; serpin
F1, p = 0.0001) in hiPSC-derived compared to adult platelets (grey bars, open triangles). No significant differences were
detected between standard, (blue bars) and improved conditions (+AC, green bars). Results from two independent hiPSC
lines (UC0144-CT2-C, grey circles and BIHi001-A, black diamonds) differentiated into platelets with both protocols were
compared to four healthy donor-derived platelet preparations; analysis in duplicates. Multiple t-tests with Holm–Sidak
correction (n = 4; * p < 0.05).

We finally measured the content of angiogenesis-related proteins in platelets by
antibody-based array analysis. Angiopoietin 2, amphiregulin, endoglin (CD105), endo-
statin, IGFBP2, and VEGF were significantly increased in hiPSC-derived platelets. An-
giogenin, angiopoietin, epidermal growth factor (EGF), platelet-derived growth factor
(PDGF)-AB/BB, and serpin F1 were significantly lower expressed in hiPSC-derived com-
pared to adult donor platelets. The majority of angiogenesis-related proteins tested was
equally expressed in adult and iPSC-derived platelets. Platelets derived from hiPSCs with
both protocols showed comparable expression patterns. Tissue Factor was significantly
higher expressed in both types of hiPSC-derived compared to adult donor-derived platelets
(p = 0.0005; (Figure 5C).

3. Discussion

This study demonstrates that distinct preceding induction by activin A, BMP-4, CHIR,
and VEGF in lipid-enriched APEL medium resulted in a significant increase of hiPSC-
derived platelet production using an otherwise unaltered three-stage standard protocol.
As a result, we obtained mean 15 platelets per MK and mean 338 platelets per input hiPSC,
respectively, over all experiments. This compares well to previously optimized published
protocols. The result of the standard protocol obtaining mean 17 platelets per MK without
previous induction (corresponding to mean 51 platelets/hiPSC) were comparable to two
reference papers [12,13]. From a mechanistic point of view, the major effect observed after
an initial induction step appeared to be a more robust HEC formation (stage I). We found
nine-fold higher MKP proportions already at day 9 (stage II) of the improved protocol
compared to standard cultures as illustrated in tSNE plots. This translated into a signif-
icantly higher number of MKs and platelets produced per hiPSC compared to standard
conditions. We did not observe significant differences in the number of platelets produced
by individual MKs irrespective of initial culture conditions. The rich angiogenesis-related
proteome of hiPSC-derived platelets did not differ irrespective of initial induction. Signifi-
cant differences between adult donor-derived and hiPSC-derived platelet proteomes may
at least in part be donor-dependent requiring future extended analysis.

We used 10-color flow cytometry throughout the study to identify and quantify dif-
ferentiated hiPSC progeny. Monitoring differentiation in stage II in more detail using
tSNE plots, based on the high amount of 12-parameter single cell data (10-color differen-
tiation marker profiling and two scatters per single cell, at least 10,0000 cells analyzed
per timepoint and condition), enabled comprehensive monitoring of the fate of multiple
hematopoietic populations at once. These new data illustrated the progression of MKP
maturation into MKs over time in stage II, accompanied by vanishing of MEPs. Appearance
of HSPCs and myeloid progenitors at later time points of MKP cultures (stage II, days
9 and 12) might indicate lack of progenitor purity or limited efficiency of the TPO plus
SCF-guided differentiation signaling rather than representing a reservoir for cells for con-
tinuous long-term platelet manufacture. This needs to be addressed by future investigation
as this study had a clear focus on addressing the impact of mesoderm induction on hiPSC
platelet production. The lower frequency of MKs under standard conditions reflects the
reduced HEC input.

Platelet manufacture for clinical purposes remains a challenge [12]. Assuming a
maximum of 2000 platelets to be produced by one human bone marrow MK in vivo,
100 million MKs would be estimated to produce the equivalent of a single platelet con-
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centrate comprising 2 × 1011 platelets for transfusion [9]. Starting from seven million
hiPSCs at research scale in this study, we obtained only 1.64 ± 0.59 × 109 platelets in
total (mean ± SD). In a recent study, we demonstrated reproducible hiPSC 2D large scale
propagation and obtained 9.8± 1.2× 108 hiPSCs (mean± SD) from one million hiPSCs per
four-layered cell factory on 2528 cm2 growth area within eight days [34]. MK culture using
our improved protocol would suffice producing one single unit of platelets for transfusion
including 2.5 × 1011 platelets, in theory, within less than a month. This will be tested in the
near future before evaluating novel bioreactor-based, more complex and more expensive
culture modalities. Earlier this year, an increased number of mature forward programmed
MKs and platelets per MK were described after a 24-hour exposure to CHIR during meso-
derm commitment [15]. However, the authors did not use CHIR in their final protocol.
While preparing our manuscript, we realized that another group also included CHIR in
their MK differentiation protocol from human embryonic stem cells (hESCs), producing
a 0.6-fold higher MK yield to 7.3 ± 3.0 MKs/ hESC in an approach using suspension cell
stack culture chambers compared to monolayer induction [35].

It is so far not clear which protocols and cell propagation devices are best suited
for platelet mass-production [12]. We realized a certain level of variability in our 2D
culture protocol, which leaves space for further improvement. Evidence is accumulating
that 3D bioreactor-based culture will be considerably more efficient [19,23,36–38]. Mean
29.9 ± 10.9 MKs/hiPSC could be produced by combining hiPSC-aggregate cultivation
in suspension culture with laminin 521-coated micro-carrier technology, compared to
3.9 ± 1.0 MKs/hiPSC obtained from cell-only aggregates (mean ± SD, respectively) in
stirred spinner flasks bioreactors. After intravenous transfusion into immunodeficient
mice, human platelets were released into the murine blood circulation by these MKs [19].
Comparable results were obtained in our study with the improved protocol. Sophisticated
microfluidic organ-on-a-chip models are currently also under development enabling tech-
nically advanced bone marrow construction that may further advance platelet manufacture
at clinical scale [13,39]. A nature-inspired system for functional MK and platelet production
using silk-based vascular tubes was already introduced a decade ago [37]. With a more
old-fashioned approach, roller-bottles were recently utilized to significantly enhance MK
propagation from cord blood-derived CD34+ HSPCs by about 1.8-fold to 2.5× 104 MKs per
initial CD34+ HSPC compared to static culture conditions; the number of platelets obtained
was not disclosed in this study [40]. In our study, platelet release from MKs was supported
by culturing on an orbital shaker during the final stage III. We plan to scale-up our protocol
using bioprocessing in stirred bioreactors [41].

Functional assays are partly limited by the low numbers of platelets produced in vitro.
Flow cytometry can be used for analysis of platelet surface and activation markers, but
does not provide information about hemostatic potency of platelets [32]. We, therefore,
plan to include platelet coagulation marker profiling in a follow-up study. In this study, we
tested the pro-coagulant activity of hiPSC-derived platelets in plasma after activation with
tissue factor by ROTEM, a viscoelastometric hemostasis assay commonly used as point
of care test in the clinic [42]. We compared clot formation to donor derived platelets and
observed the expected hyporeactivity of hiPSC-derived compared to healthy adult donor-
derived control platelets. Unlike adult platelets, hiPSC-derived platelets were considered
previously to be more similar to fetal or neonatal platelets, also showing hyporeactivity
to stimulating agents [25,43]. This may be advantageous considering application of iPSC-
derived platelets for intrauterine or neonatal transfusion in the future. The transfusion of
hyporeactive iPSC-derived platelets avoiding adult donor-derived platelets may possibly
overcome fetal or neonatal distress and some treatment-related complications [44,45]. At
the moment, we can just speculate that higher tissue factor expression in hiPSC-derived
platelets contributes mechanistically to their decreased susceptibility to activation by tissue
factor in the ROTEM assay. This needs to be addressed in future studies.

Another interest behind our efforts was the in vitro propagation of hiPSC-derived
platelets as an ideally well-defined sustainable source of pro-angiogenic and regenerative
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factors for good manufacturing practice (GMP)-compliant cell production and regenera-
tion [46,47]. Human platelet lysate (HPL) derived from donor platelets has replaced fetal
bovine serum as a key cell culture supplement particularly for clinical-grade advanced
therapy medicinal product (ATMP) manufacture [26,48].

We expect that hiPSC-platelet technology will contribute to understand the molecular
mechanisms underlying the multiple functions of HPL [49]. Extracellular vesicles derived
from platelets can mediate most of the regenerative effect of HPL during organoid forma-
tion and skin organ regeneration [28]. Platelet numbers in the range of >108, which are
currently obtained by many researchers in laboratory scale, will be sufficient to perform
well-designed mechanistic studies towards better understanding regenerative platelet
functions. Further improvements of hiPSC-derived platelet production technologies will
consider GMP requirements [12,25,50] and might focus on using particularly histocompati-
ble hiPSCs [12,14,25,51,52]. This will enable providing clinical platelet units, particularly
for patients suffering from alloimmunization against frequent antigens, otherwise lacking
suitable donors, in the near future.

4. Materials and Methods
4.1. Maintenance and Expansion of hiPSC Lines

Primary cell samples were collected from healthy volunteers after written informed
consent according to the Declaration of Helsinki. Human iPSCs (UCB144-CT2-C) were
generated by reprogramming primary umbilical cord blood stromal cells obtained with
permission from the Institutional Review Board of the Medical University of Graz (protocols
EK 19–252, EK 21–060), using a Cytotune™-iPS Sendai reprogramming kit (Thermo Fisher
Scientific, Waltham, MA, USA), as described [27]. Dermal fibroblasts were reprogrammed
to hiPSCs and characterized by the Stem Cell Core Facility, Charité, Berlin Institute of Health
(BIHi001-A) (Human pluripotent stem cell registry (hPSCreg®). Available online: https://
hpscreg.eu/cell-line/BIHi001-A, accessed on 10 June 2021). Human iPSCs were maintained
under feeder-free conditions at 37 ◦C in 5% CO2, 5% O2 on Matrigel (Corning, NY, USA)
in mTeSR1™ medium (Stemcell Technologies, Vancouver, CB, Canada) and routinely
passaged as colonies using gentle cell dissociation reagent (Stemcell Technologies).

4.2. Differentiation of hiPSCs into MKs and Platelets

For MK production, a 2D-based three-step standard differentiation protocol was used
with modifications [12]. Feeder-free hiPSCs were harvested using AccutaseTM (Stemcell
Technologies) and seeded at a density of 1 × 104 cells per cm2 on Matrigel (Corning) in
mTeSR1 containing 10 µM Y-27632 ROCK pathway inhibitor (Selleck Chemicals, Hous-
ton, TX, USA). After 24 h, hiPSCs were incubated for another day with mTeSR1 without
Y-27632. Using the standard protocol, hiPSCs were cultured in stage I medium consisting
of StemSpanTM-ACF (Stemcell Technologies) with BMP-4 (50 ng/mL, PeproTech, Rocky
Hill, NJ, USA), bFGF (50 ng/mL, PeproTech) and VEGF (50 ng/mL R&D Systems, Min-
neapolis, MN, USA) for seven days. Alternatively, cells were incubated with StemDiffTM-
Albumin Polyvinylalcohol Essential Lipids (APEL)2 (Stemcell Technologies)-based stage
0 medium [53], containing BMP-4 (30 ng/mL, PeproTech), activin A (25 ng/mL, Pepro-
Tech, Inc), VEGF (50 ng/mL, R&D Systems) and CHIR99021 (1.5 µM; Selleck Chemicals)
as described [54], for two days, followed by an incubation with stage I medium for the
five consecutive days. Medium was changed daily. On day 5, cells were passaged to
150 mm diameter cell culture plates (Greiner Bio-One, Kremsmünster, Austria). To ob-
tain MKPs, HECs were incubated with stage II medium consisting of StemDiffTM APEL2
(Stemcell Technologies) with TPO (25 ng/mL, Stemcell Technologies), SCF (25 ng/mL;
PeproTech), FMS-like tyrosine kinase 3 ligand (Flt3L, 25 ng/mL; PeproTech), interleukin
(IL)-3, IL-6 (10 ng/mL each; both Sigma-Aldrich, St. Louis, MO, USA), 5% protein-free
hybridoma medium-II (PFHM-II, Thermo Fisher Scientific, Waltham, MA, USA), and
heparin (5 IU/mL, Merck Millipore, Burlington MA, USA) for seven days. Supernatants
containing MKPs were harvested on days 9, 12, and 14. In a final differentiation step,

https://hpscreg.eu/cell-line/BIHi001-A
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MKPs were cultured in MK/platelet maturation stage III medium containing Iscove’s Mod-
ified Dulbecco’s Medium (IMDM, Sigma-Aldrich) supplemented with 2-mercaptoethanol
(50 µM, Thermo Fisher Scientific, Waltham, MA, USA), bovine insulin (10 µg/mL), hu-
man iron-free transferrin (5.5 µg/mL), sodium selenite (5 ng/mL), bovine serum albumin
(0.5 mg/mL), linoleic acid (4.7 µg/mL, ITS+1, all Sigma-Aldrich), SCF (50 ng/mL, Pe-
proTech) and TPO (20–50 ng/mL, Stemcell Technologies) [55] for up to twelve days at
0.5–1 × 106 viable cells per mL. Where indicated, final maturation was performed with
StemSpanTM animal component free (ACF) medium (Stemcell Technologies) with 5 IU/mL
heparin (Merck Millipore) and 1× StemSpan™ megakaryocyte expansion supplement
(Stemcell Technologies) as described [12], or StemDiffTM APEL2 (Stemcell Technologies)
containing 5% PFHM-II (Thermo Fisher Scientific), SCF (50 ng/mL, PeproTech) and TPO
(50 ng/mL, Stemcell Technologies) as described [14]. An overview on media conditions
tested is given in Table 1.

Table 1. Media conditions.

Stage/Differentiation Basal Medium Supplements Reference

0/incl. activin A + CHIR StemDiff™ APEL2

BMP-4 (30 ng/mL)

[54]
VEGF (50 ng/mL)

activin A (25 ng/mL)
CHIR99021 (1.5 µM)

I/HECs StemSpan™ ACF
BMP-4 (30 ng/mL)

[12]VEGF (50 ng/mL)
bFGF (50 ng/mL)

II/MKPs StemDiff™ APEL2

TPO (25 ng/mL)

[12]

SCF (25 ng/mL)
Flt3L (25 ng/mL)
IL-3 (10 ng/mL)
IL-6 (10 ng/mL)

heparin (5 U/mL)
PFHM-II (5%)

III a/platelets StemSpan™ ACF
StemSpan™ megakaryocyte expansion

supplement (1x) [12]
heparin (5 U/mL)

III b/platelets IMDM

ITS+1

[55]
2-mercaptoethanol (50 µM)

SCF (50 ng/mL)
TPO (20–50 ng/mL)

III c/platelets StemDiff™ APEL2
PFHM-II (5%)

[14]SCF (50 ng/mL)
TPO (50 ng/mL)

Abbreviations: HECs, hemogenic endothelial cells; MKPs, megakaryocyte progenitors; BMP-4, bone morphogenetic protein 4; VEGF,
vascular endothelial growth factor; bFGF, basic fibroblast growth factor; TPO, thrombopoietin; SCF, stem cell factor; Flt3L, FMS-like tyrosine
kinase 3 ligand; IL, interleukin; PFHM, protein-free hybridoma medium; ITS+1, insulin, transferrin, sodium selenite, + linoleic acid. Three
different platelet production media (III a–c) were compared in an initial series of experiments.

4.3. Flow Cytometry

HECs, MKPs, and MKs were stained using a standard 10-color panel with FITC-
conjugated anti-human CD61, PE-conjugated anti-human CD235a, APC-eFluor780-conjugated
anti-human CD31, eFluor450-conjugated anti-human CD41a (10 µg/mL, clone HIP8, all
eBioscience, San Diego, CA, USA), PerCP-Cy5.5-conjugated anti-human CD34 (2.5 µg/mL,
clone 8G12), PE-Cy7-conjugated anti-human CD33 (1.25 µg/mL, clone P67.6), BV711-
conjugated anti-human CD45 (2 µg/mL, clone HI30), BUV395-conjugated anti-human
CD42b (4 µg/mL, clone HIP1, all BD Biosciences, Franklin Lakes, NJ, USA), and APC-
conjugated anti-human CD309 (0.44 µg/mL, clone ES8-20E6, Miltenyi Biotec, Bergisch-
Gladbach, Germany). Viability staining was performed in PBS at 4 ◦C for 15 min using
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FVS700 (3 ng/mL, BD Biosciences). Antibody staining was performed in brilliant stain
buffer (BD Biosciences) for 20 min at 4 ◦C. Cells were analyzed on a five-laser (355, 405,
488, 561, and 637 nm) BD LSRFortessa™equipped with FACSDiva Software 8.0.1 firmware
version 1.4 and Kaluza analysis software version 2.1.00002.20011 (Beckman Coulter, Brea,
CA, USA).

T-distributed stochastic neighbor embedding (tSNE) analysis of a representative stage
II differentiation time course experiment was done using FlowJo (v10.7.1) software (Beck-
mann Coulter). First, single viable cells from three time points (day 9, 12, and 14) of stage
II with or without initial induction were gated and downsampled to 12,000 cells/sample
and ‘concatenated’ to a single file afterwards. The tSNE analysis was performed using
2000 iterations, perplexity of 150 and learning rate (eta) of 5029. Calculated clusters were
gated and populations identified by their marker expression.

4.4. Harvesting and Quantification of hiPSC-derived MKPs, MKs and Platelets

To obtain MKPs, supernatants derived from stage II were centrifuged at 100× g for
15 min. MKs and platelets were harvested by differential centrifugation using 100× g for
15 min to obtain MKs, followed by 1000× g for 15 min to precipitate platelets. The amount
of trypan blue (Sigma-Aldrich) negative cells was determined in a Bürker-Türk counting
chamber (BLAU BRAND®, Wertheim, Germany). The total count of CD61+/CD41a+ MKPs
and CD61+/CD41a+/CD42b+ MKs was calculated from the percentages obtained after flow
cytometry analysis. Platelets were quantified using an automated hematology analyzer
(Sysmex KX-21N™, Sysmex Austria GmbH, Vienna, Austria).

4.5. Immunocytochemistry and May-Grünwald-Giemsa Staining

In-situ reporter staining after HEC differentiation was performed by incubating native
cells with an AlexaFluor647-conjugated anti-human CD31 antibody (4 µg/mL, clone M89D,
BD Biosciences) in basal medium for 30 min at 37 ◦C. MKs and platelets were fixed with
4% formaldehyde for 20 min at room temperature and cytospun at 550× g for 4 min
onto coated Shandon™ cytoslides™ using a Shandon™ Cytospin 4 cytocentrifuge (both
Fisher Scientific, Hampton, NH, USA). For immunocytochemistry, cells were washed in
phosphate-buffered saline (PBS), permeabilized in citrate buffer, blocked with 1x Dako
wash buffer (Agilent Technologies, Santa Clara, CA, USA) and supplemented with 10%
fetal bovine serum (FBS, Lonza, Basel, Switzerland). Monoclonal anti-human CD42b
(2 µg/mL, clone MM2/174, Novus Biologicals, Littleton, CO, USA) and anti-human CD61
(14 µg/mL, clone SJ19-09, Invitrogen, Waltham, MA, USA) primary antibodies were applied
overnight at 4 ◦C. As secondary antibodies, goat anti-mouse IgG Alexa-Fluor 488 and
goat anti-rabbit IgG AlexaFluor 555 (both Invitrogen) were applied for 1 hour at room
temperature. Cell nuclei were stained with 4′,6-diamidin-2-phenylindol (DAPI, 0.2 µg/mL,
Molecular Probes, Eugene, OR, USA). Mitochondria were stained with MitoTracker™
Red CMXRos (100 nM, Thermo Fisher Scientific) for 20 min in medium prior to fixation.
May–Grünwald–Giemsa staining was performed by incubating the slides for 3 min in
May–Grünwald solution (Carl Roth, Karlsruhe, Germany), followed by 10 min in Giemsa
solution (1:20 diluted, Carl Roth). Slides were rinsed with distilled water, air-dried and
mounted in quick-hardening mounting medium (Eukitt®, Sigma-Aldrich).

4.6. Image Acquisition

In situ reporter fluorescence-stained slides were analyzed on an EVOS® FL microscope
(Thermo Fisher Scientific). Confocal microscopy was performed using the laser scanning
microscope Axio Observer Z1 attached to LSM700 (Carl Zeiss, Jena, Deutschland). Light
microscopic cell culture pictures were obtained with an EVOS® XL microscope (Thermo
Fisher Scientific). Total slides were scanned automatically in 40 x magnification using
the VS-120-L Olympus slide scanner 100-W system and processed using the Olympus
VS-ASW-L100 program (Olympus, Shinjuku, Tokio, Japan).
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4.7. Proteome Profiler Array

The presence of angiogenesis-related proteins in hiPSC-derived and healthy blood
donor-derived platelets was detected using a proteome profiler array (proteome profiler
human angiogenesis array kit, R&D Systems) according to the manufacturer’s instructions
with loading of 2 × 107 platelets per membrane. In brief, platelets derived from hiPSC-
differentiation or from platelet concentrates, routinely produced at our blood center from
healthy blood donors, were centrifuged at 1000× g for 15 min with prostaglandin E1
(PgE1, 1 µM, Sigma-Aldrich). Platelets were lysed with RIPA buffer (Sigma-Aldrich),
supplemented with Halt™ Protease and phosphatase inhibitor cocktail (Thermo Fisher
Scientific) and sonicated for 60 seconds on ice. For proteome profiler analysis, membrane
spots were visualized and quantified using a Chemidoc system and imaging lab software
6.0.1 (all Bio-Rad Laboratories, Hercules CA, USA). Background signals were subtracted
and signals were normalized compared to the reference spots located on the arrays.

4.8. Rotational Thromboelastometry

ROTEM® (Tem® International GmbH, Germany) was used as in vitro coagulation
assay. Briefly, 20 µL calcium chloride solution reagent (Tem®) and 20 µL ex-tem® reagent
containing tissue factor (Tem®) were pipetted into a pre-warmed 37 ◦C cup using an
automated pipette as indicated by ‘on screen’ instructions. Various amounts of adult
platelets derived from healthy blood donors after written informed consent and iPSC
derived platelets (1 × 105, 1 × 106, 1 × 107, 1 × 108, respectively) diluted in 300 µL citrated
blood group AB plasma (pool of 10 donations) were added and analyzed via EXTEM®

assay for 30 min. Clot formation time (until 20 min) and maximum clot firmness were
evaluated. Pure citrated blood group AB plasma was used instead of citrated whole blood
as a reference as described [33].

4.9. Statistical Analysis

Statistical analysis was performed in GraphPad Prism version 6.05 (GraphPad Soft-
ware, San Diego, CA, USA), using unpaired or paired student’s t-tests or two-way ANOVA
analysis with multiple comparison, as indicated. Differences were considered statistically
significant with a p-value < 0.05.

5. Conclusions

Platelet production from hiPSCs or other stem/progenitor cell types and cell lines
offers great opportunities providing human platelets for regenerative medicine and par-
ticularly in selected medical indications for patients lacking suitable donors. This study
demonstrates that an improved protocol can further ameliorate platelet production from
hiPSCs. We introduced tSNE analysis of polychromatic flow cytometry results for better
monitoring hiPSC-MK maturation. ROTEM coagulation analysis confirmed the immature
functional state of hiPSC-derived platelets. The rich pro-angiogenic proteome of the hiPSC
platelets indicated applicability in regenerative medicine in addition to the visionary use
for transfusing patients in the near future.
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Appendix A

Figure A1. Representative flow cytometry plots of (A) hiPSC-derived HECs corresponding to Figure 1B day 7 reporter
staining and (B) MKPs.

Figure A2. Representative flow cytometry dot plots of megacaryocyte maturation with (top row, +AC) or without initial
induction (bottom row, Standard) of UCB144-CT2-C hiPSCs during stage III culture analysed for CD41a/CD42b reactivity
at indicated time points.
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Figure A3. Illustration of hiPSC-derived platelet phenotype. The hiPSC-derived platelets were harvested d 9 + 7 from
cultures using our improved protocol, fixed and stained for CD61 (green) and with mitotracker (red). Scale bar 2 µm.
Representative platelets were depicted.
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