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Abstract
Background: Amyloid fibrillar aggregates of proteins or polypeptides are known to be associated with
many human diseases. Recent studies suggest that short protein regions trigger this aggregation. Thus,
identifying these short peptides is critical for understanding diseases and finding potential therapeutic
targets.

Results: We propose a method, named Pafig (Prediction of amyloid fibril-forming segments) based on
support vector machines, to identify the hexpeptides associated with amyloid fibrillar aggregates. The
features of Pafig were obtained by a two-round selection from AAindex. Using a 10-fold cross validation
test on Hexpepset dataset, Pafig performed well with regards to overall accuracy of 81% and Matthews
correlation coefficient of 0.63. Pafig was used to predict the potential fibril-forming hexpeptides in all of the
64,000,000 hexpeptides. As a result, approximately 5.08% of hexpeptides showed a high aggregation
propensity. In the predicted fibril-forming hexpeptides, the amino acids – alanine, phenylalanine, isoleucine,
leucine and valine occurred at the higher frequencies and the amino acids – aspartic acid, glutamic acid,
histidine, lysine, arginine and praline, appeared with lower frequencies.

Conclusion: The performance of Pafig indicates that it is a powerful tool for identifying the hexpeptides
associated with fibrillar aggregates and will be useful for large-scale analysis of proteomic data.

Background
Understanding protein aggregation has become increas-
ingly important with the discovery of a correlation
between amyloid-like fibrils resulting from protein aggre-
gation and diseases such as Alzheimer's disease, Parkin-
son's disease, transmissible spongiform
encephalopathies, and type II diabetes [1-4].

Not only the intrinsically disordered proteins, but also
natively folded proteins can aggregate into amyloid-like
fibrils, as has been found in β2-microglobulin, lysozyme,
transthyretin, and the prion protein [5-7]. It is believed
that specific continuous regions within the amyloid fibril-
forming proteins can act as facilitators or inhibitors of
amyloid fibril formation and determine the proteins'
aggregation tendency [6,8-12]. Therefore, recognizing the
specific regions that determine the aggregation propensity
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of a protein is of fundamental interest, since this will help
in understanding the mechanism of amyloid formation
and lead to effective treatments for amyloid illnesses [13].

As reviewed recently [13], there are two types of computa-
tional approaches used to investigate the aggregation pro-
pensity of peptides or proteins and to identify the
segments most prone to form fibrils (hot spots). The first
approach uses phenomenological models based on the
physicochemical properties of the amino acids (e.g. β-pro-
pensity, hydrophobicity, aromatic content, and charge) to
predict changes in aggregation rates with mutation as well
as absolute aggregation rates and hot spots [5,6,14-19].
The second approach combines atomistic simulations of
a protein segment with the microcrystal structure of short
fibril-forming peptides to gain insight into aggregation
propensity [1,20-22]. This approach may help to elucidate
the structural details of ordered aggregates. In addition to
the approaches described above, a sequence pattern
obtained by saturation mutagenesis analysis [11] has
been proposed to identify amyloidogenic stretches in pro-
teins.

In this study, we proposed the Pafig (Prediction of amy-
loid fibril-forming segments) to identify fibril-forming
segments in proteins based on a support vector machine
(SVM) [23,24]. The predictive model of Pafig was also a
phenomenological model, which was based on 41 physi-
cochemical properties selected by a two-round selection
from 531 physicochemical properties in the Amino acid
index database (AAindex) [25,26]. Because short regions
of a protein were responsible for its amyloidogenic behav-
ior [1,5,6,11,18], Pafig was trained by hexpeptides, which
were decomposed by scanning for segments that could
form fibrils with a six-residue sliding window. Pafig is
simple, fast, and suitable for large-scale calculations such
as proteomics analyses.

Methods
Datasets and physicochemical properties
In this study, we constructed a dataset, the Hexpepset
dataset, to train the model and test the robustness of Pafig.
The six-residue peptides that could form fibrils were
defined as positive samples and those that could not form
fibrils as negative samples. The Hexpepset dataset con-
sisted of 2452 hexpeptides (1226 positive samples and
1226 negative samples). The positive samples in the Hex-
pepset dataset were collected by scanning known fibril-
forming fragments [1,5,6,8,14,18,20,27] (Additional file
1) with a six-residue window. Because a large difference
between the positive and negative samples can hamper
training of the SVM [28,29], the negative set also con-
tained 1226 hexpeptides selected from two different
sources. The first negative sample part contained 876 sam-
ples, which was selected by scanning the fragments that

had been proved not to form fibrils by experi-
ments[18,20]. The second negative sample part consisted
of 350 samples. These samples were randomly selected
from the hexpeptides obtained by scanning the fragments
except the experimentally determined amyloidogenic
regions of five proteins (Transthyretin, Genbank Acces-
sion No. AAB35640.1; Major prion protein precursor,
Genbank Accession No. P04156; Apo-AI, Genbank Acces-
sion No. P02647; Alpha-synuclein, Genbank Accession
No. P37840.1; Beta-2-Microglobulin, Genbank Accession
No. 1LDS) [1,6,27]. The Hexpepset dataset could be
downloaded from website of Pafig [30].

There are totally 544 physicochemical properties in the
amino acid index database version 9.0 (AAindex) [25,26],
which is a collection of published amino acid indices rep-
resenting different physicochemical and biological prop-
erties of amino acids. Each physicochemical property
consists of a set of 20 numerical values for amino acids.
The property having the value 'NA' in a value set of amino
acid index was discarded. Finally, 531 properties were
used for the following mining method.

Physicochemical properties selection and Encoding 
Schemes of Pafig
The input feature of Pafig consisted of 123 elements based
on 41 physicochemical properties. The properties selec-
tion and encoding schemes of Pafig was illustrated in Fig-
ure 1 and calculated as follows:

The 531 physicochemical properties were downloaded
from Aaindex [25]. The values of each property were
scaled to zero mean and a standard deviation of 1.

According to a physicochemical property pi, a hexpeptide
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A standard genetic algorithm [31] was used to select the
final physicochemical properties of Pafig with population
size of 10, crossover probability of 0.8, mutation proba-
bility of 0.01 and predetermined number of 200 genera-
tions. The overall accuracy (Q2) was adopted as the
fitness.

Support vector machine
Support vector machine (SVM) was used to identify an
optimal hyperplane in order to separate two classes of
samples [23,24]. SVM uses kernel functions to map the
original data to a feature space of higher dimensions and
also locates an optimal separating hyperplane. For SVM
implementation, we used LIBSVM [32] with a Radial Basis
Function (RBF kernel) and a Polynomial kernel. The
parameters were selected with the LIBSVM parameter
selection tool (easy.py).

Prediction system assessment
True positives (TP) and true negatives (TN) were identi-
fied as the positive and negative samples, respectively.
False positives (FP) were negative samples identified as
positive. False negatives (FN) were positive samples iden-
tified as negative. The prediction performance was tested
with sensitivity (TP/(TP+FN)), specificity (TN/(TN+FP)),
overall accuracy (Q2), and the Matthews correlation coef-
ficient (MCC). The Q2 and MCC were calculated as fol-
lows:

Results
Properties selection
The properties of Pafig were selected by a two-round selec-
tion on Hexpepset dataset from the AAindex [25,26].
Firstly, a preliminary properties selection on all of the
physicochemical properties (531 properties) was per-
formed using the following steps. (1) Every hexpeptide in
the Hexpepset dataset was encoded by each physicochem-
ical property. (2) The overall prediction accuracy (Q2)
corresponding to each property was calculated by LIBSVM
with a 10-Cross validation on Hexpepset dataset. (3) All
performance of each physicochemical property was
ranked according to their overall prediction accuracy
(Q2). (4) The overall prediction accuracy (Q2 = 60%) was
used as the cut off to select properties. As a result, 155
physicochemical properties were selected from 531 prop-
erties in AAindex and used as the candidates for further
selection. Secondly, an efficient bi-objective genetic algo-
rithm with population size of 10, crossover probability of
0.8, mutation probability of 0.01 and predetermined
number of 200 generations was utilized to mine informa-
tive physicochemical properties and combine the selected
properties to build a prediction model. The overall predic-
tion accuracy (Q2) was adopted as the fitness. All results
of genetic algorithm were obtained by LIBSVM with a 10-
Cross validation on Hexpepset dataset and were shown in
Figure 2.
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Average overall accuracy among the individuals and the best overall accuracy of different generationsFigure 2
Average overall accuracy among the individuals and the best 
overall accuracy of different generations. The results were 
obtained by LIBSVM with 10-cross validation on Hexpepset 
dataset. Q2: overall accuracy.

Physicochemical property selection and encoding schemes of PafigFigure 1
Physicochemical property selection and encoding schemes of 
Pafig.
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As shown in Figure 2, the SVM classifier obtained the best
overall accuracy Q2 = 81% and MCC = 0.63 in an individ-
ual of the 186th generation, where the number of selected
physicochemical properties was 41. The standard devia-
tions of Q2 and MCC among the 10-fold cross-validation
of the best individual were 1% and 0.01, respectively.
Table 1 shows the selected physicochemical properties by
Genetic Algorithm and the overall accuracy obtained by
the corresponding property. The best property of all the
selected properties was VINM940104, which obtained the
best overall accuracy Q2 = 66% and corresponds to the
"Normalized flexibility parameters (B-values) for each
residue surrounded by two rigid neighbours" [33].

Prediction performance of Pafig
We investigated the performances using 41, 155, or 531
physicochemical properties. The 10-fold cross validation

tests on the Hexpepset dataset were carried out by LIBSVM
with RBF kernel. As shown in Table 2, the classifier
employing the 41 properties obtained the best perform-
ance, with the overall prediction accuracy (Q2) of 81%
and the Matthews correlation coefficient (MCC) of 0.63,
which was better than using 155 and 531 physicochemi-
cal properties. This improvement is mainly due to the
reduction in noise and outliers present in the 378 and 531
physicochemical properties, which influence the perform-
ance of the Support Vector Machine [34]. In addition, we
also evaluated the effect of different SVM kernel and
found that the performance with the Radial Basis Func-
tion (RBF) kernel was better than the Polynomial kernel,
which only obtained an overall accuracy (Q2) of 77% and
a Matthews correlation coefficient (MCC) of 0.54 using
the selected 41 physicochemical properties with best
parameter of d = 3.

The receiver operating characteristics (ROC) score was
usually used as the primary measure of the machine learn-
ing method performance and provided an overview of the
possible cut-off levels in the test performance [35]. The
ROC curves for the random classifier and classifiers with
property of VINM940104, properties with overall predic-
tion accuracy (Q2) ≥ 60% and properties selected by
Genetic Algorithm were shown in Figure 3. The result
revealed that the classifier with the 41 predictive proper-
ties selected by genetic algorithm was better than the
property of VINM940104 and properties with overall pre-
diction accuracy (Q2) ≥ 60%.

In addition, we also compared the performance of Pafig
with other methods [5,6,27] using the same dataset. The
Alg1 [27] is based on the intrinsic aggregation propensi-
ties to identify the regions of the protein sequence that are
most important for promoting amyloid formation. The
Alg2 [5] and Alg3 [6] were used the observed packing den-
sity and the relative experimental aggregation propensities
of the 20 natural amino acids to detect the amyloid fibril-
forming segments. As shown in the Figure 3, we could
clearly found that performance of Pafig was better than
these popular methods. Moreover, these results also indi-
cate that Pafig is a powerful tool for predicting the amy-
loid fibril-forming segments in the protein sequence.

Table 2: Prediction performance on the Hexpepset dataset with different properties. All of the results were obtained by LIBSVM with 
RBF kernel.

Number of properties Specificity(%) Sensitivity(%) Q2a (%) MCCb

1c 61 70 66 0.31
41d 80 82 81 0.63
155e 71 73 72 0.45
531f 98 15 57 0.24

aoverall prediction accuracy; bMCC, Matthews correlation coefficient; cthe property of VINM940104; dproperties selected by Genetic Algorithm; 
eproperties that obtained the Q2 higher or equal than 60%; fall physicochemical properties in the AAindex.

Table 1: The AAindex identities and the overall accuracy (Q2) of 
the 41 properties selected by Genetic Algorithm. The overall 
prediction accuracy (Q2) was calculated using the corresponding 
property by LIBSVM with RBF kernel of 10-Cross validation on 
Hexpepset dataset.

ID of AAindex Q2 ID of AAindex Q2

VINM940104 66 CHOC760104 62
JACR890101 64 CORJ870103 62

NADH010103 63 CHOP780211 62
MONM990201 63 EISD860101 62
DESM900101 63 CIDH920104 62
JANJ780103 63 NAKH920105 62

ROSM880102 63 WOLR810101 62
PONP800102 63 ZIMJ680103 61
NADH010104 63 PARS000101 61
MEIH800102 62 KIMC930101 61
VINM940103 62 NAKH900108 61
RACS770102 62 CORJ870106 61
BEGF750102 62 RICJ880113 60
CHOP780210 62 KOEP990102 60
MONM990101 62 COWR900101 60
BAEK050101 62 GUYH850102 60
OLSK800101 62 NADH010105 60
PONP930101 62 WERD780101 60
PALJ810104 62 CHAM830101 60
FASG890101 62 RACS770101 60
MIYS990105 62
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Reliability index for Pafig predictions
When machine learning approaches are selected to clas-
sify the samples, it is important to know the reliability of
the prediction result [36-39]. In this study, a reliability
index (RI) was assigned to a predicted hexpeptide based
on the output of LIBSVM. Provided that an output of LIB-
SVM for a hexpeptide is O, the RI value is thus computed
as RI = INTEGER (20 × abs(O-0.5)). The value of RI could
provide information about the certainty of the classifica-
tion and could be used as an indicator of prediction cer-
tainty for a particular hexpeptide. Figure 4 showed the
expected prediction accuracies and the fraction of hexpep-
tides with a given RI value. For example, about 42% of the
hexpeptides had an RI ≥ 7, and of these, 89% were cor-
rectly predicted. The result was obtained by LIBSVM with
10-fold cross validations on the Hexpepset dataset.

Identification of fibril forming peptides in all hexpeptides
Pafig was used to predict the potential fibril-forming hex-
peptides in all of the 64,000,000 hexpeptides. The frac-
tion of possible fibril-forming hexpeptides with different
RI cutoffs was shown in Figure 5. We found that 5.08% of
fibril-forming hexpeptides had an RI ≥ 7, which was the
minority of all hexpeptides [11]. As shown in Figure 5, the
hydrophobic amino acids (alanine, phenylalanine, iso-
leucine, leucine and valine) occurred at the higher fre-
quencies in the predicted fibril formation hexpeptides.
These results matched the hypothesis [6,27,40] that
hydrophobic residues usually induced aggregation. How-
ever, the amino acids with positive or negative charges,
such as aspartic acid, glutamic acid, histidine, lysine and

arginine appeared in the predicted fibril formation hex-
peptides with lower frequencies. In addition, proline was
found with the lowest frequency in the predicted fibril-
forming hexpeptides, as expected, as proline was a β-sheet
breaker and most fibrils had crossing β-structures [11,41].

Identification of the frequency of fibril-forming 
hexpeptides in proteins of the UniProt database
The UniProt Knowledgebase (Release 13.5) analysed here
was taken from the European Bioinformatics Institute
(EBI), since it was the central access point for extensively
curated protein information, including function, classifi-
cation and cross-references. Pafig was used to predict the
possible fibril forming hexpeptides of every protein in the
database. As shown in Table 3, archaea, bacteria and
plants had a consistently higher frequency of fibril-form-
ing hexpeptides. However, human had a relatively lower
aggregation propensity. These results also suggested that
evolution was as a factor to oppose protein aggregation by
minimizing the amount of strongly aggregating sequence
stretches [42]. Moreover, we classified the UniProt Knowl-
edgebase based on the gene ontology [43]. As shown in
Table 4, the frequency of fibril forming hexpeptides was
very similar among the gene ontology Biological process,
Cellular component and Molecular function classes.
However, the sub-classes of GO:0009055(electron carrier
activity) and GO:0005215(transporter activity) in the
molecular function class, which consisted of many mem-
brane proteins, had higher frequency of fibril-forming
hexpeptides. This result indicated that the aggregation
propensity of membrane proteins was somewhat higher
than other proteins.

Average prediction accuracy calculated cumulatively with RI above a given valueFigure 4
Average prediction accuracy calculated cumulatively 
with RI above a given value. For example, 42% of all hex-
peptides had an RI ≥ 7, and of these hexpeptides, 89% were 
correctly predicted. The results were based on the Hex-
pepset dataset with 10-fold cross validations.

ROC curves of random classifier, classifier with property of VINM940104, properties with overall prediction accuracy (Q2) ≥ 60% and properties selected by Genetic Algorithm and some published classifiers (Alg1 [27] Alg2 [5] and Alg3 [6])Figure 3
ROC curves of random classifier, classifier with property of 
VINM940104, properties with overall prediction accuracy 
(Q2) ≥ 60% and properties selected by Genetic Algorithm 
and some published classifiers (Alg1 [27] Alg2 [5] and Alg3 
[6]).
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Discussion
Amyloid fibrillar aggregates of proteins or polypeptides
are potentially lethal and related to many diseases, such as
Alzheimer's disease, Parkinson's disease, transmissible
spongiform encephalopathies, and type II diabetes [1-4].
Here, we have described a method for predicting the amy-
loid fibril-forming propensities of hexpeptides. Moreover,
we used this approach to identify the possible fibril- form-
ing peptides in all hexpeptides and the frequency of amy-
loid fibril-forming hexpeptides in proteins of the UniProt
database. All of these results will help us in understanding
the cause of the amyloid fibrillar aggregates of peptides.

In this study, we did not start from some properties which
had been proved to relate with the amyloid fibrillar aggre-
gates of peptides, such as the Packing Density, Hydropho-
bicity, Charge β-sheet propensity and so on [5,6,14,27].
However, we firstly evaluated every physicochemical
property in the AAindex and found some physicochemical
properties related to amyloid fibrillar aggregates of pro-
teins or polypeptides. Secondly, the genetic algorithm was
used to select a physicochemical property set. The results
indicated that the selected properties could complement
one another to yield a powerful and efficient predictor. In
addition, a hexpeptide with every physicochemical prop-
erty was encoded by three elements rather than the aver-
age value of the corresponding property. The performance
of employing this encode scheme was better than using
one element (data not shown). The detailed encode
schemes was shown in the section of Methods.

The features of Pafig did not directly contain the structural
features of the proteins. Thus, it is possible that some of
the structure information was ignored by Pafig, which
also existed as the protein aggregation and fibril forming
factors [1,20]. However, the lack of structural information
was likely overcome by the inclusion of different physico-
chemical properties in the Pafig [39]. Moreover, the sam-
ple size of the training dataset of Pafig compared with the
number of all hexpeptides was very small, which would
affect the performance of Pafig. Therefore, the future work
is to collect more data by combining biological knowl-
edge and related sources and add some structure feature
into Pafig.

Conclusion
In this study, we used 41 physicochemical properties to
identify the specific regions (six consecutive residues)
associated with amyloid fibrillar aggregates. As this
method is computationally efficient and accurate, it can
be used to analyze large systems, such as entire proteom-

Table 3: Fibril-forming Propensity of proteins in the Uniprot Knowledgebase classed based on taxonomy. The Predicted fibril-forming 
hexpeptides were identified by obtaining RI ≥ 7.

Taxonomic divisionsa Number of Proteins Number of hexpeptides Frequency of Predicted fibril-forming hexpeptides

Archaea 14617 4124738 0.12 ± 0.18
Bacteria 222363 68121983 0.12 ± 0.18

Fungi 21711 10261229 0.11 ± 0.16
Human 19804 10726378 0.09 ± 0.14

Invertebrates 16589 6276047 0.10 ± 0.15
Mammals 18319 6547411 0.11 ± 0.16

Plants 25129 8265929 0.12 ± 0.19
Rodents 24350 12441185 0.10 ± 0.14

Vertebrates 13852 4709586 0.10 ± 0.15
Viruses 12283 5518406 0.10 ± 0.15

aThe division of proteins is same to the Uniprot database. Every protein is present in exactly one taxonomic division. Human contains all human 
related proteins. Mammals contain all mammalian proteins except those from human and rodents. Vertebrates contain all vertebrate proteins 
except those from mammals. Invertebrates contain all eukaryotic proteins except those from vertebrates, fungi and plants.

The frequency of amino acid in the predicted fibril-forming hexpeptides with different RI cutoffsFigure 5
The frequency of amino acid in the predicted fibril-
forming hexpeptides with different RI cutoffs. The left 
column is the different RI cutoffs. PM(%) in the right column 
is the percentage of predicted fibril-forming hexpeptides in 
all hexpeptides. The other columns represent the frequency 
of different amino acids in the predicted fibril-forming hex-
peptides with different RI cutoffs. Red represents higher fre-
quency, green represents lower frequency and black 
represents equal levels of frequency.
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ics data. Moreover, we have found that the amino acids –
alanine, phenylalanine, isoleucine, leucine and valine
occurred at the higher frequencies and the amino acids –
aspartic acid, glutamic acid, histidine, lysine, arginine and
proline appeared with the lower frequencies in the pre-
dicted fibril-forming hexpeptides. The amyloid fibrillar
aggregation propensity of membrane proteins was some-
what higher than other proteins.
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Table 4: Fibril-forming Propensity of proteins in the Uniprot Knowledgebase classed based on Gene Ontology. The Predicted fibril-
forming hexpeptides were identified by obtaining RI ≥ 7.

Accession number of Gene Ontology Number of Proteins Number of hexpeptides Frequency of Predicted fibril-forming hexpeptides
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