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Purpose: The number of subjects needed to establish the normative limits for visual
field (VF) testing is not known. Using bootstrap resampling, we determined whether
the ground truth mean, distribution limits, and standard deviation (SD) could be
approximated using different set size (x) levels, in order to provide guidance for the
number of healthy subjects required to obtain robust VF normative data.

Methods: We analyzed the 500 Humphrey Field Analyzer (HFA) SITA-Standard results
of 116 healthy subjects and 100 HFA full threshold results of 100 psychophysically
experienced healthy subjects. These VFs were resampled (bootstrapped) to determine
mean sensitivity, distribution limits (5th and 95th percentiles), and SD for different ‘x’
and numbers of resamples. We also used the VF results of 122 glaucoma patients to
determine the performance of ground truth and bootstrapped results in identifying
and quantifying VF defects.

Results: An x of 150 (for SITA-Standard) and 60 (for full threshold) produced
bootstrapped descriptive statistics that were no longer different to the original
distribution limits and SD. Removing outliers produced similar results. Differences
between original and bootstrapped limits in detecting glaucomatous defects were
minimized at x ¼ 250.

Conclusions: Ground truth statistics of VF sensitivities could be approximated using
set sizes that are significantly smaller than the original cohort. Outlier removal
facilitates the use of Gaussian statistics and does not significantly affect the
distribution limits.

Translational Relevance: We provide guidance for choosing the cohort size for
different levels of error when performing normative comparisons with glaucoma
patients.

Introduction

Statistical analysis of visual field (VF) sensitivity
data reported by commercially available instruments
(e.g., the Humphrey Field Analyzer, HFA) are used
to determine whether a patient’s sensitivity is statis-
tically ‘‘normal,’’ such as in the case of patients with
glaucoma.1,2 Normative data are typically generated
by recruiting healthy subjects, and the distribution
limits of the normative data are empirically deter-
mined using conventional statistics.3–10 Thus, identi-

fication of VF defects is contingent upon the
characteristics of the normative distribution, and
may differ across instruments and various research-
and clinically based populations.

A number of questions remain regarding the
development of normative databases for VF testing.
First, how many subjects are required to produce
resultant descriptive statistics that are robust esti-
mates of the total population from which the sample
is drawn? Second, in order to mitigate the need for
further data collection, how do the distribution limits
change with an increase in the underlying normative
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sample, and whether this can be altered using
statistical resampling methods (e.g., bootstrapping)?
Third, what is the contribution of natural statistical
outliers to the normative distribution?

These questions all ultimately relate to the number
of subjects needed to generate normative data that
reflects the underlying population of interest. A
sample size that is too small may not be adequately
representative of a healthy population.11 A sample
size that is too large may represent an unwise use of
resources—time, personnel, and cost—where a small-
er cohort may provide effectively the same result, and
‘‘big data’’ may confound analysis through the
introduction of unexpected biases.12

In this paper, we test a number of hypotheses. We
first determined if there was a smaller sample size of
healthy subjects that is sufficient for determining
normative distribution limits relative to the size of the
complete cohort. This could then provide guidance
for sample size selection for descriptive statistic
parameters, such as mean and upper and lower
distribution limits, and thus, identification of VF
anomalies. There is debate regarding the characteris-
tics of the underlying distribution of VF sensitivities,
depending on whether naı̈ve or experienced subjects
are used, and whether outlier results are excluded
from normative data, as these also impact upon the
descriptive statistics of VF sensitivity.10,13 Thus, we
determined whether the presence of outliers affects the
distribution of normal VF sensitivities. Finally, we
considered whether the normative distribution limits
obtained from both the original cohort and boot-
strapped data sets returned similar numbers and
depths of VF defects, ‘events’, in a cohort of patients
with glaucoma.

Methods

The healthy subjects in this study consisted of two
groups: a retrospective cohort and a prospective
cohort. All healthy subjects had undergone extensive
ophthalmic examination at the Centre for Eye Health,
University of New South Wales, which included, but
was not limited to the following: measurement of
visual acuities, intraocular pressure using an appla-
nation tonometer, slit-lamp examination, dilated
fundus examination, standard automated perimetry
(Humphrey Field Analyzer (HFA) 24-2 SITA-
Standard; Carl Zeiss Meditec, Dublin, CA), color
fundus photography, and optical coherence tomogra-
phy. Inclusion criteria for all healthy subjects were as
per previously reported and included, but was not

limited to the following: best-corrected visual acuity
of 20/20 for patients ,55 years old and 20/25 for
patients 55 years or older; intraocular pressures
between 10 and 21 mm Hg; normal optic discs and
fundus appearance; spherical equivalent refractive
error less than 8.00 diopters (D) and astigmatism less
than 3.00 D; and no personal medical history of
diabetes.4,13

From these patients, VF data were extracted. Left
eye results were converted to right eye results for
consistency. Sensitivities (in dB) were obtained from
the printout: 52 test locations and 74 test locations
from locations within the 24-2 and 30-2 test grids,
respectively, after excluding the fovea and the two
locations adjacent to the physiologic blind spot.

Participants: Retrospective Cohort

The retrospective cohort consisted of 500 24-2
SITA-Standard VF results of 112 healthy subjects
(mean age: 59.1 6 8.1 years; 46 males) seen between
January and July 2017 at Centre for Eye Health for
ophthalmic examination. All VF results from each
subject were extracted, such that each subject
potentially contributed more than one VF result.

Studies have suggested pooling data from age-
corrected cohorts spanning a range of ages to a
uniform metric for one large normative database or to
facilitate comparisons across a variety of age rang-
es.3,4,10,13–15 We continue to use this method in the
present study to pool data within our cohorts by
converting all sensitivity results in a point-wise
manner into a 50-year-old equivalent patient.

Although the SITA-Standard algorithm modulates
resultant sensitivities based on the subject’s age using
the full threshold age-correction factors, the further
effects of postprocessing are not precisely known, and
so we determined whether or not there was a
significant age-related effect on sensitivity in the
present cohort.14,16 Here, the null hypothesis was
that there is no significant age-related effect, meaning
that sensitivities may simply be grouped and pooled
together. When sensitivities (in dB) were plotted as a
function of age (in years), linear regression analysis
found slopes that were significantly different to zero
at all locations, indicating an age-related effect on
sensitivities. Thus, to mitigate the effect of age, we
age-corrected all sensitivities to that of a 50-year-old
equivalent patient, as per previously published
methods and using the slopes of change found using
the above regression analysis (Supplementary Fig.
S1).3,10,13–15 These slopes were slightly higher (by 0.11
dB per decade, t ¼ 3.306, df ¼ 53, P ¼ 0.0017) than
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those found by Heijl et al.10 using the full threshold
procedure, and may reflect the extra modulation
factor used in SITA.

Participants: Prospective Cohort

Although the retrospective cohort consisted of
subjects with normal ophthalmic examination, these
were still perimetrically naı̈ve subjects, and hence
there is the potential for variability attributable to
learning effects.17 Thus, we also examined the
sensitivities of a prospectively recruited cohort of
100 healthy subjects (mean age: 36.5 6 15.7 years; 46
males) who had undergone VF testing on the HFA
using the full threshold paradigm and the 30-2 test
grid. Each subject contributed only one test result,
that is, a single average sensitivity at each of the 75
test locations (including the fovea and excluding the 2
points near the blind spot) within the 30-2 test grid)
from one eye, following extensive prior perimetric
testing experience. These results were also age-
corrected into a 50-year-old equivalent subject for
pooling and analysis.13

Modelling Normative Cohort Size Using
Bootstrapping Resampling

A nonparametric bootstrap was used to resample
with replacement sensitivity data from retrospective
and prospective cohorts (Fig. 1).18 From the original
cohort, we resampled a subset of the data (set size x).
Each resample could consist of the same subjects, as
replacement was performed. This process was repeat-
ed k (number of resamples) times.

To determine the effect of cohort size on ‘‘norma-
tive distribution’’ parameters, we systematically var-
ied the number of resample sensitivities from the total
cohort (we termed this the set size, x). For example, x
¼ 6 indicates a set of six sensitivity values resampled
from the original total cohort (i.e., either the
retrospective or prospective cohorts). Using the
resampled sensitivities, we determined the mean (i.e.,
the central tendency), 95th percentile and 5th
percentile (i.e., the distribution limits), and the
standard deviation (SD). We tested a range of values
for x (for the retrospective cohort: x ¼ 6, 12, 24, 36,
48, 60, 75, 100, 150, 200, 250, 300, 350, 400, 450, and
500; for the prospective cohort: x ¼ 6, 12, 18, 24, 30,
36, 48, 60, 72, 85, and 100), which was capped at the
total number of subjects in the cohort. To determine
the confidence limits for the descriptive parameters
from these set sizes, we tested two levels of k (number
of resamples), the number of resamples from the total

cohort, which were k ¼ 100 and k ¼ 200. We also
tested whether or not the value of k affected the
resultant descriptive statistics independently of the set
size. Thus, for set sizes of x ¼ 6, 30, 60, and 500, we
tested different levels of k: 1, 4, 8, 12, 16, 20, 24, 28,
36, 48, 60, 72, 84, 96, 120, 150, 200, 250, 300, 400, 500,
and 750. This bootstrap procedure was performed on
a custom written macro program using Visual Basic
Editor in Microsoft Excel 2010 (Microsoft Corpora-
tion, Redmond, WA).

The differences in the mean and distribution limits
between the true sample values (i.e., parameters from
the original cohort data, which we refer to as the
‘ground truth’ parameters) and the bootstrapped
values were determined for each combination of x
and k. The difference (in dB) was plotted as a function
of x to determine the limit at which there ceased to be
a significant change (i.e., when the difference between
ground truth and bootstrapped parameters was
minimized). A positive value in the difference from
the ground truth and bootstrapped parameters

Figure 1. A flowchart describing the bootstrapping process used
in the present study. The ‘‘ground truth’’ data set consisted of all
of the subjects for each of the retrospective (n ¼ 500) or
prospective (n ¼ 100) cohorts. A resample of set size x was
performed, whereby a subset of data were extracted (yellow block
arrows). The subjects were ‘‘replaced,’’ such that subsequent
resamples could include subjects in previous resamples (blue
arrows). This resampling process was repeated k number of times.
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indicates that the ground truth was higher than the
bootstrap, while the converse was true for a negative
difference.

Outlier Removal

Outliers were identified and removed using a
combination of robust nonlinear regression and
outlier removal (with Q ¼ 10%; GraphPad Prism 7;
GraphPad Inc., La Jolla, CA).19 In this method of
robust nonlinear regression, it is assumed that
variation around the curve follows a Lorentzian
distribution, rather than Gaussian, which has wide
tails and is less affected by outliers in the fit. Unlike
least squares fitting, which quantifies the variance
around the curve using Sy.x (the SD of the residuals),
robust nonlinear regression determines the 68.27th
percentile of the absolute values of the residuals (1 SD
from the mean in a Gaussian distribution), and this is
called the robust SD of the residuals (RSDR). Each
residual is divided by the RSDR, and this ratio
approximates a t distribution, from which a P value
can be determined. Outliers that are greater than the
value Q (controlling the false discovery rate) are then
removed.

We compared the number of outliers removed by
Q ¼ 0.1% (n ¼ 14, 0.05%), 1% (n ¼ 24, 0.09%), and
10% (n ¼ 119, 0.46%), and examined the sensitivities
identified as outliers. As expected, a Q of 10%
removed the greatest number of outliers at all
locations; over 52 test locations, this equated to
approximately 1.8 more values removed per location
compared with the 1% level. Central tendency results
were similar, but the variance was reduced when using
Q¼ 10%. The Q¼ 10% condition removed points that
there at least 3.3 SD away from the mean, equating to
a P value of 0.05%, which is the lowest level of
significance flagged on the HFA total deviation and
pattern deviation maps. Thus, in order to obtain data
with the most likely outliers removed, we continue to
report results using Q ¼ 10%.

Outlier removal was performed on both the
retrospective and prospective cohorts to obtain a
‘‘cleaned’’ data set. The above procedures for
obtaining the ground truth and bootstrapped means
and distribution limits were applied to the cleaned
data set, and were again compared across different
levels of x and k. Furthermore, the mean and
distribution limits were also compared between the
complete data set (i.e., including those points deemed
to be outliers) and the cleaned data set. Here, we
tested the hypothesis that the cohort inclusive of all
points and the cohort trimmer of outliers return

different results in descriptive statistics and also have
different levels of k at which no change from the
ground truth parameter is obtained.

Empirical Testing of the Bootstrapped
Results in Patients With Glaucoma

Finally, we empirically tested the capacity of the
bootstrapped-derived parameters for various norma-
tive cohort sizes to detect SITA-Standard VFs deficits
in a cohort of patients with open-angle glaucoma seen
and/or treated at the Centre for Eye Health. Inclusion
criteria for the glaucoma patients have been previ-
ously detailed, but in short, required characteristic
glaucomatous optic nerve head changes (e.g., thinning
of the neuroretinal rim, notching, increased vertical
cup-disc ratio), retinal nerve fiber layer defects, open
angles on gonioscopy (angle closure glaucoma pa-
tients were excluded), and with or without VF
defects.3,4 Intraocular pressures were not used as part
of the diagnostic criteria. Inclusion criteria for
analysis of their VF results were as per the healthy
cohort described above.

The 5th percentile of the retrospective normative
cohort was used as the lower limit of normality, (i.e.,
‘events’).3–5 This offered a practical method for
assessing the normative cohort sizes required to result
in the same level of performance in terms of defect
identification as when using the ground truth
parameters. We used 390 SITA-Standard VF results
of 112 patients with open-angle glaucoma (mean age:
62.0 6 12.6 years; 189 right eyes; 74 males; average
mean deviation: �3.56 6 3.89 dB), and determined
the number and depth of ‘events’ (difference in
sensitivity from the mean in dB) flagged when using
the 5th percentiles obtained from the ground truth
and from the different levels of k. We determined the
level of k at which there was no longer a significant
change from the ground truth value. This analysis was
performed when using both the complete data set and
when outliers were removed.

Statistical Analysis

Descriptive statistics and ANOVAs with Dunn’s
multiple comparisons were used to compare the mean
sensitivities and distribution limits obtained from
each condition. Although sensitivity values are
logarithmic units (dB), we continued to report
arithmetic means and SD, as there were no significant
differences with geometric mean calculations, and this
would be in line with use of mean deviation and
pattern SD statistics reported in the HFA (Supple-
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mentary Fig. S2). A P , 0.05 was considered
significant. Difference between the values obtained
using bootstrapping and the ground truth parameters
were plotted as a function of set size (x) or number of
resamples (k). The asymptotic point was determined
by one-way ANOVA and multiple comparisons.
When the multiple comparisons showed no more
significant differences across adjacent and successive
conditions (e.g., x¼ 60, x¼ 72, x¼ 96 are considered
successive conditions), then the asymptotic point was
reached.

The method of checking the approximate asymp-
totic point was also used to determine the set size at
which no further change in VF defect detection in
glaucoma patients. As mentioned, we compared the
ability of the complete data set and the data set when
outliers were removed to assess glaucomatous VF
defects. To assess this difference, we determined the
number of defects found using different percentile

cut-off values for normality (lower 5th percentile to

highest, i.e., 100th percentile value), that is, receiver

operator characteristic (ROC) curves. One of the

typically used criteria for a glaucomatous VF defect is

three or more contiguous points depressed at the P ,

0.05 level, at least one of which is reduced below the P

, 0.01 level. However, as we were assessing different

levels of percentile cut offs as a surrogate specificity

value (e.g., the lower 5th percentile of the healthy

cohort is effectively a 95% true negative rate, or

specificity), for the purpose of this analysis, we

regarded three or more points of sensitivity reduction

below the cut-off as a criterion for a glaucomatous

VF defect. This allowed determination of the true

positive rate (i.e., test ‘‘sensitivity,’’ which was defined

as the number of patients meeting the VF cut-off

criterion of 3 or more points divided by the total

number of glaucoma patients) for different true

Figure 2. Mean and SD, 95th percentile and 5th percentile sensitivity values (in dB) for the retrospective cohort (n¼ 500 SITA-Standard
VF results) when the complete data set was used (A) and when outliers were removed (B) for locations within the HFA 24-2 test grid. The
crossed cells denote the two test locations near the physiological blind spot, excluded from analysis.
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negative rates (i.e., ‘‘specificity,’’ set at each percentile
cut-off level), and thus, ROC curves.

Results

Retrospective Cohort: SITA-Standard VF
Results

Mean, 95th percentiles, 5th percentiles, and SD
values for each location within the 24-2 VF are shown
in Figure 2. When outliers were removed, there was
no significant difference across mean (P ¼ 0.2685),

95th percentile (P ¼ 0.2971), 5th percentile (P ¼
0.2017), or SD (P¼ 0.9282) compared with when the
complete cohort was used (Fig. 2B).

The difference between the ground truth and
bootstrapped mean, 95th and 5th percentiles, and
SD values were determined at each test location.
Although more centrally located points showed, on
average, smaller differences between ground truth and
bootstrapped parameters when compared with more
peripherally located points, there did not appear to be
a significant, systematic effect of eccentricity on the
difference (one-way ANOVA, F3.14,47.1 ¼ 1.12, P ¼

Figure 3. Difference from ground truth (dB) as a function of set size (x) for the retrospective cohort (SITA-Standard VF results, n¼ 500).
Results when the complete cohort was used ([A] k¼100 and [B] k¼200 conditions) and when outliers were removed ([C] k¼100 and [D]
k¼ 200 conditions) are shown separately. Mean (black), 95th percentile (blue), 5th percentile (red), and SD (green) are plotted for each set
size condition. The colored arrows (corresponding to each statistic) indicate the approximate asymptotic point at which there is no longer
a change in difference from the ground truth, as per Table 1 (mean not shown for clarity). Error bars: 1 SD. Although x was tested up to
500, values beyond x ¼ 250 were excluded for clarity, as the results were identical as that of x ¼ 500.
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0.3521). Therefore, we grouped the results of all test
locations together for further analysis for different
levels of x and k.

For the k ¼ 100 condition, one-way ANOVA
showed no significant effect of x on the difference
between ground truth and bootstrapped means (P ¼
0.3521), but showed a significant difference in the
95th percentile (P , 0.0001), 5th percentile (P ¼
0.0001), and SD (P¼ 0.0049) parameters (Fig. 3A). A
similar tendency was found for k ¼ 200 (Fig. 3B).
When outliers were removed, k ¼ 100 and k ¼ 200
showed the same effects as when the complete cohort
was used (Figs. 3C, 3D).

By inspection, the difference from the ground truth
parameter reached an asymptote at 0 dB for all
parameters at approximately x ¼ 150. This was also
examined using one-way ANOVAs and multiple
comparisons, whereby the level of x at which there
was no significant difference across all further
adjacent levels (e.g., x ¼ 60 to x ¼ 72, and so forth
having P . 0.05) was taken as the asymptotic point.
These results were generally consistent with this
estimation (Table 1).

Prospective Cohort: Full Threshold VF
Results

In contrast to the retrospective cohort, there were
significant differences in mean (mean difference: 0.04

6 0.08, P , 0.0001), 5th percentile (mean difference:
0.13 6 0.21, P , 0.0001), and SD (mean difference:
�0.14 6 0.19, P , 0.0001) values when comparing the
complete cohort and the results when outlier sensi-
tivities were removed (Fig. 4). The differences in the
95th percentile value were borderline in terms of
statistical significance (mean difference�0.03 6 0.11,
P ¼ 0.0504). Despite the statistically significant
differences, these were unlikely to be of any clinical
significance, as the mean differences were well within
instrument test-retest variability.20

As for the retrospective cohort, we determined the
normative cohort size at which there was no longer a
significant difference between bootstrapped and
ground truth parameters. Similar to the retrospective
cohort, there was a significant effect of the set size x
on the difference between 95th percentile (P ,

0.0001), 5th percentile (P , 0.0001), and SD (P ,

0.0001) values, but not on the mean (P¼ 0.1400) for k
¼ 100 (Fig. 5A). A similar tendency was found for k¼
200, and when outliers were removed (Figs. 5B–D).

By inspection, the difference between ground truth
and bootstrapped conditions approached 0 dB with a
cohort size of approximately x ¼ 60 across all
conditions. One-way ANOVA and multiple compar-
isons also generally agreed with this estimation (Table
1).

The Effect of the Number of Times
Resampled (k)

We determined whether or not the number of times
resampled affected the differences between ground
truth and bootstrapped values. The differences
between ground truth and bootstrapped values were
plotted as a function of the number of resamples (k)
for four set size conditions: x ¼ 6, 30, 60, and 500
using data from the retrospective cohort (Fig. 6).
There was no effect of k on mean (mean P value ¼
0.6086), 95th percentile (mean P value ¼ 0.4488), 5th
percentile (mean P value ¼ 0.6697), or SD (mean P
value¼ 0.6296), expect for SD at the x¼ 30 condition
(P ¼ 0.0328). These results suggest that set size x is
more important than the number of resamples k when
attempting to minimize the difference to the ground
truth statistic.

The Effect of Using a Smaller Sized Initial
Cohort

So far, the resamples have been drawn from the
complete data set. With the retrospective and the
prospective cohorts, only a small proportion of the

Table 1. Levels of x at Which Multiple Comparisons
Were No Longer Significantly Different (P , 0.05)
Across Adjacent Levels for the Retrospective Cohort
and Prospective Cohort for the Bootstrapped 95th
Percentile, 5th Percentile, and SD Parameters.

95th

Percentile
5th

Percentile SD

Retrospective cohort (n ¼ 500)
k ¼ 100, complete cohort 150 200 60
k ¼ 200, complete cohort 200 200 100
k ¼ 100, outliers removed 150 150 24
k ¼ 200, outliers removed 150 150 150

Prospective cohort (n ¼ 100)
k ¼ 100, complete cohort 48 60 30
k ¼ 200, complete cohort 60 60 30
k ¼ 100, outliers removed 60 60 30
k ¼ 200, outliers removed 72 72 60

The bootstrapped mean was not significantly different to
the best-fit value across all conditions.
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total data set was required to provide a similar
estimate of mean and distribution limits: approxi-
mately 40% and 60% for retrospective and prospec-
tive, respectively. We therefore tested whether the size
of the initial sample changed the number of subjects
within each resample required to arrive at the same
mean and distribution limits. If a smaller initial
sample size results in a proportional reduction in the
size of resample, it may suggest that a correspond-
ingly large sample would be required to determine the
characteristics of the entire general population.

To test this hypothesis, we randomly selected 300
and 400 subjects from the original retrospective
cohort to serve as new, complete cohorts. We
performed the same analysis as above using set sizes
ranging from x ¼ 6 to 300 and 400, respectively, and
with k ¼ 100. We then compared the level of x at
which the multiple comparisons did not significantly

change further, as described in the above analysis. For
both n ¼ 300 and n ¼ 400, we found a level of x that
was similar to when n ¼ 500 (Table 1) was used: x ¼
150 for 95th percentile, x¼ 150 for 5th percentile, and
x ¼ 60 for SD (Fig. 7). Thus, this suggests that
differences are stable at this level of n, rather than
being proportional to the base ‘‘population’’ size used.

The Application of Bootstrapped Results to
Patients With Glaucoma: Comparison With
Ground Truth Performance for Defect
Detection

Finally, we wanted to test the effect of boot-
strapped VF results on the detection of glaucomatous
defects in a clinical cohort of patients. We determined
the number of ‘events’ and their depth against the
limits determined from the original retrospective data
with and without the inclusion of outliers. Inclusion

Figure 4. Mean and SD, 95th and 5th percentile sensitivity values (in dB) for the prospective cohort (n¼ 100 full threshold VF results)
when the complete data set was used (A) and when outliers were removed (B) for locations within the HFA 30-2 test grid. The two test
locations near the physiological blind stop have been crossed out, and the fovea has been offset to the upper left for clarity.
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of the complete data set resulted in on average 0.51
(95% confidence interval 0.44–0.60) fewer ‘events’
detected compared with when outliers were excluded.

Next we assessed ‘events’ and depth against limits
determined from the bootstrapped cohorts of differ-
ent sizes (at k ¼ 200). One-way ANOVA showed a
significant effect of set size x (P , 0.0001 across all
conditions) on the number of ‘events’ detected and
depth of defect (Fig. 8). When using the 5th percentile
from the original retrospective data as the ‘ground
truth’, smaller set sizes tended to overestimate the
number of ‘events’, and underestimated their depth,

corresponding to higher 5th percentile and lower
mean values (as per Fig. 3). Multiple comparisons
showed significant differences across all bootstrapped
conditions compared with the ground truth for
‘events’ detected when the complete data set including
outliers was used (P , 0.0001), but showed an
asymptote at x ¼ 250 when outliers were removed.
There were similar asymptotes at x¼ 250 and x¼ 300
for the depth of defect for the complete data set and
when outliers were removed, respectively. When
setting the criterion to be a difference of one ‘event’
flagged (as ‘events’ are reported in integer values), x¼

Figure 5. Difference from ground truth (dB) as a function of set size (x) for the prospective cohort (full threshold VF results). Results
when the complete cohort was used ([A] k¼100 and [B] k¼200 conditions) and when outliers were removed ([C] k¼100 and [D] k¼200
conditions) are shown separately. Mean (black), 95th percentile (blue), 5th percentile (red), and SD (green) are plotted for each set size
condition. The colored arrows (corresponding to each statistic) indicate the approximate asymptotic point at which there is no longer a
change in difference from the ground truth, as per Table 1 (mean not shown for clarity). Error bars: 1 SD.
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60 (complete data set) and x ¼ 48 (outliers removed)
were the minimum set sizes for which the difference
between ground truth and bootstrapped values was
less than one ‘event’.

As mentioned in the Methods, ROC curves were
generated by modifying the normative percentile cut
off for labeling a VF defect to obtain surrogate
specificity values (e.g., a cut off of the lowest 10th
percentile represents a specificity of 90%) to then
determine sensitivity (true positive rate). Comparison
of the area under the ROC (AUROC) curves found
using the complete data set and when outliers were
removed showed similar results (F1,160 ¼ 0.0258, P ¼
0.8727; Fig. 9). As expected, the AUROC was slightly

greater when using a smaller set size, x ¼ 6, in
comparison to the other conditions, as the resultant
percentile cut-off values were higher under conditions
of low specificity. However, there was no significant
difference between ground truth and set sizes x ¼ 6,
200 and 500 (F3,160 ¼ 0.1307, P ¼ 0.9417).

Discussion

In the present study, we examined the VF results of
two cohorts of healthy subjects to determine whether
or not there was a limiting number of resamples that
could generate a value for the mean, SD, and upper

Figure 6. Difference from ground truth parameters (dB) as a function of number of resamples (k) for the retrospective cohort (SITA-
Standard VF results) for predetermined set sizes of x ¼ 6 (A), 30 (B), 60 (C), and 500 (D) when all points were included (no outliers
removed). Mean (black), 95th percentile (blue), 5th percentile (red), and SD (green) are plotted for each set size condition. Error bars: 1 SD.
Although k was tested up to 750, values beyond k¼ 120 were excluded for clarity, as the results were not different to that of k¼ 750.
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and lower percentiles that was comparable to the
original underlying data set, therein providing poten-
tial guidance for cohort sizes needed for the genera-
tion of robust VF normative databases. Here, the null
hypothesis was that parameters from resampled
smaller data sets would not be comparable to the
original cohort’s. However, we found that the
difference from the complete cohort was no longer
significant once a certain set size was reached (Table
1), suggesting that gains in recruiting healthy subjects
beyond this number would be minimal.

Bootstrapping VF Results: Set Size or the
Number of Resamples?

Bootstrapping was to test the precision of sample
statistics from the original cohort and, by doing so,
testing the validity of the model through generating
random subsets.21 This technique has been used
widely in VF research.22–25 There are two main
variables in our approach: the set size (x) and the
number of times a set is drawn (i.e., resampled [k]).
Therefore, the number of resamples of k could
potentially affect the bootstrapped statistics. For
example, a large number of resamples of k could
mask the differences found with low levels of x.
However, we found no such tendency, and the results
were similar across all levels of k, suggesting that x
produces the differences seen between bootstrapped
and ground truth values.

How Many Subjects are Required for
Generation of Normative VF Data?

A previous study has provided guidance for sample
sizes involving the demonstration of novel effects
within a system without necessarily quantifying the
parameter, and these may only require a small sample
size.26 For determination of the magnitude of
difference between two groups, such as a treated
and control group, conventional statistics and power
analyses are available, but these do not necessarily
provide guidance as to the number of samples
required to generate normative data to serve as a
comparison group.

Normative distribution limits are often generated
empirically. In the case of VF studies the 5th
percentile is often used as the cut off for an ‘event’,
but therein lies a problem: in a normal cohort of 20
subjects, the 5th percentile represents only one
individual’s result.3–5 The addition of 20 subjects at
a time would only add one more subject with which to
define the 5th percentile. The results of the present
study suggest that beyond approximately 150 to 200
subjects for SITA-Standard and 60 subjects for full-
threshold VF results, estimates of the distribution
limits are similar to that of the ground truth, and the
addition of more subjects do not provide further
information. This number may vary slightly depend-
ing on the composition of the cohort (e.g., perimetri-

Figure 7. Difference from ground truth (dB) as a function of set size (x) for the retrospective cohort when using a smaller total
population (n ¼ 300 and n ¼ 400, randomly sampled from the original cohort of n ¼ 500), plotted as per Figure 3. Mean (black), 95th
percentile (blue), 5th percentile (red), and SD (green) are plotted for each set size condition. Error bars: 1 SD.
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cally naı̈ve or experienced observers) but show that
only a smaller group of subjects may be required.

Outlier Removal: Implications for Defect
Detection

Aside from the initial screening process, one other
method for tackling the effects of unreliable results is
the removal of outliers. Heijl et al.10 reported
significant skew in the sensitivity data of healthy
subjects; in comparison, recent work by Phu et al.,13

having considered outliers, instead reported normally

distributed sensitivity values. It is expected that
outlier removal would, in particular, affect the lower
limit of the normative distribution, but the question is
by how much does this affect the result of normative
comparison with a group of patients with disease?
Our results show that although there is a statistically
significant difference in the number of ‘events’ found
when using normative data with and without outliers
included, this difference was unlikely to be clinically
significant as it was smaller than the lowest integer
value. This was also consistent with the minimal

Figure 8. Number of ‘events’ (n, [A, B]) and depth of defect (dB, [C, D]) identified in the cohort of glaucoma patients as a function of set
size (x¼6–500) when using the complete data set (left) and when outliers were removed from the normative data (right) for k¼200. Each
datum point represents the average across all glaucoma patients for each level of x, and the error bars indicate the 95% confidence
interval. The orange point indicates the values obtained when using the ground truth. The black downward arrow indicates the
approximately asymptotic location for each condition at which there was no longer a significant change in number of ‘events’ detected
of depth of defect between the bootstrapped value and the ground truth data.
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change in set size required to minimize the difference
between ground truth and bootstrapped values.
Therefore, the removal of outliers facilitates the use
of conventional, Gaussian statistics, while not affect-
ing the rate of VF defect detection.

Limitations

This study has a number of limitations. Multiple
SITA-Standard VF results were used from each
individual patient. Although this is a method prac-
ticed in previous papers and in existing normative
databases, there may be confounding factors due to
the relative contributions of each subject.9,10 Howev-
er, the prospective phase of the study, where only one
VF result from each subject was used, arrived at
similar conclusions. Although we sourced a large
number of VF results, the true population norms are
not known. The sensitivity values were also age-
corrected to a 50-year-old equivalent, which may be
subtly different to deriving a normative database with
age-matched healthy subjects. However, the change in
sensitivity per decade at each test location was small,
and the amount of age correction performed on our
normative cohort was within the instrument’s test-
retest variability range.20

Our conclusions rest on a ground truth where the
normal representative ‘‘population’’ consisted of 500
SITA-Standard and 100 full-threshold VF results
found using standard parameters (achromatic Gold-
mann size III target, presented for 200 ms upon an
achromatic background). One of the analyses per-

formed in the present study was the examination of
whether the point where no further change occurred
in 95th, 5th, and SD values when using different
baseline cohort sizes (comparing n¼ 300 and n¼ 400
with the total ‘‘population’’ of n ¼ 500). While we
showed that the set size x was relatively unchanged at
approximately 150 (instead of being a proportion
relative to the total cohort size), this was still based on
the assumption that n ¼ 500 provided a reasonable
estimate of the total normal population. True norms
across a range of ages would require a much larger
study with a more diverse representation of the
population.27 Population characteristics would also
be specific to the research question being asked.
However, we also compared the VF sensitivity
parameters of our cohorts with that of other
published studies from different geographic locations,
and found no significant difference (Table 2, one-way
ANOVA, excluding the sets where SD was not
reported: F1,1 ¼ 0.646, P ¼ 0.5690).5,28–30 This
indicated that our cohort was likely to be robust
and representative of a general, diverse population.

Conclusions

Our results suggest that set sizes of approximately
150 normal SITA-Standard VF results and 60 normal
full-threshold VF results provide a close estimate of
the ground truth statistics. For similar ability to
detect defects in glaucoma when using the SITA-
Standard paradigm, a sample size of roughly 200
normal VFs closely approximates the performance of

Figure 9. ROC curves plotting sensitivity (%) as a function of 100� specificity (%) for complete data set was used (A) and when outliers
were removed (B). Four conditions are plotted: ground truth (black) and bootstrapped data sets with set sizes x¼ 6 (blue), 200 (red), and
500 (green), each offset slightly for clarity. AUROC curves are shown next to each condition (standard error of the mean in brackets).
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a ground truth of 500 healthy subjects. Thus, a
smaller and possibly more practically sized cohort of
150 to 200 healthy subjects may be used to derive
descriptive statistics that reflect the underlying
population, if the cross section is representative of
the population of interest. These results provide
further guidance toward the construction of future
VF normative databases.
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