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Abstract
The pandemic of novel coronavirus disease (COVID-19) caused by the Severe Respiratory Syndrome Coronavirus-2 (SARS-
CoV-2) creates an immense menace to public health worldwide. Currently, the World Health Organization (WHO) has recog-
nized the novel coronavirus as the main cause of global pandemic. Patients infected with this virus generally show fever, nausea,
and respiratory illness, while some patients also manifest gastrointestinal symptoms such as abdominal pain, vomiting, and
diarrhea. Traces of SARS-CoV-2 RNA have been found in gastrointestinal cells. Further angiotensin converting enzyme 2
(ACE2) the known receptor for the virus is extensively expressed in these cells. This implies that gastrointestinal tract can be
infected and can also present them as a replication site for SARS-CoV-2, but since this infection may lead to multiple organ
failure, therefore identification of another receptor is a plausible choice. This review aims to provide comprehensive information
about probable receptors such as sialic acid and CD147 which may facilitate the virus entry. Several potential targets are
mentioned which can be used as a therapeutic approach for COVID-19 and associated GI disorders. The gut microbiomes are
responsible for high levels of interferon-gamma which causes hyper-inflammation and exacerbates the severity of the disease.
Briefly, this article highlights the gut microbiome’s relation and provides potential diagnostic approaches like RDT and LC-MS
for sensitive and specific identification of viral proteins. Altogether, this article reviews epidemiology, probable receptors and put
forward the tentative ideas of the therapeutic targets and diagnostic methods for COVID-19 with gastrointestinal aspect of
disease.
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Introduction

COVID-19 caused by novel SARS-CoV-2 is known to arrive
from Wuhan wet market as an etiological agent leading to a
global pandemic (2019–2020) [1]. According to the WHO as
of September 17, 2020, this infection has more than 29million
active cases and about 0.58million reported deaths in the form
of viral pneumonia and affecting about 214 countries world-
wide [2]. The pandemic of novel coronavirus is a great
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challenge because of exponential increase in patients, rate of
infectivity, scarcity of resources, poor prognosis of disease,
and ambiguity regarding disease pathogenesis [3].

Furthermore, SARS-CoV-2 is known to attack the lower
respiratory system and cause viral pneumonia; however, it
may also affect the gastrointestinal system [4]. Reports sug-
gest that patients infected with nCoV showing digestive
symptoms like diarrhea, vomiting may be among presenting
features of disease [5]. However, the prognosis of COVID-19
patients with gastrointestinal symptoms is mostly unknown.
In about 50% of COVID-19 cases, there is the presence of
SARS-CoV-2 in fecal samples and its viral RNA has also
been identified in intestinal mucosa suggesting that GI tract
may be a probable route of infection [6]. Based on the studies
in SARS-CoV-2, its receptor (ACE2) is known to be a critical
component of gastric mucosa and gastrointestinal cells as
well, due to which gastric mucosa or gastrointestinal tract
may be considered as vulnerable site for SARS-CoV-2 infec-
tion [7, 8]. The lasting presence of virus in gastric mucosamay
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indicate the possibility of gastric glandular epithelial cells as
an incubation site of virus. This can be further consolidated by
the presence of viral nucleocapsid protein in the cytoplasm of
gastrointestinal tract days after its clearance from respiratory
sputum [9].

Since this virus arises from the family of Coronaviridae, it
belongs to betacoronavirus genera. Moreover, the collectively
known host receptor utilized by the SARS-CoV-2 is ACE2,
sialic acids, and CD147 for the host cell infection [10–12].
Human leukocyte antigen (HLA) is an antigen-presenting fac-
tor for viral peptide and may be prioritized for the development
of a vaccine against SARS-CoV-2 [13]. Both sialic acids and
HLA are known to be important for Helicobacter pylori
(H. pylori) mediated gastritis and gastric cancer (GC) respec-
tively [14, 15]. Thus, they played an important role in causing
gastrointestinal symptoms associated with COVID-19, with the
emergence of the gastrointestinal tract as an important site for
SARS-CoV-2 pathogenesis. A possible mechanism of viral in-
teraction and pathology is not yet completely known. In this
review, we summarize the association of gastrointestinal disor-
ders with SARS-CoV-2, their association from the other
coronaviruses along with the receptors which play a crucial role
in facilitating the virus entry. Briefly, we also highlighted the
gut microbe association in enhancing the infection, potential
targets used as therapeutics and drugs which can be repurposed
for the COVID-19 patients with gastric co-morbidities. This
article highlights potential diagnostic approaches like RDT
and LC-MS for sensitive and specific identification of viral
proteins. Taken all together, this article reviews epidemiology,
probable receptors and put forward the tentative ideas of the
therapeutic targets, their drugs, and diagnostic tool for COVID-
19 with gastrointestinal aspect of disease.

Coronavirus and Gastrointestinal Symptoms:
a Long-Back Association

The coronaviruses comprise large, enveloped, positive-
stranded RNA viruses. Coronavirus caused a broad spectrum
of diseases in animals and humans [16]. Human coronaviruses
(HCoV) can be classified into two serogroups with HCoV-
229E and HCoV-NL63 included in serogroup one and
HCoV-OC43 and HCoV-HKU1 falling in serogroup 2 [17].
The first two human coronaviruses, HCoV-229E and HCoV-
OC43, are correlated with upper respiratory tract infections.
Furthermore, HCoV-OC43 and HCoV-HKU1 cause gastroin-
testinal symptoms such as diarrhea, vomiting, nausea, and
abdominal pain in up to 57% and 38% of infected people
respectively [18, 19]. Therefore, gastrointestinal symptoms
can be treated as evident as respiratory symptoms in corona-
virus colds, often designated “gastric flu.”

Another coronavirus is the severe acute respiratory syn-
drome virus (SARS) which is also well known to affect the

gut. Although infection results in diffuse alveolar damage, the
changes in the gut are more precise which may include trans-
migration of intestinal bacteria and more lipopolysaccharide
(LPS) permeability in the intestine. LPS causes an increase in
the production of tumor necrosis factor (TNF), interleukin-1
(IL-1), and IL-6, thus resulting in aggravation of disease [20].
Furthermore, studies showed by Leung et al., states the SARS
replication in the cells of small and large intestine of patients
with accumulation of higher viral titer inside the endoplasmic
reticulum (ER) and viral particles might leave from the apical
membrane of the enterocytes. While the report suggests that
there is only minimal disruption of intestinal cells caused by
the virus despite the tropism, thus, diarrhea associated with
SARS infection may be more related to proteins or toxins
produced during viral replication than malabsorption or in-
flammation [21].

Epidemiology and Gastric Disorder as Clinical
Predictor of SARS-CoV-2

SARS-CoV-2 shows the most common symptoms of the dis-
ease include pneumonia along with cough, sore throat, myal-
gia, diarrhea, nausea, vomiting, and fatigue [25, 26]. In adults,
most common symptoms are anorexia (39.9–50.2%) and di-
arrhea (2–49.5%) while children suffered most from vomiting
(6.5–66.7%). Furthermore, 34.3% of COVID-19 patients are
having digestive symptoms that contribute to their delayed
recovery, unlike the remaining patients who recover early
[27], since the incubation time of a virus can range from 1 to
24 days, screening the patients becomes a tough task to handle
[27, 28]. Moreover, several reports showed that viral RNA
was detected in stool samples from 48.1% patients even in
stool collected after the respiratory samples tested negative
[27, 29]. This suggests that the virus utilized fecal-oral route
for its transmission. Additional evidence of the association of
SARS-CoV-2 and gut came when it was found in the endos-
copy sample of a COVID-19 patient [9]. Wang et al. have
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Middle East respiratory syndrome coronavirus (MERS-
CoV), another virus of the coronaviridae family, known to
cause human respiratory infections and gastrointestinal symp-
toms. Zhou et al. illustrated that intestinal organoids and hu-
man primary intestinal epithelial cells were immensely sus-
ceptible to MERS-CoV and can sustain vigorous viral repli-
cation [22]. Apart from the respiratory tract, the human ali-
mentary tract may be analyzed as a potential site for viral
entry. Enteric viruses (adenovirus, rotavirus) and some non-
enteric viruses (adenovirus A12) can bypass the physical bar-
riers and infect susceptible cells in the alimentary tract [23].
The gastrointestinal symptoms are generally seen in most hu-
man coronaviruses [24], so far, seven human coronaviruses
have been known as the causative agents of mild or severe
respiratory infections.



cultured the SARS-CoV-2 from four different patients’ stool
samples and found live virions in two samples through mi-
croscopy [30], although there are also reports that viruses are
transmitted through fomites [31]. However, more research is
required to confirm if this virus is viable in the stool and also
to analyze the level of transmission through the fecal-oral
route [32].

Importantly, multiple studies have found that the suscepti-
ble population for COVID-19 includes elderly mostly >
70 years of age, individuals with underlying disease, or weak-
ened immune systems [33]. Furthermore, in a meta-analysis
by Men and colleagues, 10% of patients were showing only
gastrointestinal features upon infection. This may be due to
delayed diagnosis whichmay lead to potential problems in the
patient and the person who comes in contact with the patient.
Another study suggests that about 3% of COVID-19 cases
showed only digestive symptoms and no respiratory symp-
toms [8, 34]. H. pylori is a well-established gastrointestinal
pathogen associatedwith multiple gastric disorders like chron-
ic gastritis and gastric cancer. According to reports, SARS-
CoV-2 and H. pylori infection are more likely to occur in
patients with blood group A, thus increases the risk of gastro-
intestinal infection [35]. Furthermore, the patient having the
history ofH. pylori infection may become more susceptible to
oral-fecal route transmission.

Nearly one-fifth of COVID-19 patients have reported with
gastro-intestinal symptoms [36]. About 70% of patients with
viral RNA shedding through gastrointestinal tract were report-
ed which lasted for about 10 weeks after the symptom onset
[31]. Pathophysiological reports have suggested that no con-
siderable damage was observed in the mucosal epithelium of
the esophagus, stomach, and duodenum tissues. However,
major infiltration of lymphocytes is observed in squamous
epithelium of lamina propria of the stomach, duodenum, and
rectum which may cause abdominal pain [37]. Furthermore,
abdominal pain is highly associated with COVID-19 severity
along with nausea and vomiting which are comparatively less
frequent. Considering the association of gut anomalies and its
association with COVID-19 some of the symptoms like ab-
dominal pain and diarrhea can also be considered COVID-19
symptoms or can be used as clinical predictors [36].

Receptor-Mediated Signaling
with Gastrointestinal Disorders

It is well established that ACE2 is a receptor for SARS-CoV-
2. Moreover, sialic acid, CD147 can also act as a receptor [10,
38]. However, the human coronavirus HKU1 and OC43 in-
cludes human leukocyte antigen (HLA) as its attachment fac-
tor and sialic acid as its receptor respectively [39, 40]. In
SARS-CoV-2 too, HLA may present the viral peptides [41].
Moreover, another study by Ming et al. (2020) on COVID-19

patients from Wuhan has reported that there is an increased
level of neutrophil, Interleukin-6 (IL-6), chemokine’s IP-10,
MCP-1, MIP-1A, tumor necrosis factor-alpha (TNFα), and
less expression of lymphocytes [42, 43]. Here we precisely
explain the downstream signaling from the aforementioned
factors concerning gastrointestinal disorders and COVID-19
taking SARS-CoVas a reference.

Reports suggest that through in-silico analysis of viral pep-
tides of major histocompatibility complex class I gene (MHC)
([HLA] A, B, C), HLA may present highly conserved SARS-
CoV-2 peptides which suggest its ability to activate cross-
protective T cell mediated immunity. These findings suggest
that severity of SARS-CoV-2 may be affected by genetic var-
iability of [HLA] A, B, and C [54]. Downregulation of HLA is
a probable cause for poor prognosis in gastric and esophageal
cancer. Though epigenetic and oncogenic studies of HLA are
still ambiguous, reports suggest thatMAPK and AKT (HER2)
signaling regulates the expression of HLA in gastric and
esophageal cancer [55]. Considering the importance of HLA
and MAPK in the signaling pathway, they appear to be im-
portant targets for therapeutic use.

Sialic acid which is responsible for regulating various phys-
iological and pathological processes is composed of a
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ACE2 is largely found in the gastrointestinal tract [44]. The
messenger RNA of the ACE2 receptor is highly expressed and
stabilized by neutral amino acid transporter B0AT1(SLC6A19)
in the gastro-intestinal system [45]. SARS-CoV-2 utilizes spike
protein for binding to its receptor ACE2, upon binding the
plasma membrane fusion occurs and releases viral RNA.
Further, viral RNA is detected as pathogen associated molecu-
lar pattern (PAMP’s) by pattern recognition receptor (mostly
toll like receptor) [46]. The RNA released is recognized by the
viral RNA receptor retinoic-acid inducible gene I (RIG-I), cy-
tosolic receptor melanoma differentiation-associated gene5
(MDA5), nucleotidyltransferase cyclic GMP-AMP synthase
(cGAS), and stimulator of interferon genes (STING) [40, 47].
Furthermore, this binding recruits TIR-domain-containing
adaptor protein along with mitochondrial antiviral-signaling
protein (MAVS) and induces downstream signaling which in-
cludes activation of nuclear factor-κB (NF-κB), interferon
(IFN), and series of pro-inflammatory (IL-6) and antiviral cy-
tokines (Fig. 1) [48, 49]. This viral entry can also be through
endocytosis by clathrin dependent or independent pathway
which may be used as a mechanism to avoid host detection
(Fig. 1) [50, 51]. The upregulation of RIG-I and MDA-5 me-
diated through retinoic acid-inducible gene I-like receptors
(RLRs) and toll-like receptors is also associated with gastric
adenocarcinoma cells [52]. The role of ACE is controversial;
it is known to have a significant role in gastric ulcer healing and
can be related to virus mediated diarrhea [53]. Hence, studying
ACE2 related signaling with gastric disorders and SARS-CoV-
2 would provide better insight in determining therapeutic
targets.



diversified family of acidic sugar [56]. This can be used for
internalization of bacteria like H. pylori in gastric mucosa
through sialic acid binding adhesin (SabA) for subsequent per-
sistence of infection. H. pylori infection is considered a crucial
risk factor in gastric carcinogenesis where only a subset of
individuals develops tumor [57]. In healthy conditions, gastric
mucosa mostly expresses neutral fucosylated glycans whose
glycophenotype is modified by H.pylori infection which leads
to overexpression of β3-N-acetylglucosaminyltransferase-5
(β3GnT5) which is followed by increased biosynthesis of
sialyl-Lewis x [58]. This increased biosynthesis of sialyl-
Lewis x further leads to successful strengthening of gastric
epithelial attachment to H.pylori for efficient colonization,
hence increasing the risk of gastric disorder. It has also been
found that high levels of α 2,3 sialic acid residues were linked
to GC cells invasion and metastasis [59]. Thus, the role of sialic
acid in gastric comorbidities is evident; however, its role in
SARS-CoV-2 is also emerging. The SARS-CoV-2 has very
high infectivity due to its structure which contains various
groups of terminal sialic acid [60, 61]. According to

Menicagli et.al., one of the hypotheses states that sialic acid
strengthens the capacity of diffusion which relies on the varied
number of glycoproteins present on the COVID-19 capsule
[62]. Additionally, there are certain sialic acids present on the
host cell surface which act as additional receptors for binding
sites of the S protein of SARS-CoV-2 [63], hence playing a role
in the pathogenicity and epidemiology of the associated disease
[63].

CD147 also known as Basigin or EMMPRIN is a trans-
membrane glycoprotein known to bind to spike protein of
SARS-CoV-2 and mediate in virus invasion and infection to
other cells [11, 38]. Recently, a research team by Zhinan et al.
after conducting surface Plasmon resonance analysis and
competitive inhibition experiment found that CD147 anti-
body competitively inhibited binding of CD147 and S protein
[64]. Hence, it can be the potent target for therapeutics for
COVID-19 patients. Moreover, CD147 is required for malaria
parasite, Plasmodium falciparum invasion, which can explain
the infection of SARS-CoV-2 in red blood cells [65].
However, it is also associated with gastric cancer invasion,

Fig. 1 Potential colliding targets, their signaling, and inhibitors: SARS-
CoV-2 RNA enters the cells through plasma membrane and endocytosis
followed by recognition by RIG-I and MDA5 which binds to MAVs.
Furthermore, this leads to the secretion of IL-6, IFN, and antiviral

cytokines. Moreover, commercially available drugs and the targets with
no known drugs have also been shown. Here ACE2, TMPRSS2, RIG-I,
MDA5, IL-6, and ADAM-17 may serve as important targets concerning
gastric disorder as well
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metastasis and might be utilized for prognosis and indicator of
tumor recurrence [66].

Increased level of IL-6 is often related to respiratory failure
and acute respiratory distress syndrome (ARDS). It plays a
crucial role in aggravating cytokine storms in COVID-19. It
mainly follows two pathways cis and trans. In cis, IL-6 binds
with membrane bound IL-6 receptor (mIL-6R) and gp130
which activates Janus kinases (JAKs) and signal transducer
and activator of transcription 3 (STAT3) pathway. This JAK/
STAT3 pathway then activates innate and acquired immunity
causing cytokine release syndrome (CRS). In trans pathway,
IL-6 binds to its soluble receptor (sIL-6R) which again acti-
vates JAK-STAT3 signaling. Further, it leads to secretion of
vascular endothelial growth factor (VEGF), monocyte
chemoattractant protein–1 (MCP-1), IL-8 and reduced E-
cadherin expression on endothelial cells hence aggravating
cytokine storm [67]. IL-6 R can also be used as a prognostic
marker in gastric cancer. Hence, IL-6 can be a potent thera-
peutic target for COVID-19 patients suffering from gastric
cancer [68].

Potential Colliding Targets and Associated
Drugs

The potential targets like ACE-2, TMPRSS2, Cathepsin L/B,
CD147, STING, RIG-I, MDA5, P38 MAPK, ADAM-17, si-
alic acid B0AT1, and IL-6 along with drugs can be used as
therapeutics in COVID-19 and associated gastrointestinal dis-
orders have been briefly explained.

SARS-CoV-2 spike protein binds to the ACE-2 receptor
which may cause activation of p38 mitogen-activated protein
kinase (MAPK), upregulate ADAM-17, and stimulate ROS
formation [69, 70]. The Spike-ACE-2 complex is proteolyti-
cally processed by type 2 transmembrane protease
(TMPRSS2) at its S1/S2 junction to release S2 subunit, which
further facilitates viral and cell membrane fusion [71, 72].
Hence, to facilitate virus entry, TMPRSS2 and cathepsin L/
B primes the S-protein of SARS-CoV-2 [71]. The commer-
cially available drug for TMPRSS2 is camostat mesylate and
nafamostat (Table 1), which is a clinically proven protease
inhibitor and it can also improve reflux esophagitis, dyspepsia
and inhibit SARS-CoV-2 infection [73–76]. Cathepsin L/B
which also plays a crucial role in gastric cancer can be
inhibited by cysteine protease inhibitor E64d (Table 1) [71,
99]. CD147 helps in P. falciparum invasion by binding to
reticulocyte-binding protein 5 (Rh5) [95]. CD147 can also
bind to the spike protein of SARS-CoV-2 for entry into the
host cell [11, 38]. Targeting of CD147 through the
meplazumab monoclonal antibody could be a possible poten-
tial therapy against COVID-19 disease (Table 1) [96].

STING (stimulator of interferon genes) is encoded by
TMEM173, considered as a key adaptor molecule which links
to the identification of cytosolic DNA leading to production
of interferons (IFNs) and NFkB. STING can also identify
infections by some RNA viruses. There are arguments that
suggest the polymorphisms of the STING pathway could be
involved in the pathogenesis of COVID-19 [97]. It is also
reported that decreased STING is associated with poor prog-
nosis of gastric cancer patients (Table 1) [98]. RIG-I precisely
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Fig. 2 Analysis of SARS-CoV-2 proteins, mutations, and post-translational modifications through LCMS followed by ESI/MS for effective therapeutics



identifies the intracellular double-stranded viral RNA bearing
5′ triphosphate and invites molecules to activate antiviral sig-
naling [77]. Hence, antiviral drugs would be useful to target its
activity such as lopinavir with combination with ritonavir,
along with them natural products like green tea catechin, epi-
gallocatechin gallate are also been found to be effective [78],
though the administration of lopinavir /ritonavir is often asso-
ciated with drug-related diarrhea [79, 80]. Green tea catechin
is considered a beneficial and effective way to prevent gastro-
intestinal disorders (Table. I) [81].

Sialic acid also plays a key role in eradicating H.pylori
infection by inhibiting ROS production and NF-kB activation
[82]. Hence, sialic acid mediated inhibitors may provide po-
tent treatment to patients. Soluble macromolecules containing
sialic acid can act as decoy receptors and competitively inhibit
the receptor binding such as α2-macroglobulin, umifenovir,
and other natural inhibitors include egg white which can be
useful in COVID-19 patients having gastric disorders
(Table 1) [82, 83]. B0AT1 is an amino acid transporter, abbre-
viation of major apical neutral amino acid transport system B0

Table 1 Potential colliding
targets and probable drugs with
their phase I/II/III trials with their
activity

S.
No

Target Gastrointestinal
disorder
association

Drug/phaseI/II-(PI)
Phase II/III-(PII)

Drug activity References

1 ACE2 Gastric ulcer
healing, virus
mediated
diarrhea

PII-APN01 ACE2 inhibitor [7–10, 44,
53, 69,
70]

2 TMPRSS2 Dyspepsia,
reflux
esophagitis

Camostat mesylate
PII-NCT04352400
PII-nafamostat

Protease Inhibitor [71–76]

3 (RIG-I) H.pylori
infection,
gastric
adenocarci-
noma

Lopinavir/ritonavir, green
tea catechin,
epigallocatechin gallate
PI-NCT03065023

Protease Inhibitor [47, 77–81]

4 MDA5 Gastric
adenocarci-
noma

[47]

5 [HLA]A Gastric cancer,
esophageal
cancer

No known commercial drug
available

[13–15, 41,
54, 55]

6 Sialic acid
containing

H.pylori
infection

Egg whites [10–12, 14,
39,
56–63,
82,
83, 79]

7 ADAM-17 Gastric acid
secretion

Aderbasib (INCB7839) ADAM-17/TACE
inhibitor

[69, 70, 84,
85]

8 P38 MAPK Gastric cancer PI-Ralimetinib
(LY2228820)

P38 MAPK
inhibitor

[69, 70, 85,
86]

9 B0AT1
(SLC6-
A19)

Benztropine, nimesulide B0AT1 Inhibitor,
Cyclooxygena-
se Inhibitor

[45, 87, 88]

10 IL-6 Chronic gastritis Tocilizumab, sarilumab Interleukin-6
receptor
antagonist

[20, 39, 42,
43, 48,
49, 67,
68,
89–94]

12 CD147 Gastric cancer (PII)
NCT04275245/meplazu-
mab

anti-CD147
antibody

[11, 38,
64–66,
95, 96]

13 Stimulator of
interferon
genes
(STING)

Gastric cancer [47, 97, 98]

14 Cathepsin B Digestive
cancer

E64d Cysteine protease
inhibitor

[71, 99]
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and it belongs to the solute carrier family 6 (SLC6A19) [87]. It
is the major Na+-dependent transporter for neutral amino acids
in the small intestine and kidney [87]. The approved drug for
B0AT1 inhibitor is Nimesulide (cyclooxygenase inhibitor)
and Benztropine (Table 1) [88]. Increased secretion of pro-
inflammatory cytokines like Interleukin-6 (IL-6) is a common
factor in patients with gastritis and SARS-CoV-2 infection.
IL-6 being a pro-inflammatory cytokine is linked to increased
inflammation in chronic acute gastritis [89, 90]. IL-6 may act
as a prognostic marker for gastric cancer and a potential bio-
marker for COVID-19 progression [68, 91]. Hence, toci-
lizumab and sarilumab are FDA-approved drugs which is an
interleukin-6 receptor antagonist can be a potent therapeutic
drug (Table 1) [92, 93]. Siltuximab is a monoclonal antibody
against IL-6 (Table 1) [94].

Gut Dysbiosis: Interaction of Microbiota
with SARS-CoV-2

The human gut consists of 1014 microorganisms like bacteria,
fungi, archaebacteria, and viruses [100]. These gut microbiomes
have an important role inmaintaining the health of the individual.
The microbiomes and host have a symbiotic association in that
the earlier gets food and shelter and in turn, helps the later in
regulating physiological functioning like dietary digestion, and
imparting protective immunity against pathogens [101].
Alterations of gutmicrobiota are known as “gut dysbiosis”which
is associated with several diseases and disorders such as type 2
diabetes, IBD, cardiovascular disease, and depression [102–104].
Moreover, the COVID-19 treatment regime includes sets of
drugs that have negative impacts on different organelles and
may cause gut dysbiosis also [105].

Intriguingly, the pulmonary health is also affected through
a vital cross-talk between the lungs and the gut microbiota
known as the “gut-lung axis” [106]. This axis is bidirectional,
i.e., microbial metabolites and the endotoxins can modulate
the lung through blood, and during inflammation in the lung,
it affects the gut microbiota [107]. This interdependency
boosts a striking possibility that SARS-CoV-2 may affect
the gut microbiota. Numerous reports have pointed out that
alteration in the composition of the gut microbiota is correlat-
ed with respiratory infections [108]. Moreover, severe clinical
outcomes in SARS-CoV-2 infected patients are associated
with immune-compromisation and aging. Therefore, it is
tempting to speculate the probable cross-talk between the
gut microbiota and the lung in COVID-19 which may further
influence the clinical manifestation.

One hypothesis regarding gut dysbiosis is microbiomes’
impacts on cytokines. Type II interferon (interferon-γ) is
one such cytokine that plays important roles in antiviral re-
sponses [109]. Furthermore, microbial metabolic processes in
the gut strongly impact the production of cytokines [101].

Generally, the microbiota can enhance chronic phase protein
and interferon signaling in lung cells to protect it from viral
infection [110]. However, in the case of SARS-CoV-2 infec-
tion, the body’s response to infection changes the scenario.
Occasionally, COVID-19 patients’ immune response against
the virus results in a cytokine storm ultimately leading to
hyper-inflammation and multi-organ failure [111, 112], so
far, a cytokine profile associated with COVID-19 severity
has been characterized by increased interferon-γ inducible
protein and many other cytokines. There is a lack of clinical
evidence supporting the modulation of the gut microbiota that
may have therapeutic value in COVID-19 patients, subjected
to further research. From the current understanding, it can be
speculated that the host cytokine molecular pathways, micro-
biota components, in association with cytokine responses, can
be used as novel microbiome-based therapeutic approaches
for SARS-CoV-2 infection [113].

Diagnostic Approaches

Due to the growing COVID-19 pandemic, there is a shortage
of molecular testing capacity. Therefore, there is a need for
new point of care immunodiagnostic tests for fast and accurate
testing of the disease. However, they can only be used in
research purposes and cannot be used for clinical decision
making. There are 2 types of new point-of-care immunodiag-
nostic tests for antigen detection and host antibody detection.

Rapid Diagnostic Tests Based on Antigen
Detection

COVID-19 virus proteins (antigens) present in a sample in-
fected person are detected by rapid diagnostic test (RDT). If
the concentration of target antigen is sufficient in the sample,
the specific antibodies fixed to a paper strip enclosed in a
plastic casing will bind to the target protein. This will generate
a visually detectable signal, usually within 30 min. Actively
replicating a virus expresses the antigen; hence, this test can be
used for early detection of infection. However, the tests de-
pend on various factors such as virus concentration, quality of
sample, and precise formulation of reagents. Hence, its accu-
racy for SARS-CoV-2 virus can range from 34 to 80% [114].

Rapid Diagnostic Tests Based on Host
Antibody Detection

This RDT detects the antibodies present in the blood of the
patients believed to be infected COVID-19 with body pro-
duced in response to the infection [115]. The strength of anti-
bodies produced depends on various factors such as severity



of disease, age, nutritional status, and certain medication
against infections like HIV [116]. Furthermore, most antibod-
ies are produced in the second week of infection or may be
generated in the recovery state of patients. However, one of
the drawbacks of this test is that it may provide false-positive
results by interacting with antibodies generated for other in-
fections [114].

Proteomics of SARS-CoV-2 Infected Host Cells
Reveal Their Potential Targeted Therapy

Reaction towards SARS-CoV-2 outbreak through expedi-
tious, fast, and specific testing widely recognized as critical.
Nowadays, most qRT-PCR–based methods are used for the
testing of SARS-CoV-2, while the non-MS (mass spectrome-
try) methods such as enzyme-linked immunosorbent assays
(ELISAs), western blots, and protein arrays depend on anti-
bodies that were more successful during the outbreak of
SARS-CoV in 2003 [117, 118]. Considering the immense
variability in antibody production, the liquid chromatography
coupled to mass spectrometry (LCMS) is an alternative attrac-
tive diagnostic approach for the identification of small mole-
cules such as peptides and proteins in clinical settings with
consistent results [119, 120].

These techniques measure the quantity of intact or proteo-
lytically digested proteins with specificity, speed, sensitivity
and in resolution up to the femto-gram [121]. The most of the
LCMS techniques recruit tandemMS [122]. Furthermore, the
measurement of fragment ions that is formed in tandem MS
has their clinical significance due to its higher specificity and
lesser chances of false-positive results [123]. Ihling et al. iden-
tified the SARS-CoV-2 virus nucleoproteins from diluted gar-
gle solution of COVID-19 patients through the precipitation
of protein followed by the proteolytic digestion through MS
[124]. Study shows that the expression of ACE-2 receptor is
high in heart tissue through the tandem-MS via tandem mass
tag (TMT)-labeling and correlated with the higher heart fail-
ure. Bojkova et al. have isolated the SARS-CoV-2 and infect-
ed the human Caco-2 cell line which is a human colon epithe-
lial cell and used proteome and translatomemass spectrometry
to perform the cellular response [125]. Furthermore, they were
identified as the key casualties of the host cell retaliation to
infection. The above finding revealed the potential key mole-
cules as a drug target for the SARS-CoV-2 infection [125].

One Dimensional and Two Dimensional
Liquid Chromatography ESI/MS
and Quantification of Virions

Although it is easy to identify the genome sequences of
SARS-CoV, but the recognition of protein is difficult. Two

different structural proteins such as spike and nucleocapsid
that are encoded by SARS-CoV were identified by Krokhin
et al. through the MS technique [126]. Intriguingly, Zeng et al.
first time identified the four structural protein and cytosol and
nucleus fractions of SARS-CoV infected vero E6 cells and
also from the crude virion with shotgun strategy with 2D-
LC-MS/MS followed by ESI-MS/MS or by one dimensional
electrophoresis followed by ESI-MS/MS [127]. Post-
translational modifications (PTMs) of viral proteins interfere
with host cell signaling, cellular machinery hijacking and en-
hancing infectivity [128]. Thus, viruses like influenza, SARS-
CoV, and SARS-CoV-2 utilize these PTM for enhancing the
replication of their genome and for virion production.
Moreover, the novel phosphorylation of structural proteins
of SARS-CoV has been identified by this approach fig. 2
[129]. Heavy glycosylation of spikes may facilitate viral at-
tachment, membrane fusion and critically stimulate the host
immune response. There are about 22 potential N-glycosyla-
tion sites in S1 and S2 subunits of spike proteins. Shajahan
et al. mapped the glycosylation sites of spike protein subunits
S1 and S2 which are expressed on human cells through reso-
lution MS [130]. Moreover, they have quantitatively charac-
terized the N-glycosylation sites. Intriguingly, they have ob-
served the unpredicted O-glycosylation modifications on the
RBD domain of S1 subunit, spike protein. This is the first
report where they have shown O-glycosylation on S1 subunit.
Thus, this study might play their role in vaccine development
through elucidation of the glycan attachment on spike protein
of SARS-CoV-2 [130]. The limitations of LCMS in its med-
ical setup, complex matrices, trace level analytes, and time-
consuming sample preparations [131].

Conclusion

We conclude that SARS-CoV-2 is a causative agent of COVID-
19 and its association with the GI tract is well known from earlier
coronaviruses leaving a long-lasting impact on patients. In fact,
the severity will increase in patients having GI disorders. The
attribute of gastrointestinal symptoms existing in COVID-19 is
more subtle than the respiratory symptoms; hence, they are easily
ignored. However, during the entire course of COVID-19, pa-
tients might have only gastrointestinal symptoms and may shed
the virus in feces, even though their respiratory samples tests
negative. Thus, it is pivotal to observe these gastrointestinal
symptoms with caution in the early stage of COVID-19.
Furthermore, dynamic monitoring of the digestive system and
cytokines is also required during clinical practice to decrease the
chances of the complications and mortality of COVID-19 pa-
tients. Moreover, the detection of SARS-CoV-2 in fecal samples
is essential for clinical practice along with routine testing, partic-
ularly for patients with atypical symptoms before leaving the
hospital to confirm viral clearance. The ACE2 receptor is
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ubiquitously found on the surface of the GI tract; thus, it is a
potential replication site for SARS-CoV-2. Another receptor si-
alic acid is used by SARS-CoV-2 for its entry and HLA as its
attachment factor. We have mentioned several potential targets
that could be used as possible therapeutics. COVID-19 patients
have suffered from hyper-inflammation due to which gut mi-
crobes will further exacerbate the infection. In addition to inflam-
mation, the current treatment regimens can also negatively affect
gut microbiota and cause digestive complications. We have also
aimed to provide insight techniques like RDT, LC-MS which
can be used for diagnosis and target the viral proteins with high
sensitivity. Hence, this review intends to provide comprehensive
information on SARS-CoV-2 concerning GI disorders.
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