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Purpose: Dyslexia is a reading disorder with neurological deficit of the magnocellular

pathway. The aim of our study was to evaluate the functionality of the magnocellular–Y

(M–Y) retinal ganglion cells in adult dyslexic subjects using steady-state pattern electro-

retinogram and frequency doubling perimetry.

Methods: Ten patients with dyslexia (7 females and 3 males), mean age 28.7 ± 5.9 years,

and 10 subjects without dyslexia (6 females and 4 males), mean age 27.8 ± 4.1 years, were

enrolled in the study and underwent both steady-state pattern-electroretinogram examination

and frequency doubling perimetry.

Results: There was a significant difference in the amplitude of the steady-state pattern electro-

retinogram of the dyslexic group and the healthy controls (0.610±0.110 μV vs 1.250±0.296 μV;

p=0.0001). Furthermore, in the dyslexic group we found a significant difference between the

right eye and the left eye (0.671±0.11 μV vs 0.559±0.15 μV; p=0.001). With frequency doubling

perimetry, the pattern standard deviation index increased in dyslexic eyes compared to healthy

controls (4.40±0.81 dB vs 2.99±0.35 dB; p=0.0001) and in the left eye versus the right eye of the

dyslexic group (4.43±1.10 dB vs 3.66±0.96 dB; p=0.031). There was a correlation between the

reduction in the wave amplitude of the pattern electroretinogram and the simultaneous increase

in the pattern standard deviation values (r=0.80; p=0.001). This correlation was also found to be

present in the left eye (r=0.93; p<0.001) and the right eye (r=0.81; p=0.005) of dyslexic subjects.

Conclusion: Our study shows that there was an alteration of the activity of M–Y retinal

ganglion cells, especially in the left eye. It confirms that in dyslexia there is a deficit of visual

attention with damage not only of the magnocellular-dorsal pathway but also of

the M-Y retinal ganglion cells.
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Introduction
Dyslexia is a condition characterized by impairment of reading skills in subjects

without alterations of visual acuity and with normal intelligence. It affects boys and

girls equally and it is usually first observed during childhood. The etiology of

dyslexia is still under discussion, although an alteration of the magnocellular path-

way, in particular the magnocellular-dorsal (M–D) pathway, is hypothesized.1–8

Previous autopsy studies have shown that in dyslexics the cells of the magnocel-

lular pathway in the ventral layers of the lateral geniculate nucleus (LGN) were

smaller than those of healthy controls.4
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The human LGN contains three distinct retinal

pathways:9 the parvocellular (P) pathway originating from

the midget retinal ganglion cells,10–12 the koniocellular path-

way receiving afferents from the retinal ganglion cells driven

by short-wavelength photoreceptors,13–15 and the magnocel-

lular (M) pathway, derived from the parasol retinal ganglion

cells (RGCs),10,12,16,17 which contains two functional cell

classes that are similar to cat X and cat Y geniculate cells.

About 5% of the magnocellular cells of LGN display

a nonlinear Y-type response,18 hence the term M–Y cells.

Selective electrofunctional investigation of

the M pathway requires the use of electrophysiological

methods based on the recording of pattern visual evoked

potentials (PVEP) and appropriately modified stimuli with

regard to contrast, spatial frequency, temporal frequency,

and movement.19–24

PVEP studies appear to confirm the results of func-

tional magnetic resonance imaging (fMRI).25–28

The M pathway and especially the M–Y ganglion cell

involved in the analysis of visual motion can also be

studied using frequency doubling illusion (FDI). FDI is

based on a doubling illusion created by counterphase flick-

ering of a low spatial frequency sinusoidal grating at

a high temporal frequency.29

This type of psychophysical examination has been

proposed as a sensitive test for detecting early functional

changes in M–Y ganglion cells, mainly in glaucoma and

ocular hypertension,18,30,31 but it has rarely been used in

amblyopia32 and dyslexia.33,34 From an electrophysiolo-

gical point of view, the study of M–Y cells in

the M pathway can be performed using the steady-state

pattern electroretinogram (SS-PERG).35 This examina-

tion was initially proposed in patients suffering from

simple chronic open-angle glaucoma and ocular hyper-

tension since it was able to detect early alterations in the

bioelectric response of retinal M–Y retinal ganglion

cells. The purpose of our study was to use a SS-PERG

with a stimulus that creates a doubling illusion similar to

that achieved using frequency doubling technology

(FDT), in order to selectively investigate the activity of

the M–Y retinal ganglion cells in adult dyslexic subjects.

Materials and Methods
Ten patients with dyslexia (7 women and 3 men), mean

age 28.7 ± 5.9 years, and 10 patients without dyslexia

(6 women and 4 men), mean age 27.8 ± 4.1 years, were

enrolled in the study. All patients underwent a complete

ophthalmological evaluation, including measurement of

visual acuity, slit-lamp examination of the anterior and

posterior segment, and random-dot stereopsis test.

Ophthalmologic evaluation excluded a refractive defect

higher than ± 2 diopters of spherical equivalent (SE). All

subjects had normal binocular vision with random-dot

stereopsis, absence of retinal and optic nerve diseases,

and transparent dioptric media.

Patients enrolled in the study were diagnosed with

dyslexia by the Neuropsychiatric Center of the National

Health Service in Bologna according to the diagnostic

criteria for learning disabilities and with a test for reading

abilities.36,37

All patients also underwent SS-PERG and FDT peri-

metry examination.

The study was approved by the Local Ethics

Committee of the University of Bologna and adhered to

tenets of the Declaration of Helsinki. Written informed

consent was obtained from all participants.

The Steady-State Pattern-Electroretinogram was

recorded using the RetimaxPlus system (CSO

Instruments, Florence, Italy). The patient sat on a chair at

a distance of 57 cm from the television screen (resolution

1024x768; size 34 inches) and fixed binocularly on a red

cross at the center of the screen, which subtended a visual

angle of 48.89 degrees. The generated potential was mea-

sured with HK-LOOP ocular electrodes; the reference

electrode was located near the outer canthus and the

ground electrode was placed on the ear lobe. The inter-

electrode resistance was less than 5 kOhm. All subjects

had undilated pupils, measuring between 3 and 4 mm, with

an appropriate correction for the working distance, and

they were allowed to blink freely.

PERG stimulus was first presented as a full-screen

black-and-white vertical bar pattern (contrast: 20%; spatial

frequency: 0.3 cycles per degree/cpd; temporal frequency:

15 Hz). The number of samples acquired, mediated and

processed with Discrete Fourier Transform (DFT) was 300

and the acquisition time was 133 ms.

The pattern presentation (approximately 4 mins) was

preceded by an unmodulated uniform field (approximately

1 min) of the same mean luminance (blank), which was used

to evaluate the background noise level. The noise level was

0.08 ± 0.03 μV in both normal and dyslexic patients.

Because SS-PERG was recorded in response to rela-

tively fast alternating gratings, the response waveforms

were sinusoidal-like with a frequency corresponding to

the reversal rate. Packets were automatically evaluated in

the frequency domain by DFT to isolate the component at
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the reversal rate (30 Hz), and the amplitude in microvolts

was displayed as a function of time.

The FDT perimetry was performed using the full-

threshold program N-30 of the Humphrey FDT perimeter

(Carl Zeiss Meditec, Dublin, CA) which tested 19 different

points within the central 30 degrees of the visual field. Each

target was displayed as a square of 10 x 10 degrees where

a grid of black and white bars was projected. Furthermore,

the 0.25 cycles/degree sinusoidal grid undergone counter-

phase flicker at 18 Hz to create the illusion of doubling

(FDI).18 The dyslexic and the normal reader subjects under-

went three different sessions of visual field tests at intervals

of 4 ± 1 days to become familiar with the procedure because

none of the study subjects had previous experience with FDT.

Mean defect (MD) and pattern standard deviation (PSD)

were evaluated and were considered for the statistical analysis.

Statistical Analysis
For the statistical analysis of the data, we used the MedCalc

10.9.1 statistical program (MedCalc Software, Ostend,

Belgium). MD and PSD of FDT and the amplitude of SS-

PERG were analyzed using the Mann–Whitney U-test to

assess group differences, Wilcoxon’s test to evaluate

within-subject comparisons, and the Spearman's correlation

test, considering p< 0.05 as significant.

Results
The mean visual acuity (BCVA) and the spherical equivalent

(SE) in the control and dyslexic groups are reported in Table

1. There was no significant difference in BCVA (p = 0.980)

and SE (p = 0.312) of two groups.

In regard to the amplitude of the SS-PERG waveform,

there was a significant difference between the control and

dyslexic group (p = 0.0001) (Table 2). Furthermore, in the

dyslexic group we found a significant difference between the

right eye (RE) and the left eye (LE) (p = 0.001) but no

difference was found in the control group (p<0.596)

(Table 3; Figure 1).

With regard to FDT parameters, the MD was similar in

the healthy group and the dyslexic group (p = 0.056). The

PSD was significantly higher in dyslexic subjects compared

to normal subjects (p = 0.0001) (Table 4). Furthermore, in the

dyslexic group, we found that the PSD of LE was signifi-

cantly higher compared to RE (p = 0.031) (Table 5). For

PSD, in the control group, there was no statistically signifi-

cant difference between RE and LE (p <0.791) (Table 5).

Statistical analysis of the SS-PERG among all groups

shows a statistically significant reduction of the wave

amplitude in dyslexics compared to the control group,

both for the RE (p = 0.0003) and for the LE (p =

0.0001). Also, when analyzing the FDT data we found

an increase in PSD values in dyslexic subjects compared

to normal subjects both in the RE (p <0.0002) and in the

LE (p <0.0002) (Table 6).

In dyslexic subjects, Spearman correlation test

showed a significant correlation between the reduction

in the SS-PERG wave amplitude and the simultaneous

increase in PSD index values (r = 0.80; p = 0.001)

(Table 7, Figure 2). Furthermore, this correlation was

also found to be present in the LE (r = 0.93; p < 0.001)

and the RE (r = 0.81; p = 0.005) of these subjects

(Table 7, Figures 3–4). The same significant correlation

between SS-PERG wave amplitude and PSD index values

was found not only in the case of dyslexic subjects but

also in the control group (Table 7)

Discussion
Dyslexia is a reading disorder afflicting 5–17% of the

school-age population38–40 and characterized by difficulty

in accessing and manipulating the phonemic units of writ-

ten language.41,42 In recent decades, the most established

hypothesis to explain developmental dyslexia was based

on the presence of an auditory-phonological processing

deficit;43–49 however, recent studies would seem to show

how the absence of development of fluent reading could be

attributed both to a deficit in visual attention50–55 and an

oculomotor deficit.56–58

Table 1 Best Corrected Visual Acuity (BCVA) Values (Mean

Values and Standard Deviation) and Diopter Spherical

Equivalent (SE) Values (Mean Values and Standard Deviation)

Control Group Dyslexic Group p-value

Men: Women 4:6 3:7 0.765

Age (yrs)

CI 95%

27.8 ± 3.3

25.4/30.2

28.5 ± 3.9

25.6/31.3

0.431

BVCA (decimal) 1.0 ± 0.03 1.0 ± 0.04 0.980

SE (diopter) − 0.3 ± 1.3 − 0.5 ± 1.4 0.312

Abbreviation: CI, confidence interval.

Table 2 Steady-State Pattern Electroretinogram (SS-PERG)

Amplitude Values (Mean Values and Standard Deviation)

Control Group Dyslexic Group p-value

SS-PERG (μV) 1.250 ± 0.296 0.610 ± 0.110 0.0001

CI 95% 1.111/1.389 0.559/0.661

Abbreviation: CI, confidence interval.
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Studies of the postmortem brains of known dyslexic

subjects have shown several alterations: the normal asym-

metry of the planum temporale, favoring the left side,

tends to be absent. Furthermore, in the posterior parietal

cortex, we have an anomalous symmetry with small aber-

rant “brain warts” clustered around the temporo-parietal

junction.59,60

Neuroradiological studies using fMRI have shown that

visual attention and the ability to control eye movements

and identify the position of objects in space are associated

with the dorsal cortical visual pathway or occipito-parietal

pathway, which appears to be altered in dyslexics.27,28,61

Furthermore, there is evidence of alterations in the func-

tionality of the ventral cortical or occipito-temporal visual

pathways, which receive information from both the M and

P pathways, therefore, specializing in identifying the

details relating to the shape and color of objects.61–64

Moreover, in dyslexic subjects, a disconnection between

Table 3 Steady-State Pattern Electroretinogram (SS-PERG) Amplitude Values of the Right Eye (RE) and Left eye (LE) in Dyslexics and

Control Subjects

Dyslexic RE Dyslexic LE p-value Control RE Control LE p-value

SS-PERG (μV) 0.671 ± 0.11 0.559 ± 0.15 0.001 1.29 ± 0.31 1.34 ± 0.32 0.596

CI 95% 0.595/0.747 0.490/0.628 1.01/1.51 1.12/1.57

Abbreviation: CI, confidence interval.

Figure 1 Steady-state pattern electroretinogram waveforms recorded in the right and left eye of control normal subject (top) and dyslexic subject (bottom). It can be

observed a reduction of waveform amplitude in both eyes of the dyslexic subject (bottom) against the normal subject (top). Moreover, the dyslexics have a waveform

amplitude decrease in the LE compared to the RE while in the normal subjects we have a slight increase in waveform amplitude in the LE than in the RE.

Abbreviations: RE, right eye; LE, left eye.
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the dorsal visual pathway and the ventral visual pathway

in the middle frontal left gyrus has been found.65

One of the main hypotheses to explain visual deficits in

dyslexia is based on the presence of a deficit in the trans-

mission of visual stimuli along the M pathway.4,5

To validate the deficit theory of the M pathway and to

confirm what was found with the fRMN, several authors

used both psychophysical66–68 and electrophysiological

methods.23,69,70

The use of psychophysical methods,66–68 above all

FDT,18,29–31,33 which allows selective stimulation

of M-Y ganglion cells,18,30,71,72 has provided definite

information on the M pathway.

By using FDT perimetry in the dyslexic group, we

found a significant increase in the PSD index values com-

pared with healthy controls, confirming what was found in

previous studies.33,34 In the same group of patients, we

found an insignificant increase in the MD index value.

These data do not agree with other studies in which the

difference between dyslexic and healthy subjects was sta-

tistically significant.33,34 We believe that this discrepancy

could be due to the fact that the subjects enrolled in our

study were young adults and not children. We cannot

forget that dyslexia over time can improve when new

reading strategies are learned.73

In our investigation, we analyzed not only the MD index

but also the PSD index because this index reflects the rough-

ness (focal-cluster alteration) of the visual field.74,75

Moreover, we found that in LE of dyslexic patients the

PSD values were significantly more altered than in the RE,

confirming the observations of a previous study.33,34 These

data confirm that dyslexics present an alteration in retinal

sensitivity in the LE. This event causes an alteration in the

flow of the M pathway and, consequently, a slight neuronal

disorder in the right temporal-parietal area, which is essential

for the development of visual attention.76,77

Regarding electrophysiological investigations, mainly

visual evoked potentials (VEPs) were used to study

Table 4 Frequency Doubling Technology (FDT) Perimetry Values

(Mean Values and Standard Deviation)

Control Group Dyslexic Group p-value

FDT-MD (dB) − 0.81 ± 0.61 − 2.28 ± 1.19 0.056

CI 95% − 1.09/ - 0.52 −2.84/-1.72

FDT-PSD (dB) 2.99 ± 0.35 4.40 ± 0.81 0.0001

CI 95% 2.79/3.17 4.10/4.78

Abbreviation: MD, mean deviation; PSD, pattern standard deviation; CI, confi-

dence interval.

Table 6 Intragroup Steady-State Pattern Electroretinogram (SS-PERG) and Frequency Doubling Technology (FDT) Perimetry Index

Values of the Right Eye (RE) and Left eye (LE) in Dyslexic Subjects and Control Subjects

Dyslexic RE Control RE p-value Dyslexic LE Control LE p-value

SS-PERG (μV) 0.671 ± 0.11 1.29 ± 0.31 0.0003 0.559 ± 0.15 1.34 ± 0.32 0.0001

CI 95% 0.595/0.747 1.01/1.51 0.490/0.628 1.12/1.57

FDT-PSD (dB) 3.66 ± 0.96 2.99 ± 0.42 0.0002 4.43 ± 1.10 2.95 ± 0.40 0.0002

CI 95% 2.97/4.35 2.69/3.3 3.65/5.22 2.66/3.23

Abbreviations: PSD, pattern standard deviation; CI, confidence interval.

Table 5 Frequency Doubling Technology (FDT) Index Values of the Right Eye (RE) and Left eye (LE) in Dyslexics and Control Subjects

Dyslexic RE Dyslexic LE p-value Control RE Control LE p-value

FDT-PSD (dB) 3.66 ± 0.96 4.43 ± 1.10 0.031 2.99 ± 0.42 2.95 ± 0.40 0.791

CI 95% 2.97/4.35 3.65/5.22 2.69/3.3 2.66/3.23

Abbreviations: PSD, pattern standard deviation; CI, confidence interval.

Table 7 Spearman’s Correlation Test Between Steady-State

Pattern Electroretinogram (SS-PERG) and Frequency Doubling

Technology (FDT) Index Values in the Right Eye (RE) and in the

Left Eye (LE) of Dyslexic Subjects and of Control Subjects

SS-PERG

(μV)

FDT-PSD

(dB)

r p-value

Dyslexic (both

eyes)

0.610 ± 0.11 4.40 ± 0.81 0.80 0.001

Dyslexic LE 0.559 ± 0.15 4.43 ± 1.10 0.93 0.001

Dyslexic RE 0.671 ± 0.11 3.66 ± 0.96 0.81 0.005

Control (both

eyes)

1.250 ±

0.296

2.99 ± 0.35 0.56 0.011

Control RE 1.29 ± 0.31 2.99 ± 0.42 0.78 0.008

Control LE 1.34 ± 0.32 2.95 ± 0.40 0.68 0.032

Abbreviation: PSD, pattern standard deviation.
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the M pathway by applying standard methods, which gave

contradictory results.23 Recently, using the pattern visual

evoked potentials (PVEP) and modifying the stimulation

parameters appropriately in order to isolate the response of

the MD pathway, it has been observed that for 60-arc-

minute stimuli in dyslexic subjects the reduction of con-

trast from 100% to 25% resulted in a significant reduction

in amplitude with an increase in P100 wave latency while

for 15-arc-minute stimuli only latency was significantly

increased.23,78 These data confirmed the observations of

Romani and coworkers, who used stimuli with a high

temporal frequency of 8 Hz with fixed contrast at 50%

and spatial frequencies of the stimulus of 0.50 cpd (large

stimulus) and 2 cpd (small stimulus). In this case, only low

spatial frequency stimuli (large stimuli) and high temporal

frequency determined a decrease in amplitude and an

increase in latency of the N95 wave in dyslexic subjects.19

Other studies have used different electrophysiological

techniques, such as fixed spatial frequencies with high

temporal frequencies and luminance variation,21,23 low

spatial frequency and high temporal frequency stimuli

(7.5 Hz),20,23 and, finally, recording of VEPs with the

use of moving stimuli at low contrast,79 as well as at low

contrast and radial motion full field and radial motion

periphery.69 In all cases, they showed a significant increase

in latencies and a reduction in the amplitudes of the wave-

form in dyslexic patients.24

To study the activity of only M–Y retinal ganglion cells

we used the SS-PERG with a stimulus similar to that used in

the FDT perimetry.32 Both transient-PERG and SS-PERG

are commonly used to investigate RGCs activity, but these

two examinations differ mainly in the temporal frequency of

the pattern stimulus. In detail, by using a temporal frequency

of 4 Hz, a transient response will be obtained; by increasing

the frequency to 8 Hz, a steady-state response will be

recorded80,81 and we can study the ON pathway of the

spiking retinal ganglion cells (RGCs).82

Now, the question is whether the Y-cells, first identified

in cats, even exist in the primate’s retina. Indeed, this is

a controversial topic in the literature, but recent studies

have identified Y-like RGCs in primates.71,83–85

Experimental studies, with the use of microelectrodes,

Figure 2 Scatterplot of Spearman’s correlation test between steady-state pattern

electroretinogram (SS-PERG) and frequency doubling technology (FDT) in the

dyslexic group.

Abbreviation: PSD, pattern standard deviation.

Figure 3 Scatterplot of Spearman’s correlation test between steady-state pattern

electroretinogram (SS-PERG) and frequency doubling technology (FDT) in the left

eye of the dyslexic group.

Abbreviation: PSD, pattern standard deviation.

Figure 4 Scatterplot of Spearman’s correlation test between steady-state pattern

electroretinogram (SS-PERG) and frequency doubling technology (FDT) in the right

eye of dyslexic group.

Abbreviation: PSD, pattern standard deviation.
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have shown that when the retina is stimulated with grat-

ings at high contrast and high spatial frequency from each

parasol (M) RGCs a doubled frequency is recorded and

this response is characteristic of Y-cells.83

In our study, we found a significant reduction in the

amplitude of SS-PERG in the dyslexic group compared to

the healthy controls. In dyslexic subjects, we found

a significant difference between the LE and RE, with

a greater amplitude reduction in the LE. A significant

correlation between the amplitude of the SS-PERG and

the pattern standard deviation index of FDT perimetry.

The correlation between the amplitude of the SS-PERG

waveform and the FDT perimetric index confirms what

was found by Maddess and coworkers in glaucoma and

suspect glaucoma.35

Our electrophysiological data could therefore confirm

not only the results of a previous study using the FDT

technique33,34 but also the hypothesis that in dyslexic

subjects the damage would be located not only in M–D

pathway but even in the RGCs.

The small number of adult dyslexic subjects included

in the study is a limitation of our research. In this first

study, we only enrolled adult patients without any intellec-

tual deficiency since the technique used for the SS-PERG

required high patient compliance and visual attention.

Additional studies with larger groups are needed to vali-

date our preliminary results.

Conclusion
Previous electrophysiological studies have demonstrated

with the use of PVEP in dyslexic patients there is an

alteration of the M–D pathway. In our study, we found

that in dyslexia there is an alteration of the activity of M–

Y retinal ganglion cells, especially in the left eye. These

data confirm that in dyslexia there is a “minineglect” on

the left eye that justifies the onset of a deficit of visual

attention.
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