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Abstract

Motivation: Current plant and animal genomic studies are often based on newly assembled gen-

omes that have not been properly consolidated. In this scenario, misassembled regions can easily

lead to false-positive findings. Despite quality control scores are included within genotyping proto-

cols, they are usually employed to evaluate individual sample quality rather than reference

sequence reliability. We propose a statistical model that combines quality control scores across

samples in order to detect incongruent patterns at every genomic region. Our model is inherently

robust since common artifact signals are expected to be shared between independent samples

over misassembled regions of the genome.

Results: The reliability of our protocol has been extensively tested through different experiments

and organisms with accurate results, improving state-of-the-art methods. Our analysis demon-

strates synergistic relations between quality control scores and allelic variability estimators, that

improve the detection of misassembled regions, and is able to find strong artifact signals even

within the human reference assembly. Furthermore, we demonstrated how our model can be

trained to properly rank the confidence of a set of candidate variants obtained from new independ-

ent samples.

Availability and implementation: This tool is freely available at http://gitlab.com/carbonell/ces.

Contact: jcarbonell.cipf@gmail.com or joaquin.dopazo@juntadeandalucia.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next-generation sequencing (NGS) studies have experienced a con-

siderable decrease in cost/throughput relation, which has certainly

changed the design and scope of current plant and animal genomic

studies. The number of available samples has been proportionally

increased, opening the door to deal with large population scale stud-

ies, beyond the remarkable international consortiums such as the

1000 genomes project (Abecasis et al., 2012), EXAC (Lek et al.,

2016) or The Cancer Genome Atlas (Weinstein et al., 2013).
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During the last decade, population scale studies have provided

successful results about underlying variability of hundreds of spe-

cies, even about specific subgroups of individuals like human subpo-

pulations (Moorjani et al., 2013; Xing et al., 2010) or particular

geographic regions under study (Abecasis et al., 2012; Boomsma

et al., 2014; Dopazo et al., 2016; Gudbjartsson et al., 2015;

Nagasaki et al., 2015; Tishkoff et al., 2009). However, few of them

have taken advantage of the numerous quality related scores com-

puted during variant analysis to evaluate the reliability of the refer-

ence genome sequence in itself. In some cases, assembly errors are

responsible for a great number of unexpected results, especially for

non-model organisms, where reference assembly has not been prop-

erly consolidated. Evolutionary studies also constitute a sensible

context, since sample reads are often mapped against a reference

genome that belongs to a related but distinct species.

There are few available standard protocols to evaluate the confi-

dence of a given reference genome assembly (RGA). Commonly, a

set of simple descriptive measurements is used to evaluate the frag-

mentation degree and the percentage of genome recovered by a

given assembly, where misassembled regions cannot be easily identi-

fied. Good examples of this philosophy can be seen at the

Assemblathon contest (Bradnam et al., 2013) or the GAGE

(Salzberg et al., 2012) initiative, where state-of-the-art scores were

used to compare the reliability of different assemblers over a set of

real and simulated datasets.

Some recent tools (Clark et al., 2013; Hunt et al., 2013; Rahman

and Pachter, 2013; Vezzi et al., 2012) extended the classic approach

to a more detailed region-based evaluation. In particular REAPR

(Hunt et al., 2013) uses a pair-end mapped sample of similar charac-

teristics to the evaluated reference genome in order to detect incon-

gruous genomic patterns that are directly related to assembly

artifacts. More recently, misFinder (Zhu et al., 2015) combined a

similar approach with the help of a near species reference genome,

also provided by QUAST (Gurevich et al., 2013). Additionally,

some other tools have appeared to cover specific contexts like bac-

terial (Walker et al., 2014) or metagenomic (Mikheenko et al.,

2016) assembly evaluation.

Existing tools do not provide assembly evaluation metrics when

a population (or a group of samples) of interest is sequenced for gen-

otyping purposes. This scenario matches with a great percentage of

current genomic studies where a variant-discovery oriented protocol

is implemented to detect those genomic features potentially related

to phenotypic traits of interest. When a non-model organism is

studied, the absence of a valid reference genome is replaced by a de

novo assembled sequence often limited in quality, whose misas-

sembled regions inevitably lead to false-positive associations. To re-

strain this bias, a set of quality control metrics is usually obtained to

evaluate the confidence of every predicted sample variant. However,

these metrics are never used to evaluate the reference genome.

In this case, if we summarize and project the quality control

scores against the reference sequence we can construct a statis-

tical model that characterizes in detail every region or nucleotide of

the genome. We propose this kind of model, which is naturally

able to capture unstable regions since similar quality patterns

are expected to be found across different samples. That provides

statistically robust evidence supported by several independent

observations.

In this work, a novel RGA evaluation protocol is presented. Our

methodology is based on an empirical model constructed from a set

of selected quality control measurements obtained after mapping the

reads of a population of interest, allowing local evaluation of the

RGA without needing the support of a near species reference

genome. Finally, the quality control scores are extended with a set

of population genetics metrics to evaluate the reference genome in

terms of allelic variability, providing a valuable portrait about the

underlying evolutionary processes that the studied samples could

have recently experimented as a species or clade.

2 Methods

The evaluation of a RGA is performed through the construction of a

local genomic profile (LGP). The LGP is based on a sliding-window

protocol that dissects the RGA into windows of a specific size.

Inside each window, allelic variability and noise susceptibility are

measured and summarized by using different statistical scores. The

LGP is composed of a set of the empirical distributions (one per

score) obtained by combining all computed window values along

the genome.

Region-based characterization
At every single window W, a set of quality control scores

(Supplementary Table S1) are computed by using the sample reads

that specifically cover the window location. Then, the obtained

scores are summarized to provide a representative value per window

and score (Fig. 1).

The window value is computed depending on the score nature.

In particular, we define two types of score: (i) those naturally

defined at every genomic location (like base or mapping quality)

and (ii) those exclusive of some type of locus (like variant-derived

quality control scores). In the first case, the window value (x) is

computed as:

x ¼
X
i2W

ri=l; (1)

where

ri ¼
X
j2S

yij=s; (2)

and l corresponds to the window length, and ri to the summary com-

puted at the relative window position i, being yij the score value

Fig. 1. General scheme of the methodology. (a) The LGP is constructed from

sample reads that cover regions across the genome. (b) Then, specific

markers of interest can be evaluated by contrasting their corresponding win-

dow value against the stored empirical distributions. Finally, the CES is com-

puted to obtain the definitive diagnosis
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obtained for the sample j at this position, S the total set of samples

and s the total number of samples of S.

When the score is only computable at certain nucleotides or sam-

ples (like variant-derived scores) the summary is constrained to

those specific evaluated elements:

x ¼
X
i2V

ri=v; (3)

where

ri ¼
X
j2Sv

yij=sv; (4)

and V corresponds to the set of evaluated positions and Sv to the set

of evaluated samples, being v and sv their respective sizes.

In the general case, all base pairs within a window contrib-

ute equally to the summarized value. However, if we are interested

in evaluating a set of specific genomic locations (like mutated loci),

the window positions can be centered around the correspond-

ing coordinates of interest, assigning more relevance to their

nearer nucleotides. In particular, the summary is computed as a

weighted sum where each ri contributes to the window value de-

pending on the distance to its center (where the base of interest is

located).

x ¼
X
i2W

riwi; (5)

being

X
i2W

wi ¼ 1; (6)

where wi corresponds to the weight assigned to the relative position

i. In particular, wi is computed as:

wi ¼
Wc � ji�WcjP

k2W Wc � jk�Wcj
; (7)

where Wc corresponds to the window center. Also in this case, the

weighted scores can be adapted to variant-derived scores substitut-

ing W for V, that is:

x ¼
X
i2V

riwi; (8)

where

wi ¼
Wc � ji�WcjP

k2V Wc � jk�Wcj
: (9)

Combined error score
Quality control scores describe noise artifacts from different

points of view. If base quality or strand bias can predict false

positives caused by errors during sequencing, mapping quality or

indels frequency can detect abnormal mappings when two dif-

ferent homologous regions are inconsistently merged. Although

poorly assembled regions often provide simultaneously extreme

values for several noise estimators, it is not strictly necessary to

find multiple artifact signals when a specific kind of noise is

present at a given region. Due to this, we combine the set of em-

pirical P-values obtained from all scores into a single and more

accurate artifact estimator, that we call combined error score

(CES).

In order to define a robust estimator, the CES is computed by

using the Fisher’s method for combining P-values (Fisher, 1925),

where a combined score

x ¼ �2
Xm
q¼1

log ðpqÞ; (10)

is assumed to be distributed according to a v2 distribution with 2 m

degrees of freedom, being m the number of quality control scores

and pq the corresponding P-value for a quality control score q.

In this way, the CES is computed as

CES ¼ f ðxÞ; (11)

where f corresponds to the v2 cumulative density function.

General overview (guide to users)
The input of our protocol is mainly composed of two pieces: (i) the

reference genome that we want to evaluate and (ii) the set of samples

used to perform the evaluation. Also, the user must define the prefered

window length (l). The window length represents an heuristic param-

eter that must be coherently defined. Despite its heuristic character, it

has natural limits: too small window values will not take advantage

on neighborhood bases while large window values will dilute too

much the error estimation. Without needing optimization, a good ap-

proach can be to define l to a value close to used read length in sample

sequencing, or otherwise, pair-end size (see Supplementary Fig. S3),

since they define the core of the sample profiling.

After tool execution, the CES is obtained, providing a quantita-

tive estimator that reflects the reliability of every region of the eval-

uated genome. This value can be used under different strategies. In

the general case, the CES can be applied to directly filter those re-

gions with statistically significant values, where the presence of as-

sembly artifacts are robustly proved. But also, it can be used as a

ranking criteria to establish which obtained polymorphisms or gen-

omic features should be firstly validated or selected for subsequent

analysis. These two strategies can be also combined, reducing hence

the expected number of false-positive findings, and reinforcing the

final study conclusions about samples of interest.

Validation and use cases
The proposed methodology can be applied to a broad range of cases.

To illustrate this, several experiments have been designed. In particu-

lar, a set of selected organisms, representing different useful scenarios,

were chosen to perform the evaluation. In all cases, selected organisms

have an available stable reference sequence, that is used to detect the

location of misassembled regions within the corresponding assembly

under evaluation. The comparison between the stable reference se-

quence and the assembled genome is based on a BLAST protocol that

estimates the degree of similarity between the sequence of a specific

window and its corresponding region into the original (reference) gen-

ome. We refer to this metric as similarity score.

Similarity score computing
The reliability of an evaluated de novo assembly is assessed by com-

paring its sequence against the corresponding reference genome,

which is considered the ground truth. The evaluation is performed

in a region-based manner. Concretely, the de novo assembly is div-

ided in regions of a specific size and its sequences mapped against

the reference sequences by using a BLAST protocol. The quality of

the hit (BLAST bit score) obtained by a given region is used to define
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its integrity. Due to a given region sequence can hit multiple times

the reference sequence (as repetitive elements), the similarity score is

computed by comparing the two best hits as:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � b2
2

q
; (12)

where s corresponds to the similarity score, and b1 and b2 the

BLAST bit scores corresponding to the first and the second best hit,

respectively. This approach allows us to estimate whether a region

of interest should be unequivocally assembled or not, reflecting in

that case the repetitive nature of this loci.

Arabidopsis thaliana
Arabidopsis thaliana (Ath) represents one of the most widely studied

organisms in plant biology. The latest version of its RGA (TAIR10.,

Berardini et al., 2015) contains almost 136 Mb and can be

considered a quite stable assembled genome. In general, plant

genomics is an interesting case of use of our methodology since

recently assembled genomes are extensively used to detect which

polymorphisms are behind desirable phenotypic traits in crops. In

this experiment, two consecutive assembled references of Ath were

downloaded (ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_

chromosomes/) and compared. In particular, TAIR8 release (http://

www.ncbi.nlm.nih.gov/assembly/GCF_000001735.1/) was analysed

by our protocol, where potentially misassembled regions were ob-

tained by comparing its sequence against the newer version of the

genome TAIR9/10 (http://www.ncbi.nlm.nih.gov/assembly/GCF_

000001735.3/). This comparison was done through the similarity

score obtained from the BLAST-based protocol. In order to test our

methodology, a set of 16 Ath NGS samples were downloaded from

the European Nucleotide Archive (ENA) (Leinonen et al., 2011a)

(study accession PRJEB2457) and mapped with BWA software (Li

and Durbin, 2010) (in mem mode) against the TAIR8 sequence.

Then, a LGP was constructed (l ¼ 100 bp) and the obtained quality

control scores from each window were compared against the similar-

ity score obtained to the same regions. Also, the coordinates of re-

gions that were updated in TAIR8 assembly were evaluated against a

set of randomly selected regions in order the estimate the sensitivity

of our methodology to detect proved assembly artifacts.

Saccharomyces cerevisiae
Saccharomyces cerevisiae (Sce), a species of yeast, is an eukaryotic

model organism widely used in molecular biology. Its genome con-

tains approximately 12 Mb and it has been extensively tested in

order to discover putative protein–protein interactions, single gene

knock-down effects or synthetic lethality gene combinations, among

others.

For this experiment, a set of 79 yeast samples were downloaded

from the Sequence Read Archive (SRA) (Leinonen et al., 2011 b)

(study accession SRP091984) and subsequently mapped by using

BWA software (Li and Durbin, 2010) (in mem mode) into a de novo

assembly obtained ad hoc by using the reads of a selected individual

(SRR4446970), representing the case where assembly is addressed

only by using NGS reads. The assembly was performed by using

Spades (Bankevich et al., 2012) tool (a kmer size of 33). Finally, the

LGP was carried out (l ¼ 100 bp), and the obtained scores were also

compared against the corresponding similarity score obtained by

comparing the de novo assembly against the known reference gen-

ome (GCF_000146045.2 NCBI accesion, a good description can be

found at Saccharomyces Genome Database at http://www.yeastge

nome.org/cgi-bin/chromosomeHistory.pl).

Aeromonas hydrophilia
Aeromonas hydrophilia (Ahy) is a heterotrophic bacteria present in

many human related environments, including sources of fresh water.

It is resistant to most common antibiotics and causes several human

diseases (like gastroenteritis), also, is considered one of the most

virulent fish pathogens. Its genome contains approximately 5 Mb,

and was included within the GAGE-B initiative (Magoc et al., 2013)

where several bacterial organisms where assembled by differ-

ent available tools under study. For this experiment, we down-

loaded from the GAGE-B repository (https://ccb.jhu.edu/gage_b/

genomeAssemblies/index.html) the Ahy assembly made by Abyss

(Simpson et al., 2009) tool. In this case, the LGP (with l ¼ 100 bp)

was constructed by using a set of NGS samples simulated

(see Supplementary Materials) from the official Ahy reference

genome (NC_008570 accession at NCBI, O’Leary et al., 2016 re-

pository). As previously, the quality control scores from each win-

dow were compared against the corresponding similarity scores

obtained between Abyss assembly and the official Ahy reference

genome.

Homo sapiens
Homo sapiens (Hsa) genomics is one of the most important

fields in molecular biology research. Since the first draft (Lander

et al., 2001), to its first stable assembled sequence in 2003

(International Human Genome Sequencing Consortium, 2004), it

has been updated dozens of times (https://genome.ucsc.edu/FAQ/

FAQreleases.html). At the moment, the human RGA is considered

a high quality assembled sequence, with very few updates at every

new release. Over this conservative scenario, two different experi-

ments were designed to evaluate the accuracy of our method-

ology to detect putative misassembled regions in human genome.

To do this, human reference genome version 37 (GRCh37,

GCA_000001405.1) was downloaded from the Genome Reference

Consortium official repository (https://www.ncbi.nlm.nih.gov/grc/

human). In the first experiment, a set of well-known inconsistent

loci in human RGA (fixed patched regions at GRCh37.p13 genome

release, GCA_000001405.14) was compared against a set of ran-

domly selected positions representing the background state of

human genome in terms of error probability. To do this, 50 whole

genome sequenced samples were downloaded from 1000 genomes

project (Abecasis et al., 2012) repository and used to construct a

LGP (l¼200 bp, selected due to mean exon size). Then, the ob-

tained quality control scores were compared between the two

types of regions (patched and random). A second experiment

was designed to evaluate the accuracy of our methodology under a

genotyping context. Concretely, 30 selected exome samples

(Supplementary Table S2) were downloaded from 1000 genomes

project (Abecasis et al., 2012) repository and used to construct a

LGP (l¼100 bp). In this case, a second group of independent sam-

ples were also downloaded and genotyped by using GATK

(McKenna et al., 2010), a widely used variant calling NGS pre-

dictor (http://www.broadinstitute.org/gatk/guide/best-practices).

NGS derived genotypes were compared against those predicted by

a SNP validation array included within the 1000 genomes project

official repository. The number of mismatches between the two

standard protocols were used as a measure of noise degree and

compared against the quality control scores initially obtained from

the first group of samples. In this case, the two groups of samples

allow us to evaluate whether a LGP constructed from a set of refer-

ence samples can be used later to evaluate the error probability of

a new set.
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3 Results

The assembly evaluation of Ath showed a high degree of similarity

between the older version (TAIR8) and the current reference se-

quence (TAIR9/10) (Supplementary Fig. S1a), which properly agrees

with the few number of updates accumulated between the two se-

quences during the last years. Likewise, the obtained de novo assem-

bly for Sce described similar results. With 2337 scaffolds and a size

of 11 669 271 bp (95.9% of the original genome, N50¼61 488 bp)

it showed a distribution of similarity scores mainly centered at

higher values (Supplementary Fig. S1b), which suggests that

NGS reads provided an assembly of reasonable quality. Contrarily,

the evaluation of the downloaded Ahy de novo assembly

(Supplementary Fig. S1c) showed a great density of similarity scores

spread over lower values, which suggests that a significant portion

of the assembly contains chimeric pieces of the original genome.

The profiled individual quality control scores showed strong dif-

ferences between highly similar and poorly assembled regions in

Ath, Sce and Ahy (Supplementary Fig. S2). Notably, mapping error

probability (MEP) and Mann–Whitney derived scores (ME-MWZ,

CE-MWZ) exhibited a clear descending trend when the similarity

score showed an increment. Also, allelic variability scores (AF, ND,

H and PI) showed a similar trend in all cases, especially strong in

Ahy genome, demonstrating a robust relation between local quality

and density of non-reference alleles. Interestingly, we can appreciate

in some cases a different trend below a similarity score threshold

(�120), suggesting that this kind of estimators are especially useful

when assembly artifacts are present at a subtle scale. On the other

hand, CF, PP, MUF and IF (indicators of strong assembly errors) are

especially sensitive in Ahy and Sce, but with less power in Ath, re-

flecting the differences between a high quality assembled genome

and the tested de novo assemblies.

The computed CES exhibited a good concordance with similarity

scores (Fig. 2) for all organisms. Particularly, we can observe how the

CES keeps a value close to 1 when the similarity scores falls below a

specific threshold (�120), indicating an unequivocal presence of as-

sembly artifacts. Then, it progressively decreases as similarity score

reaches higher values. Summarizing the CES, we found that statistic-

ally significant windows in Ath described 2 187 900 bp (�1.8% of gen-

ome) with strong signals of artifact presence (adjusted CES<0.01).

Also, 321800 bp � (2.8% genome) in Sce and 434 900 bp (�8.7%

genome) in Ahy were marked for posterior revision. Computed

REAPR error scores also showed a good coincidence, specially for un-

equivocally altered regions. However, it showed a sensitivity loss in

those regions where artifacts are partially present (high degree of simi-

larity). These results are reflected in the lower statistical correlations

(Table 1) obtained when compared with our methodology. Also,

evaluation of patched regions throwed lower differences between the

different loci type compared with CES.

On the other hand, Ath patched regions depicted a different pat-

tern of CES to randomly selected regions (Fig. 2d), more separable

than REAPR score. This pattern was reproduced for the three types

of patches (insertions, deletions and modifications), also confirmed

for almost all LGP scores. The equivalent analysis shows similar re-

sults in Hsa, where the difference between patched and random re-

gions was also evident (Fig. 3a), including allele variability related

profiles that showed a clear excess of variants at inconsistent

regions.

At the second experiment in human RGA evaluation, the CES

showed a considerable growing trend when the number of misgeno-

typed individuals also increased (Fig. 3b). This evidence was also

supported by the majority of profiled scores, including those related

to allelic variability. Furthermore, we evaluated the ability of our

methodology to properly rank the likelihood of the individual vari-

ants of a set of independent samples. Concretely, the variants ob-

tained from each sample were ranked according to the CES obtained

from the LGP. Then, we checked the distribution of false-positive

variants along the defined rank. The Figure 3c shows how the ma-

jority of false-positive variants are restricted to the end of the rank,

demonstrating hence the suitability of the computed rank to separ-

ate true positive from false-positive findings. Figure 3d also de-

scribes this global effect where REAPR showed higher spreading of

false-positive variants along the rank.

Fig. 2. Distribution of CES values depending on similarity score for Ahy

(a), Sce (b) and Ath (c). CES was also plotted for Ath patched regions (d) and

splitted in deletions (DEL), insertions (INS), substitutions (SUBS) and the set

of randomly selected loci (B) that represents the background variability state

of the genome. Distribution of REAPR values are also represented for the

same categories: Ahy (e), Sce (f), Ath (g) and Ath patches (h)

Table 1. Correlations between BLAST-based similarity score and

REAPR/log(CES) for Ath, Sce and Ahy

REAPR CES

Ath 0.30 0.48

Ahy 0.55 0.62

Sce 0.37 0.41

Fig. 3. CES distribution values for Hsa analysis. Clear differences are shown

between patched and random regions of the genome (a). Also, CES showed a

clear correlation with the number of mismatches between the NGS protocol

and the validation SNP array (b). Interestingly, the false-positive variants of

an independent set of samples fall at the end of the rank (c). The mean cumu-

lative density function (cdf) of false positives is depicted (d) with clear differ-

ences between REAPR (light red curve) and our methodology (black curve)
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4 Discussion

In this work, an effective methodology to characterize a RGA from

a population perspective has been presented and evaluated. Across

different experiments we have demonstrated how our protocol ro-

bustly detects both highly variable regions and noisy pieces of tested

genomes. It is important to note that this protocol can be easily inte-

grated in a real study since the statistical inference is constructed

from the variability and quality-related scores usually obtained dur-

ing a conventional NGS genotyping pipeline.

In general, the evaluation of a RGA is usually not undertaken

due to the lack of proper bioinformatic tools, being the assembly ne-

cessarily considered correct as a whole. Our approach is especially

useful when a non-model organism is under study, since the se-

quence is not usually well consolidated. In this case, misassembled

regions will lead to false-positive differences when comparing spe-

cies, varieties or groups of interest. Nevertheless, our results con-

clude that reproducible patterns of noise can be found even within a

high-quality assembly such as human reference genome, suggesting

that genome evaluation should be ordinarily applied in a broad

range of studies.

Despite the huge effort made by bioinformaticians in the last

decade to evaluate in detail the plethora of incoming genome assem-

blies (Bradnam et al., 2013; Salzberg et al., 2012), there still persists

an important lack of standard methodologies to provide region wise

measurements of a given RGA, the primary framework for any kind

of downstream sequencing analysis. Although some methods pro-

vide local error assessment (Clark et al., 2013; Rahman and Pachter,

2013; Vezzi et al., 2012), new insights are needed to obtain a more

robust noise susceptibility evaluation in newly assembled genomes

when a specific region of interest is selected. The results presented

here are inherently robust since significant quality or allele variabil-

ity patterns are well supported by a set of independent observations

provided by the population in itself. This results in a relevant im-

provement compared with currently available tools, without needing

a close species reference genome to support the inference. This point

can be easily proved through the sensitivity differences obtained

with REAPR in those regions that partially contain assembly arti-

facts (high similarity scores in Fig. 2). Also patched regions analysis

in Ath showed clear improvement of our methodology compared

with REAPR.

Our approach is based on the empirical analysis of a set of se-

lected noise estimators that allows a coarse-to-fine evaluation.

While some estimators (like pair-end integrity descriptors) are able

to describe large assembly inconsistences, some others (like variant-

based comparators) are able to capture subtle differences, such as

base changes in patched regions of Ath genome, between evaluated

assemblies and reference genomes. It is important to note that our

methodology could be easily extended in the future by including

new noise estimators with the ability to add or improve any noise

source detection. Also, inherent heuristic parameters of the method

such as sample size of window length effect have been properly eval-

uated in order to provide more descriptive using guide to those users

interested in evaluate their reference genomes.

In this study, we have presented an important case of use of our

methodology, that is the preventive evaluation of a set of selected

markers obtained from a population of individuals (selected 1000

genomes samples). Here, our computed score (CES) allows to prop-

erly rank the obtained candidate variants, separating true positive

from false-positive markers, which would drastically optimize the

true positive Sanger validation rate, and therefore, the consumed re-

sources. Interestingly, the rank is effective even when the model has

been constructed by using an independent population of samples,

which demonstrates the robustness of our proposal. False-positive

finding has been also exemplify through the comparison of patched

against random regions (both in Hsa and Ath genomes) and the cor-

relation between CES and similarity scores, showing in all cases a

good degree of concordance, improving REAPR results.

As we have demonstrated, allele variability and noise susceptibil-

ity scores can be synergistically combined in order to improve the

detection of inconsistent regions of the genome that can be proposed

to be avoided at any further analysis. Furthermore, region-based al-

lelic variability measurements could be in the future easily used to

evaluate the variability patterns of different genomic substructures

such as coding or intronic regions, intra or intergenic loci, or allelic

variability patterns of different protein families evolved under differ-

ent conditions.

Finally, both the source code and the tool description are avail-

able at the official code repository http://gitlab.com/carbonell/ces

where the user can easily understand the details of our protocol.
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