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Abstract
Background: Tumor mutation burden (TMB) is an important determinant and
biomarker for response of targeted therapy and prognosis in patients with lung
cancer. The present study aimed to determine whether radiomics signature could
non-invasively predict the TMB status and driver mutations in patients with
resectable early stage lung adenocarcinoma (LUAD).
Methods: A total of 61pulmonary nodules (PNs) from 51 patients post-opera-
tively diagnosed LUAD were enrolled for analysis. Two datasets were divided
according to two-thirds of patients from different commercial Comprehensive
Genomic Profiling (CGP) panels: a training cohort including 41 PNs and a test-
ing cohort including rest 20PNs. We sequenced all tumor specimens and paired
blood cells using next generation sequencing (NGS), so as to detect TMB status
and somatic mutations. We collected 718 quantitative 3D radiomics features
extracted from segmented volumes of each PNs and 78 clinical and pathological
features retrieved from medical records as well. Support vector machine methods
were performed to establish the predictive model.
Results: We established an efficient fusion-positive tumor prediction model that
predicts TMB status and EGFR/TP53 mutations of early stage LUAD. The radio-
mics signature yielded a median AUC value of 0.606, 0.604, and 0.586 respec-
tively. Combining radiomics with the clinical information can further improve
the prediction performance, which the median AUC values are 0.671 for TMB,
0.697 and 0.656 for EGFR/TP53 respectively.
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Conclusion: It is feasible and effective to facilitate TMB and somatic driver
mutations prediction by using the radiomics signature and NGS data in early
stage LUAD.

Introduction

Lung cancer is a common and prevalent malignant cancer
worldwide, and it continues to be the main cause of cancer-
related death.1,2 As a major subtype of non-small cell lung
cancer (NSCLC), the morbidity of lung adenocarcinomas
(LUAD) has dramatically increased during the past decade,
especially in China. Recent data showed that early stage
LUAD increased from 6.25% in 1999 to 30.54% in 2012.3

More and more malignant pulmonary nodules (PNs) char-
acterized as ground-glass opacities (GGOs) have been
detected by computed tomography (CT) scan screening.4,5

Currently, we have stepped into the new era of next-
generation sequencing (NGS), which enables clinicians to
conveniently harbor abundant somatic variations, as well as
intergenic tumor mutation burden (TMB).6 TMB has gained
widespread attention since it is an important biomarker
predicting the response to PD-1 blockade immunotherapy7,8

and EGFR tyrosine kinase inhibitors (TKIs) therapy in
NSCLC.9 For early stage lung cancer, previous studies dem-
onstrate that high TMB predicts a better prognosis for
resectable NSCLC.10 Under the guidance of TMB, a recent
randomized clinical trial demonstrated neoadjuvant PD-1
blockade immunotherapy was effective for early stage
NSCLC.11 In addition, some driver mutations, such as TP53,
EGFR, and KRAS, have previously shown specifically
emerged in the malignant adenocarcinoma in situ (AIS) and
minimally invasive adenocarcinoma (MIA) stages, but not
the premalignant atypical adenomatous hyperplasia (AAH)
stage.12 Based on the above findings, noninvasively
harvesting the genomic information of lung lesions may
facilitate clinicians to not only identify benign and malignant
tumors,13 but also to formulate a better therapeutic plan.14

High-dimensional radiomics based on highly dimensional
features extracted from radiological images have shown
promise for predicting diagnosis, prognosis, and optimal ther-
apy in lung cancer.15 A recent study utilized a novel
computer-aided diagnosis (CAD) approach to predict the
diagnosis of small PNs, and the positively predictive value
from radiologists’ 0.70 to radiomics’ 0.86 was successfully
improved.16 The radiomics signature could also be an inde-
pendent biomarker estimating the disease-free survival in
patients with early-stage NSCLC.17 Coroller et al. recently
demonstrated that a combination of radiomics features of pri-
mary tumor and lymph nodes effectively predicts the patho-
logical response to neoadjuvant chemotherapy in NSCLC

patients.18 With respect to the driver mutations, such as EGFR
and TP53 of NSCLC, radiomics also showed potential predic-
tive values, which generated a new concept of “Radio-
genomics.”15 Several groups have disclosed the association of
CT radiomics features and somatic mutations.19,20

So far, the majority of previous radiogenomics studies
investigated were based on the single site mutation detection
techniques, such as sanger sequencing or the amplification
refractory mutation system, etc. Researchers are now focusing
on the high throughput somatic variants data following the
development of NGS.21 However, it is unknown whether the
radiomics features can predict the TMB status, as well as
somatic mutations based on NGS platform in NSCLC. There-
fore, the aim of our study was to develop a radiomics signa-
ture to predict the TMB status and some driver mutations in
patients with surgical-resected early stage lung cancer.

Methods

Study population

A total of 51 patients with 61 PNs were enrolled for analy-
sis. This research was performed according to the Interna-
tional Ethical Guidelines for Biomedical Research
Involving Human Subjects (CIOMS). Written informed
consent was obtained from all patients. This study was
approved by the Ethics Committee of the Nanjing Medical
University Affiliated Cancer Hospital and was performed
in accordance with the provisions of the Ethics Committee
of Nanjing Medical University Affiliated Cancer Hospital.
All patients had pathologically-confirmed lung adenocarci-
noma. NGS tests and preoperative thin-section CT images
were available from November 2016 to July 2018.
Clinical data collected for analysis included age at diag-

nosis, gender, smoking status, histologic subtypes, patho-
logic stages based on the eighth edition of AJCC TNM
staging system,22 and laboratory examinations. Smoking
status was categorized into two groups; never smokers and
smokers which included former or current smokers
(detailed data available in Table S1).

Image acquisition

All patients underwent contrast-enhanced chest CT using
Discovery CT750 HD scanner (GE Medical Systems,
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Milwaukee, WI, USA). The entire thorax was scanned with
the patient in a supine position and with suspended full
inspiration. Technical parameters for CT were as follows:
tube voltage, 120 kVp; tube current, 150–200 mA; pitch,
0.969; section thickness and reconstruction interval,
1.25 mm; reconstruction kernel, standard. CT scan was per-
formed after 25 seconds delay following intravenous injec-
tion of 85 mL Iopromide (Uitravist-300; Bayer Schering
Pharma, Berlin Germany) at a rate of 3 mL/second for
enhancement. All CT images were retrieved from a picture
archiving and communication system (PACS; CAREstream
Medical Ltd.) for image segmentation and analysis. Only
images reconstructed in the transverse section were used in
this study.

Tumor segmentation and radiomics
feature extraction

As shown in Figure 1a, CT images were imported into the
3D-Slicer 4.7.0 software and the tumors were then con-
toured manually by three independent observers using the
built-in paint tool. The delineation was performed in lung
window setting (mean, −500 HU; width, 1 500 HU) on the
transverse CT plane. Consensus was reached by discussion
if the interobserver variability was apparent. Next, feature
extraction was performed using a Radiomics plugin for 3D-
Slicer.23 For normalization, all CT voxels were resampled to
1 mm3 using a cubic interpolation. The intensities in the
original image were discretized using a bin width of
25 Hounsfield units in order to increase sensitivity relative
to the original image, reduce image noise and normalize the
intensities across all the patients. Next, feature extraction
was performed using a Radiomics plugin for 3D-Slicer.

A set of 718 radiomics features were extracted and cate-
gorized as follows (Fig 1b, 2a): (i) Shape features;
(ii) Intensity features (first order); (iii) Texture features
and (iv) Wavelet features. Group II and III features were
also extracted after a wavelet transform of the CT images.
In brief, “Coiflet 1” wavelet was applied on the original CT
images, a same mother wavelet function was used as
described in previous studies.24 Most features defined in
this package are in compliance with feature definitions as
described by the Imaging Biomarker Standardization Ini-
tiative (IBSI), which are available in a separate document
by Zwanenburg et al.25

Targeted NGS and data processing

A NGS approach was performed on genomic DNA isolated
from formalin-fixed paraffin-embedded (FFPE) surgically
resected tumor samples (Fig 1c). Two commercial targeted
pan-cancer NGS panels were conducted by Gen-
e+OncoMDR (1021 cancer related genes) and GeneseeqOne
(416 cancer-relevant genes) respectively, both of which were
performed on the Hiseq NGS platforms (Illumina Inc., San
Diego, CA, USA). TMB is defined as the rate of peptide-
changing single nucleotide variations (SNVs) per Mb. To
estimate TMB of all tumors, SNVs with a mutation allelic
fraction (MAF) of at least 0.1 after standard filtering and
with high or moderate putative impact were retained. In a
recent study, comprehensive analysis of more than
100 000 cases pan-cancer genomes revealed that the
median TMB in all cancers is 3.6.26 We therefore defined
TMB > 4 as relatively high (TMBhigh) and TMB ≤ 4 as low
(TMBlow).

Figure 1 Radiogenomic data acquisi-
tion and analysis workflow. (a) CT
imaging and tumor segmentation by
3DSlicer of two examples of lung ade-
nocarcinomas with tumor mutation
burden (TMB) and EGFR/TP53 muta-
tion status. (b) Radiomics feature
extraction and quantification of the
tumor phenotype, including shape,
intensity, texture, and wavelet fea-
tures. (c) Schematic diagram of
somatic variants by next generation
sequencing (NGS). (d) Statistical anal-
ysis process of model construction
and radiomics features selection.
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Statistical analysis

We aimed to investigate the prediction performance of the
radiomics features, clinical features and their combinations
to the mutational status, including EGFR, TP53, and TMB.
We collected 78 clinical features potentially related to gene
mutation, and used the first 11 PCs which explains 70.3%
of total variance, to reduce their dimension. From the 3D-
Slicer, we obtained 718 radiomics features within nine dif-
ferent groups. As previously mentioned, 41 individuals
which were the randomly selected two-thirds of patients
from Gene+OncoMDR cohort and GeneseeqOne cohort
were chosen as the training data set, and the rest of the

20 individuals were from the testing data set (Fig 1d). The
purpose of the training data was to construct the model
wrapping the feature selection and classification. Because
the radiomics data consisted of nine different groups
within a large correlation in each group, the group lasso
was used to feature selection process. Considering the
group correlation and different effect of individual
covariates in the same group, the bilevel selection was used.
The coefficient of different variables unveils their impor-
tance, which is the one with large absolute values of high
importance. Then, a support vector machine (SVM) with
Gaussian kernel function was tailored to high dimensional

Figure 2 Radiomics and Somatic vari-
ants heatmap (Oncoprint) of 61 malig-
nant pulmonary nodules. (a)
Radiomics features and patients’ clini-
copathological data with mutation
status heatmap. (b) Oncoprint
heatmap of somatic variants by next
generation sequencing. Cohort 1:
samples detected on Gene+OncoMDR
platform. Cohort 2: samples detected
on GeneseeqOne platform. Gender 1:
male, Gender 2: female; Age high:
≥ 60 years, Age low: <60 years;
Smoking status 1: Never smokers,
Smoking status 2: Smokers; EGFR 0:
EGFR wide-type, EGFR 1: EGFR
mutant; TP53 0: TP53 wide-type,
TP53 1: TP53 mutant; TMB: tumor
mutation burden.
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data. We performed cross validation to train the gamma of
kernel function and regularization term in the Lagrange
formulation of SVM, including best variable selection. In
order to ensure the stability of cross validation results, five-
, four- and three-fold cross validation were all performed
20 times for each, respectively. Finally, the performance of
the model was evaluated by the testing data. The ability to
predict the mutational status of the radiomics features was
assessed by the area under the curve (AUC) of the receiver
operator characteristic (ROC).
Statistical analysis was implemented by R program

(Version 3.5.2). The group lasso used the grpreg package
(Version 3.1-3) and the bilevel selection was accomplished
by “gel.” The SVM was implemented by the e1072 package
(Version 1.6-8) and the gamma and regularization term
both range from 2e−7 to 2e7. The AUC and its testing
were accomplished by pROC package (Version 1.11.0).

Results

Clinical characteristics and radiomics
features

The demographic and clinical data of patients are presented
in Tables 1 and S1. The Gene+OncoMDR group consisted
of seven males and 13 females (mean age, 59.25 years; age
range, 45–76 years), while the GeneseeqOne group com-
prised nine males and 22 females (mean age, 57.65 years;
age range, 33–75 years). Five patients were diagnosed with
multiple PNs, and 46 patients with solitary PNs. Within the
multiple cases, three cases had two PNs, one (PG16) had three
PNs and the other one (PG13) had six PNs. All PNs were less
than 3 cm in diameter. More than 80% patients (35/51) were
diagnosed as stage IA–IB NSCLC, except one case (PG19)
who had premalignant atypical adenomatous hyperplasia
(AAH). The other six patients (11.76%, 6/31) were classified as
stage IIB (T1a-cN1M0) because of the occasional metastasis of
lymph nodes during operation. The heatmap of 718 radiomics
features of 61 PNs were shown in Fig 2a. No statistical signifi-
cance could be detected from the clinical information, gene
mutation status, and radiomics characteristics when compar-
ing the training to the testing set (Table 1).

Characteristics of somatic variants by NGS

The Oncoprint heatmaps of somatic mutations and copy
number variation of two data sets are shown in Fig 2b. The
gender, age, and smoke history are annotated in the right
edge of the Oncoprint, suggesting that there was no rela-
tionship between the specific gene mutations and clinical
features. All samples contained at least one detectable vari-
ant, except patient PG11. With regard to the mutation in
EGFR/TP53, detected PNs for gene alterations were:

39 (63.93%) samples out of the full cohort of 61 PNs were
identified as EGFR mutant and 22 as EGFR wild-type;
15 (24.59%) samples out of the full cohort of 61 PNs were
identified as TP53 mutant and 46 as TP53 wild-type.
Twelve samples were identified as both EGFR mutant and
TP53 mutant. Finally, when defined TMB > 4 as high,
there were 38 samples (62.3%) showed high TMB status;
however, the other 23 samples (37.7%) were low.

Predictive radiomics signature of
EGFR/TP53 mutation and TMB status

Since the frequency of most SNVs are lower than 10%
except for EGFR and TP53 due to our limited samples, we
therefore chose only EGFR and TP53, as well as TMB for
further radiogenomic association analysis and predictive
radiomics signature modeling. A total of eight radiomics
features showed prognostic ability in the prediction of
TMB status. For the prediction of TP53 mutant, six radio-
mics features demonstrated the significant correlation
between feature values and mutation status. Besides, a total
of 13 radiomics features have been proposed to identify
EGFR mutant status (Fig 3).
In the ROC analysis for training cohort, when combin-

ing the radiomics and clinical signatures, we achieved an
improved accuracy to predict the TMB status and
EGFR/TP53 mutation when compared to clinical or radio-
mic features only (Fig 4a). Using five-fold cross validation,
the median AUC values of rad_clin group were 0.775,
0.764, and 0.842 for the prediction of TMB status and
EGFR/TP53 mutations, respectively. Further, in the ROC
analysis for testing cohort, we finally assessed the AUC
combined the radiomics and clinical signatures, and the
results demonstrated an improved accuracy (AUC = 0.671
for TMB, 0.697 for EGFR mutation, and 0.656 for TP53
mutation, respectively, Fig 4b). We achieved smilar median
AUC values in training and testing cohorts under the
methods of both four- and three-folds- crossing validation
(Fig S1) which ensured the stability of our cross validation
results. Together, the above data showed an enhancement
in combined signatures compared to respective signatures.
It is worth noting that when comparing the patients

with the same pathologic types, we found significant differ-
ences in either genetic mutations or TMB status. However,
with the performance of our model, we could decode
tumor phenotypes for TMB status and EGFR/TP53 muta-
tions using a radiomics approach (Fig 5).

Discussion

In the era of precision medicine, physicians are undoubt-
edly seeking to fully understand the phenotypic, patho-
logic, as well as the genomic characteristics of lung cancer
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as much as possible so a better treatment plan can be
offered.26,27 For early stage lung cancer, due to the difficulty
of tissue biopsy, there is still a lack of sensitive biomarkers
to predict TMB and oncogenic driver mutations before
surgery. With the development of liquid biopsy techniques,
such as circulating tumor DNA (ctDNA) or circulating
tumor cells (CTCs), it is possible to obtain the genomic
mutation status from a blood sample; however both the
sensitivity and cost are prohibitive28,29 Our study demon-
strated that selected radiomics signatures using machine
learning technique are feasible and effective to predict
TMB and some driver mutations (EGFR and TP53) in
patients with early stage LUAD.
A common shortcoming of radiomics studies is the inherent

variability in CT acquisition and reconstruction parameters. In
order to overcome this problem, the imaging data collected in
our study were confined within a relatively short period of one
year. On the other hand, the standard of care for both CT
acquisition and routine clinical reconstruction was followed for
most of the enrolled patients. These aspects can reduce the
effect of heterogeneity in CT protocols. Further optimization
and standardization of imaging data is still required for the
introduction of imaging-based biomarkers. Additionally, the
results are provided by a single center, which makes it hard to
assess the generalizability of outcomes to other institutions.
Hence, future work needs to be carried out in independent val-
idation sets from other institutions to evaluate the translational
aspect of our models that generalized across institutions.
Recent studies have attempted to explore the relationship

between mutations and radiomics features due to the devel-
opment of targeted therapy in lung cancer. However, these
studies are still relatively rare and their results inconsistent.
Most focus on the predictive value of radiomics on EGFR
mutation. One pilot study reported by Aerts et al. showedTa
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Figure 3 Radiomics signature to predict TMB status and EGFR/TP53
mutations. Somatic genotype-imaging phenotype associations by com-
paring radiomics feature distributions between mutation subtypes.
Heatmap shows the normalized mean difference of radiomics features
feature distributions. TMB, tumor mutation burden.
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that radiomic-feature Laws-Energy derived from CT images
could predict EGFR-mutation status (AUC = 0.67, P = 0.03)
reflected by the therapeutic responses of EGFR TKIs.30

A radiogenomic study predicting lung cancer somatic
mutation in a real sense has also been recently reported
and the CT imaging data from a total of 763 patients at
four medical centers collected. The predictive accuracy
combining radiomics feature with clinical phenotype has
reached to 0.75 for EGFR mutation and 0.86 for KRAS
mutation, respectively. Besides the CT images, Yip et al. also

engaged metabolic imaging such as 18F-FDG PET radiomics
to predict mutation status of lung cancer. They enrolled
348 lung cancer patients and successfully predicted EGFR
mutation status with an AUC = 0.67; however, the study
failed to predict KRAS mutation.31 In our study, limited by a
smaller sample size, we only tested the predictive effects for
EGFR (39/61, 63.93%) and TP53 (15/61, 24.59%) due to
lower frequency of other mutations. However, we have har-
bored relatively acceptable accuracy (0.697 for EGFR and
0.653 for TP53) based on only 61 PNs. We therefore have

Figure 4 Predictive accuracy of radio-
mics signatures on TMB status and
EGFR/TP53 mutations under the
method of five-fold cross validation in
training (a) and testing (b) cohorts
respectively. The median values of
average area under the curve (AUC)
were achieved for clinical factors
alone (clin), radiomics features alone
(rad), and a model that combined
clinical factors and radiomics features
(rad_clin), respectively.

Figure 5 The radiomics features
could predict different mutation and
TMB status in the patients with same
histological subtype (HE) and naked-
eye CT imaging. The representative
CT images, pathological sections, and
radiomics features of two patients
(PG2 and PS21) with minimally inva-
sive adenocarcinoma (MIA) were
shown in (a) and another two
patients (PG9 and PS37) with invasive
adenocarcinoma (IAD) shown in (b).
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reason to believe that we will be able to gain higher accuracy
if larger cohorts are collected in the future.
Another important aspect of our study is that we suc-

cessfully harbored TMB prediction in early stage LUAD
(AUC = 0.671), which has not been previously reported.
We selected four as the cutoff value of TMB due to the
recent pan-cancer median TMB (3.6)26; an accurate cutoff
value of TMB for NSCLC is still under investigation. Our data
displayed the feasibility of TMB prediction using our approach
and we may update our predictive signature once the cutoff
value of TMB for NSCLC has been confirmed. In addition, a
standard TMB value should be derived from the Whole Exon
Sequencing (WES) of tumor tissues; however, our data were
calculated from CGP panels. Latest data have confirmed that
CGP assay was highly correlated with WES (r2 = 0.98),26

which also confirmed this opinion due to the consistent results
derived from two different commercial CGP panels of our
training and testing cohort. Last but not least, TMB is much
more valuable in advanced NSCLC patients receiving PD-1/
PDL-1 blockade immunotherapy,32 and this radiogenomic
study which aims to predict TMB should be further investi-
gated in patients with advanced NSCLC.
Finally, with respect to the statistical analysis, feature

selection and classification methods should tail to different
datasets. In our study, bilevel group lasso is possibly consis-
tent with the characteristics of the data for the following
two reasons. First, the features of radiomics have an intra-
group correlation. Second, the bilevel strategy analyzes the
information of both groups and individuals at the same
time, which facilitates us to further screen features already
selected by group lasso. However, considering the sample
size and the stability, cross validation is used to identify
important feature in the screening and classification process.
In summary, this study demonstrates that it is feasible

and effective to predict TMB and driver mutations by
using the radiomics features and CGP sequencing data on
NGS platform in early stage lung cancer. Prospective stud-
ies with other hypermutations are required to further vali-
date larger and independent cohorts in the future.
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Figure S1 Predictive accuracy of radiomics signatures on TMB
status and EGFR/TP53 mutations under the method of four
folds (training cohort in A, testing cohort in B) and three folds
(training cohort in C, testing cohort in D) cross validation. The
median values of average area under the curve (AUC) were
achieved for clinical factors alone (clin), radiomics features
alone (rad), and a model that combined clinical factors and
radiomics features (rad_clin), respectively.

Table S1 Clinicopathological characteristics of patients.
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