
microorganisms

Review

Contemporary Strategies and Current Trends in
Designing Antiviral Drugs against Dengue Fever
via Targeting Host-Based Approaches

Foysal Ahammad 1 , Tengku Rogayah Tengku Abd Rashid 2, Maizan Mohamed 3 ,
Suriyea Tanbin 1 and Fazia Adyani Ahmad Fuad 1,*

1 Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728,
Malaysia

2 Virology Unit, Institute for Medical Research, Jalan Pahang, Kuala Lumpur 50588, Malaysia
3 Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Locked Bag 36, Pengkalan Chepa,

Kota Bharu 16100, Kelantan, Malaysia
* Correspondence: fazia_adyani@iium.edu.my; Tel.: +603-6196-4577

Received: 28 June 2019; Accepted: 7 August 2019; Published: 28 August 2019
����������
�������

Abstract: Dengue virus (DENV) is an arboviral human pathogen transmitted through mosquito bite
that infects an estimated ~400 million humans (~5% of the global population) annually. To date, no
specific therapeutics have been developed that can prevent or treat infections resulting from this
pathogen. DENV utilizes numerous host molecules and factors for transcribing the single-stranded
~11 kb positive-sense RNA genome. For example, the glycosylation machinery of the host is required
for viral particles to assemble in the endoplasmic reticulum. Since a variety of host factors seem to be
utilized by the pathogens, targeting these factors may result in DENV inhibitors, and will play an
important role in attenuating the rapid emergence of other flaviviruses. Many experimental studies
have yielded findings indicating that host factors facilitate infection, indicating that the focus should
be given to targeting the processes contributing to pathogenesis along with many other immune
responses. Here, we provide an extensive literature review in order to elucidate the progress made
in the development of host-based approaches for DENV viral infections, focusing on host cellular
mechanisms and factors responsible for viral replication, aiming to aid the potential development of
host-dependent antiviral therapeutics.

Keywords: dengue virus (DENV); antiviral drugs; drug targets; DENV host factors; host metabolism;
DENV inhibitors; arthropod-borne viruses

1. Introduction

Dengue is an important arthropod-borne viral infectious disease caused by any one of the
four-dengue virus (DENV-1 to -4) viral serotypes. The antigenically distinct but closely related
serotypes of DENV belong to the genus Flavivirus, family Flaviviridae. Its rapid and intense spread
is noted in most of the world’s tropical and subtropical regions, which has led to its categorization
as an emerging infectious disease [1,2]. The genus includes more than 70 small-enveloped viruses
related to Japanese encephalitis (JEV), Zika viruses (ZIKV), West Nile (WNV), yellow fever virus
(YFV), DENV, or tick-borne encephalitis (TBEV), and other medically-important arboviruses [3]. Most
importantly, DENV is endemic in 112 countries, and incidence of infection has risen 30-fold over the
last five decades [4]. More than one-third of the world population is at risk of infection, and it is
estimated that ~400 million individuals suffer annually because of DENV infection [5]. DENV infection
results in varying degrees of clinical signs and symptoms (asymptomatic or only mildly symptomatic).
In the case of dengue fever (DF), patients may experience headache, myalgia, rash, leukopenia,
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arthralgia, retro-orbital pain, and hemorrhagic manifestations. Thereafter, patients suffering from
dengue hemorrhagic fever (DHF) may develop petechiae, bruising, thrombocytopenia, and shock.
Ultimate disease signs include rapid or weak pulse, manifestations of hypotension and clammy skin,
and finally cold and restlessness in dengue shock syndrome (DSS) [6].

However, specific therapeutics are presently not available for DENV infections [7], necessitating
an improved approach for re-mediating this global burden. In this review, we will explore the host
factors or targets that influence DENV replication, focusing on the factors that can potentially be
utilized in a new process that may help alleviate this global burden.

1.1. History

As one of the major public health concerns, the term “dengue” is believed to originate from the
Swahili word “ki-dinga pepo”, which means “cramp-like pains, produced through the agency of an
evil spirit” [8,9]. Joint fever, a type of dengue-like disease, was first recorded during the epidemics in
Batavia (Jakarta) and Cairo in 1779. Subsequent epidemics (1780 to 1901) were reported in Philadelphia,
Zanzibar, Calcutta, the West Indies, and Hong Kong. Where the relevant factors considered for all
these epidemics were thought to be DENV, many others believed that it was not only dengue, but that
the Chikungunya virus was also responsible for the epidemics [10,11]. The epidemic capability of
dengue acquired a broad geographic distribution before the 18th century; however, the actual causes
of dengue infection remained unknown until 1906 [12]. In 1907, Ashburn and Craig provided the
first data indicating the filterable, ultramicroscopic character of an etiological agent, namely dengue,
which is transmitted by a true vector Aedes aegypti [13]. Cleland et al. (1919) and Siler et al. (1926)
subsequently confirmed that the DENV transmission process was akin to the “jungle cycle” of the
yellow fever virus [14–16]. From 1922 to 1945, many outbreaks were recorded in the United States,
Australia, Greece, and Japan. In 1922, it was estimated that 1 to 2 million individuals in the southern
United States were affected. In the three decades after World War II, dengue epidemics occurred
sporadically in Central America and the Caribbean basin [17]. Socio-economic conditions after the
war resulted in poor immunity in most populations and contributed to an increased dengue incidence
throughout the world, especially in Southeast Asia [18]. From 1943 to 1944, a major breakthrough
occurred in the treatment of dengue fever, when Dr. R. Kimura (Japan) and Dr. S. Hotta (Hawaii)
isolated and identified the DENV strains DENV-1 and DENV-2 [19]. In 1953, the DENV-3 and DENV-4
strains were first isolated from infected individuals in the Philippines and Thailand [20].

1.2. Vector and Non-Vector Transmission of Dengue

In most cases, DENV transmission is accomplished by the primary vectors, whereby A. aegypti
and Aedes albopictus have long been recognized as hosts for the viruses [21,22]. A. aegypti is the most
common primary epidemic-causing and predominant vector of dengue [6]. Other species that act as
secondary vectors for carrying DENV include Aedes scutellaris, Aedes africanus (subgenus Stegomyia)
and Aedes niveus (subgenus Finlaya), which are considered as sylvatic vectors. Meanwhile, other
species such as Aedes taylorior, Aedes furcifer (subgenus Diceromyia), as well as Aedes mediovittatus
(Gymnometopa) and Aedes triseriatus (Protomacleaya) also play key roles as secondary dengue vectors
for carrying dengue infectious virus [22,23].

The non-mosquito DENV transmission route is infrequent and accidental, but it has great
importance for physicians. Several authors have reported cases of transmission without a
mosquito vector, which occurred in different ways, including through needles, congenitally, through
mucocutaneous exposure, and through bone marrow transplants [24]. DENV infection of healthcare
workers usually occurs as a result of needle injuries [25–29], while vertical transmission is responsible
for dengue fever cases in infants born to a DHF-diagnosed mother [30]. A child from Puerto Rico
attained DENV-4 via bone marrow transplant and subsequently died [31], and DENV-3 was transmitted
to a healthcare worker through blood (mucocutaneous exposure) [32]. These are only a few examples
of non-vector dengue transmission.
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1.3. Transmission Process

A few hundred years ago, dengue was primarily a sylvatic disease. The sylvatic cycle is
ecologically and evolutionarily-distinct from the human transmission cycle, causing sporadic outbreaks
in humans [33,34]. A sylvatic cycle that serves as an enzootic cycle involving canopy-dwelling Aedes
mosquitoes and lower primates for dengue transmission has been well-documented in the rainforests
of western Africa and Southeast Asia, including Peninsular Malaysia and eastern Senegal [6,33].
Aedes luteocephalus, A. furcifer, and A. taylori were the principal transmission vectors in Africa [35–39],
and the primatophilic canopy-dwelling mosquitoes of the A. niveus s.l. complex—a group that
includes Aedes pseudoniveus, Aedes subniveus, Aedes vanus, Aedes albolateralis, Aedes niveoidesan, and
Aedes novoniveus—were the principal vectors in Asia (Figure 1) [40]. In other locations in tropical
Africa and Asia, probable rates of sylvatic DENV transmission to humans are unknown, but appeared
to be minimal [41,42]. In North America, several species of new-world non-human primates were
found to be resistant to DENV infection, and no cases of sylvatic DENV transmission were recorded.
Similarly, no evidence of enzootic circulation through lower primates have been found in Panama [43].
However, seroconversions among indigenous Ayoreo Indians living in an isolated forested region
of Bolivia, where A. aegypti is absent, recommend that sylvatic DENV transmission may happen
in the region [44]. Cross-species transmission of DENV in rural areas of Africa and Asia from
non-human primates to humans tends to occur when great numbers of the enzootic vector(s) are
present [45]. The sylvan environments in rural areas of Africa and Asia can be a source of an abundant
amount of primary vector A. albopictus, which is responsible for the transfer of the virus into human
habitats [46]. Endemic/epidemic cycles involved the human host, and viruses are transmitted mainly
by A. aegypti, A. albopictus, and other mosquitos that serve as secondary vectors, such as A. mediovittatus,
Aedes polynesiensis and other members of Aedes scutellarin [47,48].
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Figure 1. Sylvatic transmission of dengue virus (DENV) from lower primates to humans: Serotypes
of DENV-1–4 emerged independently via the sylvatic cycle and subsequently disseminated among
human populations. The forests of Southeast Asia and West Africa maintained the sylvatic cycle and
supported contact with human populations, leading to an urban endemic/epidemic cycle between
Aedes mosquitoes and human repository hosts.

DENV-infected small A. aegypti bite humans and thus initiate DENV transmission. These
mosquitos lay eggs and rest indoors in coconut shells, artificial containers, vases with wastewater, and
old automobile tires found in and around homes. At dawn, 2–3 h after sunrise, as well as during sunset
(in daylight hours), adult mosquitoes prefer to feed on humans, to which these periods are known as
the “two peaks of biting activity”. A. aegypti females very often feed on several persons, thus rapidly
accelerating the transmission of DENV [49]. After transmission into the human host and following
a 3 to 14-day incubation period, most affected individuals enter a 2 to 10-day acute febrile period
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and experience nonspecific signs and symptoms. During this viremic stage, other biting mosquitoes
become infected and viruses circulate in the peripheral blood.

2. Targeting Host as an Antiviral Approach

The significance of DENV and its mechanism of interaction with host factors must be fully
understood for proper morphogenesis of DENV for targeting host processes as an antiviral therapy.

The virus depends on the host machinery to complete their life cycles. For example, RNA replication
of the hepatitis C virus (HCV) depends on the human homologue of the 33-kDa “vesicle-associated
membrane protein-associated protein (hVAP-33)”, Golgi-specific brefeldin factor 1 (GBF1)—a type
of resistant guanine nucleotide exchange factor, and host geranylgeranylated proteins and fatty
acids [50,51]. Meanwhile, the human immunodeficiency virus (HIV) utilizes host C–C chemokine
receptor type 5 (CCR5) and C–X–C chemokine receptor type 4 (CXCR-4)—chemokine receptors as
mediators of HIV infections [52–54]. The influenza virus requires post-entry steps for its replication
and, for that purpose, it utilizes the host’s important nuclear components, proteases, and the
calcium/calmodulin-dependent protein kinase IIb (CAM K2B) [55,56]. On the other hand, West
Nile virus (WNV) replication is associated with intracellular membrane rearrangements, and these
processes are related to host fatty acid metabolic pathways, as well as membrane re-modelling of the
host [57,58]. DENV is not exceptional from the other viruses—it also depends on the host machinery
to complete its life cycle. In order to understand DENV host dependent factors, a genome-wide
screen to explain DENV host dependency for their life cycle in Drosophila melanogaster (host) cells has
been published [59]. Later, different conservative genome-wide screens of DENV identified different
host-dependent factors responsible for their replication, where metabolic pathways, receptors and
attachment factors, host proteins or enzymes, host immune factors, and anti-inflammatory pathways
are most commonly found to influence DENV replication and infection.

Different host and viral factors play a crucial role in promoting more severe dengue cases. This
may occur via two routes: (i) Severe diseases occurring along with secondary infections, where a
heterologous antibody virus (IgG–DENV) complex forms to FcγR receptors on the macrophage and
aid in amplifying the infections [14]. During this time, antibodies come from primary infections with
different serotypes. (ii) Secondly, the amplified infections aid in the increased viral load leading to
an immunopathogenic response. From the hypothesis, we can understand that DENV serotypes are
propagated in endemic areas, and pre-existing immunity to one serotype does not defend against
infection with other serotypes, as some serotypes are more virulent than other serotypes and may
enhance the severity of disease [23]. Hence, evaluation of the host and viral factors (e.g., isoform of
enzymes, serotypes of virus) must be considered carefully when choosing host pathway as a target for
anti-DENV therapy that could play a role in the progression of severe dengue cases in the frame of all
the four DENV serotypes. Prior to evaluation, sometimes targeting the factors is very difficult, and
may be toxic for the host. Difficulties in attenuation, lack of stability, less broad, potent, and durable
immune response are some of the biggest drawbacks for targeting host factors as potential antiviral
therapeutics [36]. However, much potential exists in targeting the host factors for the invention of
antiviral drugs, despite the factors discussed above.

3. Targeting Host Metabolic Pathway

Viral infections can modify many physiological as well as metabolic pathways. Metabolic changes
include lipid metabolism, in addition to stimulation of glycolytic pathways toward an energetically
favorable state, which modifies membrane lipid and other composition for viral replication and virion
envelopment. Targeting intracellular metabolic pathways and their pharmacological inhibition can
reduce DENV RNA synthesis and infectious virion production [60], which may serve as successful
DENV antiviral strategies. For example, lipid and glucose metabolic pathways are necessary for every
step in the replication cycle of DENV. Both steps in the replication cycles of DENV can be inhibited by
different pharmacological agents, and the agents/inhibitors developed mainly target the host factors
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that mediate lipid synthesis, lipid and glucose metabolism, and trafficking pathways. Despite this,
targeting host glucose and lipid metabolism and trafficking as an antiviral strategy by blockade of
entire pathways may be limited because of host toxicity [50]. Knowledge of the molecular details of
lipid and glucose metabolic pathways, regulatory enzymes of the pathways and metabolic function in
replication, and the mechanisms by which specific glucose and lipids are generated during DENV
infection, as well as its trafficking to the relevant factors, will help to enable more targeted antiviral
strategies without creating any toxic effects on the host cell.

3.1. Targeting the Host Glycolytic Pathway

The host’s cellular metabolism provides the necessary energy (ATP), biosynthetic building blocks,
and other important molecules required for viral replication. In DENV infection, a major change occurs
in the central carbon metabolism, especially in glycolysis, whereby the expression of both glucose
transporter I (GLUTI) and hexokinase II (HK-II) is up-regulated and glucose consumption is increased
in DENV-infected cells. DENV activates the glycolytic pathway for viral metabolic requirements and
life cycles, including energy, replication, and biosynthetic building blocks [60]. Glucose and glutamine
serve as the main carbon sources in healthy cells and the tricarboxylic acid (TCA) cycle generates
ATP using the oxidation of glucose via glycolysis. However, in some cases, glutamine serves as an
ATP generator in the TCA cycle instead of glucose, so that it can be utilized for biosynthetic processes
(Figure 2), such as in the case cancer cells and human cytomegalovirus (HCMV) cells [3–6]. As DENV
activates the host glycolytic pathway for generating their necessary building blocks, pharmacologic
regulation of glycolysis significantly blocks infectious DENV production. Krystal and colleagues
reported that glycolysis inhibition through sodium oxamate and 2-deoxy-d-glucose (2DG) treatment
can result in a significant reduction in DENV replication [5].
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Figure 2. Host metabolic pathways are necessary for DENV replication: As an enveloped virus, DENV
requires fatty acids for replication and virion envelopment, resulting in virus-mediated modifications in
the host cellular systems. These modifications lead to alterations in glucose and glutamine metabolism,
as well as fatty acid synthesis. At the primary level of infection, lipid droplets and nucleotides are
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reabsorbed into the endoplasmic reticulum (ER) and subsequently assemble with the DENV virus.
Glucose uptake in DENV-infected cells may increase through the induction of the glucose transporter
4 (GLUT-4) or overexpression of glucose transporter 1 (GLUT-1) and hexokinase II (HK-II), the first
enzyme of glycolysis. DENV infection alters glucose metabolism allosterically by up-regulation of
glycolytic enzymes. Infected cells stimulate glycolysis to produce ATP through the tricarboxylic
acid (TCA) cycle. It also generates citrate, which is a precursor of fatty acid biosynthesis. Glucose
carbons are diverted and subsequently migrate to the cytoplasm from the TCA cycle through citrate.
Exogenous glutamine uptake is increased in DENV-infected cells [5]. The TCA cycle is maintained by
glutaminolysis enzymes that are induced by DENV, whereas imported glutamine was converted into
α-ketoglutarate. Fatty acid and sterol synthesis are upregulated, so that acetyl-coenzyme A (AcCoA)
can be used for fatty acid synthesis. Lipid synthetic enzymes are modified to generate a large amount
of distinct membrane lipid [60,61]. Experimentally limiting glucose and fatty acid synthesis during
DENV infection, along with limiting glutamine levels, can help prevent infections.

3.2. Targeting the Host Lipid Biosynthesis Pathway

As an enveloped virus, DENV stimulates the lipid biosynthesis pathway for essential membrane
formation. Fatty acids, triglycerides, and other lipid compositions of the host are utilized by Flaviviruses
for envelope formation. Membrane composition is not only required for the formation of the envelope
but is also needed for inducing viral infection in many ways. Replication includes virion egress
and assembly requires a great number of fatty acids and their derivatives that generate membrane.
In DENV-infected cells, fatty acid synthesis is regulated to utilize acetyl-coenzyme A (AcCoA) for
generating most distinct membrane lipids (Figure 2). DENV stimulates fatty acid biosynthesis by
the help of the important cofactor fatty acid synthase (FASN), which was first identified through
the DENV-2 replicon mediated siRNA screening [60,62]. Lipophagy is known as a type of selective
autophagy that transports lipids for β-oxidation. Several studies indicate that DENV infection
induces pro-viral autophagy [62–66]. The lipids accumulated in auto-phagosomes next transport
to mitochondria, increasing the β-oxidation rate, which generates energy and plays a key role in
lipophagy, thus assisting DENV replication. Additionally, NADPH that arises through β-oxidation
utilizes a cofactor of FASN and it may stimulate the fatty acid synthesis for DENV replication. In
DENV-infected cells, both fatty acid synthesis and lipophagy process take place at the same time. In
contrast, both processes do not occur in natural cells at the same time [67]. Extant research has shown
that pharmacological inhibition of FASN [68] and mevalonate diphosphate decarboxylase, an enzyme
required for cholesterol biosynthesis [60], can decrease DENV production in host cells.

3.3. Targeting the Host Nucleoside Biosynthesis Pathway

All viruses require host nucleosides for replication. Host proteins associated with nucleoside
biosynthesis can thus be targeted as anti-dengue therapeutics. Nucleotide guanosine 5′-triphosphate
(GTP) pool depletion has emerged as a significant system for repressing Flaviviruses. Guanine
biosynthesis can be inhibited through antiviral ribavirin [69]. Dihydroorotate dehydrogenase (DHODH)
is a mitochondrial protein that catalyzes the oxidation of dihydroorotate to orotate. It is an essential
enzyme in the de novo pyrimidine biosynthesis pathway. Available evidence indicates that using
brequinar (a known DHODH inhibitor), an anti-metabolite in cancer and immune-suppression,
can inhibit DENV type 1,2,3 (DENV-1,2,3) serotypes. However, it cannot inhibit DENV type 2
(DENV-2) variants because of resistance against brequinar, which was also cross-resistant to compound
NITD-982 [70,71]. The NITD-982 analogue directly bound to the DHODH protein. A study also
suggests that compound NITD-982 is also capable of inhibiting host DHODH [69]. An in vitro study
of the compound shows a great potency against DENV serotypes, but the compound did not show
any efficacy because of the exogenous uptake of pyrimidine from the diet in the DENV-AG129 mouse
model (deficient in interferon alpha/beta and gamma receptor signalling). Targeting the enzymes that
play a key role in supplying DENV nucleoside can therefore be effective for antiviral therapeutics.
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4. Targeting Host Cellular Receptors and Attachment Factors

Several host factors at the cellular level play a key role in the DENV virus entry process, but
attachment factors and receptors are deemed the most important factors. Molecules in mammalian
cells can act as attachment factors and receptors. Dendritic cell-specific intercellular adhesion
molecule-3-grabbing non-integrin (DC-SIGN) [72,73] and glycosaminoglycans (GAGs) [74] are the
first line of attachment factors and receptors, while second-line molecular factors include the
GRP-78—also known as binding immunoglobulin protein (BiP), the laminin receptor [75] and the
T-cell immunoglobulin and mucin domain (TIM), and Tyro3, Axl, and Mer (TAM) receptors [76].
Glycosphingolipids (GSLs), chaperone-proteins, and undefined proteins have been reported as potential
treatment candidates. Targeting host factors involved in DENV attachment can thus have a beneficial
antiviral potential.

4.1. Heparin and Heparan Sulfate (Glycosaminoglycans)

Heparan sulfate (HS) belongs to the family of glycosaminoglycans (GAGs). It initiates interactions
between the DENV envelope protein and the host cell (Figure 3). HS also exhibits anti-DENV like
molecular properties. For example, HS that was extracted from shrimp heads exhibits a strong
inhibitory effect on infections caused by DENV [74]. Chondroitin sulfate, a curdlan sulfate that
inhibits all DENV serotypes, has been found in baby hamster kidney 21 (BHK-21), Vero cells, and the
rhesus monkey kidney cell (LLC-MK2) line [77,78]. Suramin [79,80], heparin [81], fucoidans [82], K5
polysaccharide from Escherichia coli [83], the heparan sulfate (HS) mimetic PI88 [80], α-d-glucan [84],
GAG [85], and dextran sulfate (DS, MW > 500,000 Da) [85] are also able to inhibit DENV-2, whereas
carrageenan [86] and DL-galactan hybrids extracted from red seaweed that lack cytotoxic effects and
anticoagulant properties [86] can inhibit both DENV-2 and DENV-3 virus-infected cells (Table 1).
Hence, targeting host heparin and heparan sulfate mimetics may act as potential antivirals that can aid
in remediating the disease.
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Figure 3. DENV receptors in human cells: DENV recognizes various types of receptors present in
the host cells. Heparan sulfate was identified as the first molecule responsible for DENV entry into
mammalian cells, while sulfated glycosaminoglycans—ubiquitous molecules on the cell surface—were
found to play a role in mediating DENV attachment. CLEC4L (C-type lectin domain family 4, member
L), CLEC4M (C-type lectin domain family 4, member M), and mannose receptor/CLEC13D/CD206
(cluster of differentiation 206) are some conventional C-type lectin receptors (CLRs) that have a high
affinity towards high-mannose ligands involved in DENV entry into target cells, where C-type lectin
domain family 5 member A (CLEC5A) lectin acts as a signaling receptor for releasing proinflammatory
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cytokine. Cell surface chaperones HSP-90, HSP-70 and GRP-78, all of which are part of the
receptor complex, assist in the DENV binding. Lipid receptors phosphatydil serine (PtdSer), T-cell
immunoglobulin and mucin domain (TIM), and Tyro3, Axl, and Mer (TAM) types of putative receptors
are relevant for viral entry into the human 293 T-cell line [87]. Another receptor, SR-BI, is also responsible
for lipoprotein-associated interaction with DENV and allows the virus to enter the host [76].

4.2. DC-SIGN

DC (dendritic cell) is a cell surface attachment factor present in every tissue [88]. It is known as
Cluster of Differentiation 209 (CD209) and was found to regulate DC trafficking and T-cell synapse
formation expressed by human immature dendritic cells in the plasma membrane capable of recognizing
DENV. It not only recognizes DENV, but also allows its surface transport through the process of
endocytosis, resulting in cell infectivity (Figure 3) [73,89]. Although the role of DC-SIGN in DENV entry
remains controversial [90–92], many authors posit that DENV is handed over to another unidentified
co-receptor for movement throughout the cells [90]. Findings yielded by a large number of studies
indicate that DENV can recognize cell surface DC-SIGN, as well as move into the plasma membrane
through various co-receptors. For example, HIV co-receptor CCR5 allows viral attachment, resulting in
entry into the cell [89,93]. As DENV can pass to clathrin-coated structures (CCS) through virus receptor
complexes [22], receptors that mediate DC-SIGN are potential targets for DENV antiviral treatment.
Several compounds, such as glycomimetic DC-SIGN ligand and plant lectins from Hippeastrum hybrid,
Galanthus nivalis, and Urtica dioica (Table 1), were found to act as strong inhibitors of DENV infection in
DC-transfected cells. These findings can potentially be utilized in novel strategies aimed at enhancing
the efficiency of a wide spectrum of antiviral therapies to block DENV virus uptake.

4.3. Other Possible Receptors

Viral attachment to the cell requires many sequential interactions with various receptors. DC-SIGN
and glycosaminoglycans (GAGs) are known as the first line of attachment receptors. The second
line of higher affinity receptors may then be recruited to permit DENV entry because of the diverse
tissue tropism of the virus [94]. DENV uses two pathways to enter DCs, whereby infection can enter
immature DCs through DC-SIGN, or through Fc gamma receptors (FcÈRs) in mature DCs. DCs
expressed FcÈRs as the second line of a higher affinity receptor in host cells, and activation of FcÈRs
in hematopoietic cells serves to remove antibody-opsonized antigens—including DENV—from the
body circulation system. However, cross-reactive or sub-neutralizing levels of antibodies grant an
alternative entry pathway of DENV, where DENV enters monocytes, macrophages, and dendritic cells
through the activating FcÈRs [95]. DENV can enter cells via cellular attachment molecules’ TIM and
TAM receptors [76], as both are able to recognize the apoptotic marker phosphatidylserine (PtdSer)
and are responsible for the engulfment and removal of apoptotic cells. Since DENV is a virus that
exposes PtdSer in its membrane, it naturally enters the cell as a PtdSer through direct binding of
the TIM receptor or indirectly via the TAM receptor. Moreover, apoptotic marker PtdSer binds with
TIM and TAM by the help of the growth arrest-specific 6 (Gas6) binder molecule (Figure 3) [96,97].
Cell surface chaperones, heat shock protein (HSP-90, HSP-70), and GRP-78 are known as a receptor
complex, which allows DENV entry into human cells from hepatic, neural, and monocytic cells [75,98].
The interaction between apolipoprotein A-I and the scavenger receptor class B type I (SCARB1), also
known as SR-BI, promotes DENV infections, necessitating further research in order to elucidate the
functional importance of lipoproteins in dengue pathogenesis [87].

5. Targeting Host Proteins or Enzymes

Host proteins and enzymes play an integral role in Flaviviruses and are necessary for their
entry into the host, as well as for replication and assembly. DENV dominates some processes to
manipulate the host cell proteins and metabolic pathways. Post-translational modifications, especially
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the carbohydrate modification pathways (e.g., glycosylation), have been demonstrated as targets
against Flaviviruses [94]. Toxicity and side-effects that were generated through the inhibition of proteins
must therefore be carefully considered when targeting host proteins as antiviral therapeutics [99].
However, the potential of such compounds for screening purposes is tremendous. The host proteins
are potential antiviral targets and have been shown in extant studies focusing on inhibiting such
compounds so as to not be toxic for the host [100] (Table 1).

5.1. Targeting Host Protease

Host protease is an effective target for antiviral drug development, as it is essential for virus
replication. Host proteases, such as furin and signalase, have been used to cleave the DENV RNA
genome co- and post-translationally and were translated as a polyprotein [101]. Correct processing
can be used to generate the polyproteins essential for the viral life cycle [100,102]. Since host protease
required for virus polyprotein formation is a basis of DENV replication, it can be a strong target
for antiviral production. Protease furin is enriched in the Golgi apparatus of the host cell, where
it assists in cleaving the DENV prM proteins, resulting in the formation of mature active forms
of the virion M protein that plays an important role during DENV infections [99,103]. The signal
peptidase on endoplasmic reticulum (ER) membrane cleaves the C/E-prM junctions [104]. It processes
many secretory proteins, but the inhibition is likely to have side-effects. Nonetheless, recent research
indicates that peptidomimetic furin luteolin inhibits the viral maturation process in an uncompetitive
manner [105]. Peptide compound 45 and 46, as well as cavinafangin, have also been used as protease
inhibitors in DENV-infected cells (Table 1). This finding indicates that further study is needed for the
development of host proteases as an antiviral target.

5.2. Targeting Host Kinases

Host kinases are involved in DENV assembly and secretion. Protein kinase inhibits the dengue
replication cycle and, in the absence of a cytotoxicity cause, multilog decreases in the viral titer.
Dasatinib and saracatinib (AZD0530) are inhibitors of the protein kinase c-Src [106]. Compound
16i is a kinase inhibitor that is ten times more potent than ribavirin. It can thus capture both the
virus NS5-NS3 interaction and the host kinases c-Src/Fyn [107]. SFV785 and derivative compounds
affect the neurotrophic receptor tyrosine kinase 1 (NTRK1) and MAP kinase-activated protein kinase
5 (MAPKAPK5) kinase activity and inhibit DENV propagation [108]. GNF-2 and imatinib inhibit
DENV but are mediated by cellular Abl kinases [109]. Many compounds that inhibit kinase activity by
regulating mitogen-activated protein kinase (MAPK or MAP kinase) have been developed. Examples
of such compounds are CGP57380 that inhibits extracellular receptor kinase (ERK) and p38 pathways in
DENV-2 infected cells; and PD98059, U0126, and FR180204 that inhibit the MAPK/ERK kinase (MEK);
while AR-12 inhibits PI3K/JAKT pathway by expressing GRP-78 for all four DENV serotypes. Sunitinib
and erlotinib, as well as isothiazolo[5,4-b] pyridines and Imidazo[1,2-b] pyridazine, are inhibitors of
AAK1 and GAK pathways that inhibit DENV replication, whereas U0126 inhibits the ERK pathway to
reduce the replication DENV-2 and -3 infected cells (Table 1). These findings provide pharmacological
evidence that kinase has the potential to become a new class of antiviral target.

5.3. Glucosidase Inhibitors

Glucosidase is a type of host enzyme, liable for viral maturation and proper folding. It initiates the
process of glycosylation in N-linked oligosaccharides of the viral prM and E glycoproteins [110]. DENV
structural protein prM and E glycoproteins are translocated into the host endoplasmic reticulum lumen
(ER). During this time, a high mannose-rich oligosaccharide -Glc-3-Man-9-GlcNAc-2- (a total 14 residue
core unit) is added co-translationally [111,112]. The resulting N-linked glycans are generated through
the help of enzyme glucosidases I and II, where glucosidase I removes the terminal α-(1, 2) linked
glucose from Glc-3-Man-9-GlcNAc-2, and glucosidase II removes the second and possibly the third
terminal α-(1, 3) linked glucose residues from the Glc-3-Man-9-GlcNAc-2 oligosaccharide precursor,
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whereby the process is denoted “glucose trimming”. After that, it leaves the protein monoglucosylated
and binds to the endoplasmic reticulum chaperones (calnexin or calreticulin) for proper folding [113].
As DENV prME heterodimer formation is not influenced by the inhibition of glucose trimming, it
helps in generating a less stable complex characterized by reduced folding efficiency. It has been
shown that the folding, stability, secretion, and activity of DENV glycoproteins in the ER depends on
the trimming of these N-linked carbohydrates at N-130 and N-207 [110,112,114], thus rendering the
responsible cellular glucosidase a potential host target. Castanospermine, a type of naturally occurring
iminosugar, and N-nonyl-deoxy-nojirimycin (NNDNJ) isolated from Bacillus, are effective glucosidase
inhibitors that have been indicated by both in vitro and in vivo studies in mice. The α-glucosidase
inhibitor celgosivir has been shown to inhibit DENV, and treatment with celgosivir have shown to
causing an improved survival rate in DENV infected mouse. The efficacy analyses were performed
in patients with dengue fever [115]. The compound celgosivir is generally safe and well-tolerated
but does not seem to reduce the viral load or fever burden in patients with dengue. Celgosivir
derivative of 6-O-butanoyl is an oral pro-drug of castanospermine that can cause strong inhibition of
DENV-1–4 [115,116]. Iminosugar drug UV-4, derived from deoxynojirimycin, was reported to decrease
mortality in an “antibody-dependent enhancement” model of secondary DENV infection [117]. It is
also noteworthy that α-glucosidase substrate mimics, such as CM 9 to 78 and CM 1018 (Table 1), are
currently under development [118].

6. Targeting Host Immunity and Inflammatory Pathways

After the virus infects the host, cell signals are generated to block the dissemination of DENV.
DENV causes acute disease without persistent infection. All virus strains have developed strategies
that bypass the innate and adaptive immune response. Therefore, DENV does not escape the host
defense mechanism. Innate immunity is known as the first line of antiviral defense mechanism that uses
cytokine interferon I (IFN-I) for host defense purposes. It also results in the rapid activation of adaptive
immune responses, resulting in the complete elimination of the virus [119]. To achieve this beneficial
response, the immune system induces various factors and a series of gene expressions, including
interferon-stimulated genes (ISGs), inflammatory responses, plasma, and vascular endothelium leakage,
along with the disease progress factors both in infected and uninfected cells [120]. Hence, a better
understanding of the host immune response during DENV infection and the evasion mechanisms
would have great importance for potential antiviral production.

6.1. Targeting Host Immune Factors Involved in DENV Sensing

Viral pathogenic factors can be recognized through the pattern recognition receptors (PRRs) in
the host cells. The endosomal toll-like receptors (TLRs) that recognize double-strand RNA (dsRNA)
in endosomes, and the cytoplasmic receptor family complex form DEAD box, DEAH and the
SKI proteins (DExD/H box), RNA helicases, Retinoic-acid inducible gene I (RIG-I) and Melanoma
differentiation-associated protein 5 (MDA5)) that recognize intracellular double-strand dsRNA or
single-strand viral RNA (ssRNA) [121], are the most important sensors in human cells that are
implicated in detecting viral nucleic acids. After viral recognition by these two molecules, the
interferon regulatory factors and the NF-kB (Nuclear factor kappa light chain enhancer of activated B
cells) transcriptional molecules are activated, and these signaling cascades aid in generating IFN-α/β

and inflammatory cytokines to activate the DC for an antiviral response. In the case of DENV, infected
cells do not express themselves as a viral ligand sensed by retinoic-acid inducible gene I (RIG-I) and
melanoma differentiation-associated protein 5 (MDA5), which is the reason why viral antibody is not
detected by RNA sensors and C-type lectin domain family 5 member A (CLEC5A) does not block
DENV infection [122]. Other important molecules such as toll-like receptors (TLR3) also sense dsRNA
and can restrict DENV replication in different cell lineages [123–125]. DENV produces excess IFN-I
(essential for DENV-induced production) through toll-like receptors 7 (TLR7) in plasmacytoid-DC,
which can also restrict DENV replication in different cell lineages, as TLR3 [126]. Additionally,
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increasing inflammatory and humoral responses that decrease DENV replication have been found,
such as when TLR3 and TLR7/8 agonists administrated into rhesus macaques aided in enhanced
antiviral mechanisms during primary DENV infection [127]. Gene expression analysis indicates that
RIG-I and MDA5 receptors promote the sensing ability in DENV-infected cells. The infected cells
interact with these two receptors and stimulate interferon regulatory factor 3 (IRF-3) and the nuclear
factor NF-kB that produces interferon beta (IFN-β) promoters, resulting in impaired replication of
DENV. Additionally, DENV with double or single RIG-I/MDA5-deficient fibroblasts triggers both
responses [128]. Furthermore, early detection of antibodies via RNA sensors (for examples RIG-I)
enhanced DENV infection by tissue-resident mast cells that produce type IFN-I, along with chemokine
ligands (CCL4, 5) and C-X-C motif chemokine ligands 10 (CXCL10) [129]. Consequently, human
brain microvascular endothelial cells are infected with DENV, and rapid production of type-I IFN
and proinflammatory cytokines were revoked after inhibition of RIG-I. Later, it was found that IFN-β
production is induced by RIG-I, MDA5, and TLR3 sensors (major PRRs recognize innate responses to
DENV infection), contributing to impairing DENV replication in vitro [130]. Activation of these major
pattern recognition receptors (PRRs) by DENV generates a strong type of IFN-I response during human
natural infections. Elevated levels of IFN-α for long periods in pediatric patients after the decrement
period has also been reported [131]. Extant evidence (experimented upon mice) further indicates
that DENV primary infection utilizes the interferon α/β receptor (IFNAR)-dependent (including
STAT1-dependent and STAT1-independent) control mechanisms—where the STAT1 (Signal transducer
and activator of transcription 1)-dependent mechanism controls the primary steps of infection, while
the STAT1-independent mechanism controls the latter antiviral process—aiding virus propagation
and disease control. In DENV primary infection, cells typically utilize both mechanisms [132,133].
Anti-CLEC5A blocks DENV by releasing pro-inflammatory cytokines and does not affect IFN-I
production in the infected cells [134]. As CLEC5A blocks DENV infections, future studies are necessary
to enhance CLEC5A activation.

6.2. Targeting Anti-Inflammatory Cytokine Populations

It has been demonstrated that excessive inflammation contributes to the pathogenesis of the
severe form of dengue disease. Tumor necrosis factor (TNF)-α; interleukin (IL)-6, 8, 10; chemokine
ligand (CCL)-2, 3; CXCL-8, 10; and interferon (IFN)-γ, all of which are responsible for primary and
secondary DENV infection in humans, are excessively elevated and have been reported in patients
with severe dengue disease [132,135–141]. These factors are activated by IFN-I and PRRs and were
discussed in the preceding section.

Cytokines are not responsible in causing any primary and secondary DENV infections in humans.
Cytokine IFN-γ production in the host cell plays protective roles during primary DENV infection. In
primary DENV infections, production of IL-12 and IL-18 proinflammatory cytokines precede IFN-γ
release, and optimal IFN-γ production relies on the combined action of these two cytokines. For
example, higher levels of IL-12 and 18 cytokines that are required for optimal IFN-γ production are
usually recorded for DF patients, but in the case of DHF patients (Grade III and IV), the levels of
this cytokine were non-detectable [142–144]. It has been demonstrated that IFN-γ controls nitric
oxide synthase II-mediated nitric oxide production that assists the host in resistance against primary
DENV infection [145], which was previously found to inhibit DENV replication [146]. Sustained
IFN-γ production is necessary during the acute phase of illness to protect the host against fever and
viremia [147]. With increased production of IFN-γ, the survival rates enhanced in DHF patients [138].
Hence, IFN-γ can be a potential target for the host to control DENV replication and resistance to
infection. Enhanced proinflammatory cytokine TNF-α production is also associated with severity of
dengue manifestation in humans. For example, T-cells isolated from patients are found to contain
higher amounts of TNF-α after ex vivo stimulation with DENV antigens [148]. Hence, the blocking of
enhanced proinflammatory cytokine TNF-α might reduce the pathology due to the primary [149], [150]
and secondary [151] infections. The migration inhibitory factor (MIF) is indicative of a more severe
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disease form during primary DENV infections [138]. Experiments have shown that DENV primary
infections were less severe in MIF−/− mice, and they exhibited a significant delay in lethality, indicating
that reduced proinflammatory cytokine levels (such as TNF-α) are correlated with lower viral loads at
the initial phases of infection. Therefore, elevated production of the proinflammatory cytokines TNF-α
and MIF during the host response to DENV infection favors more severe disease [152].

The chemokine system that plays a protective and pathologic role during DENV infections
produces CXCL10 and activates CXCR3 (C-X-C chemokine receptor type 3) to improve host resistance
against DENV infection [7]. Clinical studies in endemic areas indicated the presence of a correlation
between DENV outcome and the level of CCL2, 3, 4 concentrations that were related to hypotension,
thrombocytopenia, and hemorrhagic shock. Another study also found a link between CCL5 and
DENV-induced hepatic dysfunction [135,139,153]. Reduced lethality rates, liver damage, alleviated
leukocyte activation, and lower production of IL-6 have been found in chemokine receptor type
2 and type 4 (CCR2−/−and CCR4−/−) knockout mice with primary DENV infection. However, no
difference in viral load has been found in the case of CCR-deficient mice. Hence, we can conclude that
CXCR3 expresses protective host responses, but CCR2 and CCR4 cause infection rather than providing
protection against DENV infection [154].

Cellular populations are also important for DENV infection. For example, cluster of differentiation
8 (CD8+) T cells are crucial for the control of viral replication, whereas an invariant natural killer T
(iNKT) cell is important in the pathogenesis of dengue disease [155].

Table 1. List of DENV inhibitors isolated by targeting host process. LLC-MK2 = rhesus monkey
kidney cell, BHK = baby hamster kidney, GAG = glycosaminoglycan, DC-SIGN = dendritic
cell-specific intercellular adhesion molecule-3-grabbing non-integrin, MEK = MAPK/extracellular
receptor kinase (ERK) kinase, NTRK1 = neurotrophic receptor tyrosine kinase 1, MAPKAPK =

MAP kinase-activated protein kinase, RIG-I = retinoic-acid inducible gene I, IMP dehydrogenase =

Inosine-5′-monophosphate dehydrogenase.

Host Process Inhibitor(s) Target DENV Types Cell Line(s) Tested Refs.

Glycolytic pathway
2-deoxy-d-glucose
(2DG) Glycolysis DENV-2 HFFs Cell [5]

Oxamate Glycolysis DENV-2 HFFs Cell [5]

Lipid biosynthesis
pathway

Cerulenin Fatty acid
biosynthesis DENV-2 Huh-7.5 Cell [156,157]

C75 Fatty acid
biosynthesis DENV-4 C6/36 Cell [156,157]

Lovastatin
(fluvastatin,
lovastatin,
mevastatin, and
simvastatin)

Cholesterol
biosynthesis DENV-2 Huh-7 Cell [158,159]

U18666A Cholesterol
biosynthesis DENV-2 C6/36 cell line [160]

Methyl b-cyclo
dextrin

Cholesterol
biosynthesis DENV-1 to 4 Huh-7 Cell [158]

Nordihydroguaiaretic
acid

Fatty acid
biosynthesis DENV-4 Huh-7 cell [161]

Orlistat Fatty acid
biosynthesis DENV -4, -2 HepG2 and

HEK293T/17 Cell [161]

PF-429242 Fatty acid
biosynthesis DENV-1–4 Huh-7.5.1 Cell [162]

Hymeglusin Cholesterol
biosynthesis DENV-2 K562 cells [68]

Zaragozic acid Cholesterol
biosynthesis DENV-2 K562 cells [68]
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Table 1. Cont.

Host Process Inhibitor(s) Target DENV Types Cell Line(s) Tested Refs.

Nucleotide
biosynthesis
pathways

Ribavirin IMP
dehydrogenase DENV-2 LLC-MK2 [163]

N-ally acridones
IMP
dehydrogenase
(Partial)

DENV-2 Vero cells [163]

Brequinar Dihydroorotate
dehydogenase DENV-2 Vero cells [164]

Mycophenolic acid IMP
dehydrogenase DENV-2 Huh-7, CRL-8024,

and HepG2 [165]

NITD 982 Dihydroorotate
dehydogenase DENV-2 Vero cells [69]

ETAR IMP
dehydrogenase DENV-2 Vero cells [166]

IM18 IMP
dehydrogenase DENV-2 Vero cells [166]

Glycosaminoglycans

PI88 Heparan
sulfate DENV-2 BHK and in mice [80]

Chondroitin sulfate Heparan
sulfate DENV-1–4 BHK-21 and Vero

cells [78]

Curdlan sulfate Heparan
sulfate DENV-1–4 LLC-MK2 cells [77]

K5 polysaccharide
from Escherichia coli

Heparan
sulfate DENV-2 HMEC-1 and

HMVEC-d cells [83]

Heparin Heparan
sulfate DENV-2 Vero, BHK,

Hepatocytes [79]

Fucoidans Heparan
sulfate DENV-2 BHK [82]

GAG Heparan
sulfate DENV-2 Vero [79]

Sulfated
galactomannan

Heparan
sulfate DENV-1 C6/36 [167]

DL-galactan Heparan
sulfate DENV-2, -3 Vero, Hep-G2 [141]

Carrageenan Heparan
sulfate DENV-2, -3 Vero, Hep-G2 [138]

α-d-glucan Heparan
sulfate DENV-2 BHK [84]

Dextran sulfate 8000 Heparan
sulfate DENV-2 Hepatocytes, Vero [168]

Zosteric acid, CF-238 Heparan
sulfate DENV-1–4 LLC-MK2 [77]
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Table 1. Cont.

Host Process Inhibitor(s) Target DENV Types Cell Line(s) Tested Refs.

DC-SIGN

PRM-S Carbohydrate
binding agent DENV-2 Raji/DC-SIGN and

MDDC [169]

QL-XII-47 (QL47) DC-SIGN(BTK) DENV-2 Huh-7 Cell [170]

Plant lectins from
Hippeastrum hybrid,
Galanthus nivalis,
Urtica dioica

DC-SIGN DENV-1–4 MDDC, Huh-7,
U87/DC-SIGN [169]

Glycomimetic
DC-SIGN ligand DC-SIGN DENV-2 DC-SIGN/Raji cells [171]

DS (MW >
500,000 Da) DC-SIGN DENV-1–4 C6/36 [169]

Host protease

45 Furin DENV-2 Huh-7 cells [172]

46 Furin DENV-2 Huh-7 cells [172]

Peptidomimettic
furin inhibitor,
Luteolin

Furin DENV-1–4 Huh-7 cells [105]

Host kinase

Dasatinib c-Src/Fyn DENV-1–4 Vero, Huh-7 [106]

SaracatinibAZD0530 c-Src/Fyn DENV-1–4 Vero, Huh-7 [106]

GNF-2 Abl Kinases E
Protein DENV-2 BHK-21 [108]

Imatinib Abl Kinases DENV-2 BHK-21 [108]

Mitogen activated
protein kinase

PD98059, U0126,
FR180204 MEK DENV-2 RAW264.7 [173]

SB203580 p38 pathway DENV-2 C6/36 [174]

CGP57380 ERK and p38
pathways DENV-2 BHK-21 [175]

Imidazo[1,2-b]
pyridazine AAK1 DENV-2 Huh-7 [176]

Isothiazolo[5,4-b]
pyridines GAK DENV-2 Huh-7 [177]

Sunitinib and
erlotinib

AAK1 and
GAK DENV-2 Huh7 [178]

AR-12 PI3K/JAKT
pathway DENV-1–4 Huh 7 [179]

U0126 Erk inhibitor DENV-2, -3 BHK-21 [180]

SFV785 NTRK1 and
MAPKAPK5 DENV-2 BHK-21 [108]
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Table 1. Cont.

Host Process Inhibitor(s) Target DENV Types Cell Line(s) Tested Refs.

Host Glucosidase

CM-9-78 (DNJ
derivative) α-glucosidase DENV-1 to 4 BHK-21 [181]

UV-4 (DNJ
derivative) α-glucosidase DENV-2 BHK-21 [117]

DNJ α-glucosidase DENV-1 BHK-21 [117]

Celgosivir α-glucosidase DENV-1–4 BHK [116]

Kotalanol α-glucosidase DENV-1–4 BHK [86]

Castanospermine α-glucosidase DENV-1–4 BHK, Huh-7 [110,112]

OSL-9511 α-glucosidase DENV-2 BHK [182]

NN-DNJ α-glucosidase DENV-2 BHK [114]

Compound 36 α-glucosidase DENV-2 BHK-21 [183]

Compound 36 α-glucosidase DENV-2 BHK-21 [183]

Compound 36 α-glucosidase DENV-2 BHK-21 [183]

N-alkyl side chains
69(CST) α-glucosidase DENV-2 BHK [183]

N-alkyl side
chains 70(DNJ) α-glucosidase DENV-2 BHK [183]

N-alkyl side
chains 71 α-glucosidase DENV-2 BHK [182]

N-alkyl side
chains 72 α-glucosidase DENV-2 BHK [182]

N-alkyl side
chains 73 α-glucosidase DENV-2 BHK [182]

N-alkyl side
chains 74 α-glucosidase DENV-2 BHK [184]

N-alkyl side
chains 75 α-glucosidase DENV-2 BHK [184]

N-alkyl side
chains 76 α-glucosidase DENV-2 BHK [184]

N-alkyl side
chains 77 α-glucosidase DENV-2 BHK [185]

N-alkyl side
chains 78 α-glucosidase DENV-2 BHK [117]

N-alkyl side
chains 79 α-glucosidase DENV-2 BHK [186]

SP173 α-glucosidase DENV-2 BHK-21 [112]

SP169 α-glucosidase DENV-2 BHK-21 [112]

6-O-butanoyl
castanospermine α-glucosidase DENV-2 BHK-21 [110]
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Table 1. Cont.

Host Process Inhibitor(s) Target DENV Types Cell Line(s) Tested Refs.

Host Immunity, and
Inflammatory
pathways

Human heme
oxygenase I

Innate antiviral
response DENV-1–4 Huh-7 [187]

Schisandrin A STAT1/2-mediated
responses DENV-1–4 Huh-7 [188]

Celastrol JAK–STAT
signaling DENV-1–4 Huh-7 [189]

Agonists of
IRF3-terminal
pathways

TRIF Pathway DENV-2 Vero cells [190]

Salidroside RIG-I DENV-2 THP-1 cell line [191]

Asunaprevir MAVS
pathways DENV-2 Huh 7.5.1, Hep-G2

cells, [192]

Sequence-specific
RIG-I agonist IRIG-I-mediated DENV-2 Lung epithelial

A549 cells [193]

Helicase with zinc
linger 2

Innate antiviral
response DENV-2 Vero cells [194]

Purinergic receptor
P2X7

Inflammatory
process DENV-2 Human monocyte

Cell [195]

Extract from Uncaria
tomenrosa, N.
brasiliensis Choisy,
Uncaria guianensis

Cytokine/chemokineDENV-2 Huh-7 [196,197]

Extract from
Cissampelos pareira
Linn

Innate antiviral
response DENV-1–4 C6/36, LLC-MK2,

Vero, Hep-G2 [198]

Ivermectin α/β-mediated
transport DENV-1–4 HeLa [198]

BST2/tetherin IFN induced DENV-2 Huh7 [199]

6.3. Targeting Host Plasma and Vascular Endothelium Leakage

Plasma leakage is an important factor in dengue disease progression and can cause DHF/DSS.
Endothelium (primary fluid barrier) is changed by DENV, inducing edema and hemorrhage because of
cell barrier permeability [200]. Vascular leakage can be blocked by FX06 (28-AA cleavage product),
which decreases primary dengue infection. The protective effect of FX06 has been found to be elevated
when combined with src/Fyn kinase. After activation, the 28-AA (28-Amino Acid) cleavage product
Fyn dissociates from vascular endothelial and is combined with p190-Rho-GAP, an antagonist of
RhoA activation. Thus, blocking vascular leakage by stabilization of endothelial cell development is
important for DENV infection prevention [201]. The MIF inhibitor ISO-1 reduces permeability in the
human hepatoma cell line. ISO-1, or the phosphoinositide 3-kinase (PI3K/AKT)/Ras-Raf-MEK-ERK/JNK
signaling pathway, can be partially inhibited through the tight junction protein zonula occludens-1
(ZO-1) [202]. Chemokines CCL2 [168], leukocyte metalloproteinases 9 and 2 [203], and Box1
(HMGB1) [204] proteins are also involved in increasing vascular permeability. It has also been
shown that type I-IFNs, IFN-β, VEGFR2 (Vascular Endothelial Growth Factor Receptor 2), and INF-α
inhibit plasma leakage, where this process occurs with the help of endothelial stabilization [205].

6.4. Targeting Immune Factor Progress Disease after DENV Infection

Platelet-activating factor receptors (PAFR) released from macrophages, which were obtained
previously from patients that were primarily infected with DENV-1, were found to be involved in the
pathogenesis of severe dengue. The inflammatory response has also been demonstrated in DENV-2
virus infection, whereby PAF/PAFR was reported to interact with leukocytes and other cells [206].
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Asunaprevir [192] and salidroside [191], extracts from Uncaria tomentosa, Norantea brasiliensis
Choisy, Uncaria guianensis [196,197], promyelocytic leukemia protein intrinsic, Ivermectin [198], extracts
from Cissampelos pareira Linn [198], and BST2/tetherin [199] are some of natural products that have
advantages over synthetic drug design [207] and also tested as DENV inhibitors. Interferon type I [129],
human heme oxygenase I, purinergic receptor P2X7 [195], and helicase with zinc linger 2 [194] are other
examples of DENV inhibitors that have been experimentally studied to ascertain their dependence on
host immunity, inflammation, pathogenesis of disease, and other disease progress factors (Table 1).

7. Conclusions and Remarks

Several remarkable points arise in the way of host inhibition processes that interrupt DENV
replication along with infections. Host metabolic pathways serve as a source of energy, and molecular
building blocks are required for the multiplication of DENV. For example, the primary glycolysis
is conservatively required by DENV and exogenous glucose, and glutamine deprivation decreases
DENV production, which could lead to the development of novel broad-spectrum antiviral therapies.
The fatty acid metabolic pathway induces the activation of autophagy in DENV-infected cells by
increased β-oxidation of fatty acids, and helps to bind with C proteins during virion assembly. An
extensive body of research has been dedicated to the role of lipid and fatty acid metabolism during
DENV infection, and the extant findings indicate that modulating lipid metabolisms in the host can
be a viable anti-dengue therapeutic approach. Cellular nucleoside biosynthesis pathways of the host
supply necessary nucleosides required for DENV replication. Hence, targeting the host nucleoside
biosynthesis pathways can assist in blocking the essential functions of DENV as another avenue for
antiviral drug development.

In the case of viral infection, initial attachment to the target cell is necessary to continue the viral
life cycle. This process can occur in DENV through the interaction between viral surface proteins
and host attachment factors, or receptor molecules present at the host cell surface. These factors are
responsible for the binding of a viral protein that leads to viral cell entry and subsequent genome
release into the cytoplasm. If the early steps of DENV infection cycle can be blocked by targeting host
attachment factors or receptor molecules, this would be significant progress in the development of
antiviral drugs.

Without utilizing host proteins and enzymes, DENV would be unable to propagate rapidly in
host cells. Numerous host proteins are found to be essential in DENV replication. For example, host
proteases aid in the RNA genome cleavage and polyprotein formation, while host kinases help in DENV
assembly, and glucosidase is used in DENV maturation and folding. Every single step mentioned
utilizes host proteins and enzymes, which are the most important factors for DENV multiplications.
Hence, targeting one of these can reduce DENV production and may lead to an effective antiviral drug.

The inflammatory response is activated in host cells during DENV infection to clear the pathogen
from the host immune system. Whenever the host senses the presence of the DENV virus, activation
of innate and inflammatory pathways occurs as a means of eliminating the disease. Alternation of
host responses is a hallmark of dengue infection, whereby weak innate immunity and inflammatory
response may lead to parasite growth and disease advancement. Again, excessive inflammation
may be the reason behind the pathogenesis of severe dengue disease. In that case, a reduction of
proinflammatory molecules can help to decrease dengue-induced vascular leakage. In summary, we
require a better understanding of host innate and inflammatory pathways, as this information can help
to identify appropriate targets. Targeting such inhibitors may result in antiviral drug development
(focusing on blocking inflammation and endothelial barrier permeability) without interfering with the
host immune mechanisms. Resolving the issues discussed in this work can yield more comprehensive
knowledge about DENV and related host factors that can be utilized in novel therapeutic targets for
the development of anti-DENV drugs.
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