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Abstract

Neurodegeneration together with a reduction in neurogenesis are cardinal features of Alzheimer's disease (AD)
induced by a combination of toxic amyloid- peptide (AB) and a loss of trophic factor support. Amelioration of these
was assessed with diverse neurotrophins in experimental therapeutic approaches. The aim of this study was to
investigate whether intranasal delivery of plasma rich in growth factors (PRGF-Endoret), an autologous pool of
morphogens and proteins, could enhance hippocampal neurogenesis and reduce neurodegeneration in an amyloid
precursor protein/presenilin-1 (APP/PS1) mouse model. Neurotrophic and neuroprotective actions were firstly evident
in primary neuronal cultures, where cell proliferation and survival were augmented by Endoret treatment. Translation
of these effects in vivo was assessed in wild type and APP/PS1 mice, where neurogenesis was evaluated using 5-
bromodeoxyuridine (BdrU), doublecortin (DCX), and NeuN immunostaining 5 weeks after Endoret administration.
The number of BrdU, DCX, and NeuN positive cell was increased after chronic treatment. The number of
degenerating neurons, detected with fluoro Jade-B staining was reduced in Endoret-treated APP/PS1 mice at 5 week
after intranasal administration. In conclusion, Endoret was able to activate neuronal progenitor cells, enhancing
hippocampal neurogenesis, and to reduce AB-induced neurodegeneration in a mouse model of AD.
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Introduction

Alzheimer’s disease (AD) is a progressive
neurodegenerative disease and the most prevalent cause of
dementia in adults. The hallmarks of the disease are amyloid
deposits of aggregated B-amyloid (AB) peptides and
neurofibrillary tangles, which are intracellular aggregates of
hyperphosphorylated tau [1]. Increasing evidences suggest that
altered or compromised neurogenesis may contribute to the
cognitive impairments and neuronal vulnerability that
characterize the disease. Indeed, numerous studies report
impaired hippocampal neurogenesis in mouse models
exhibiting high levels of AR, amyloid deposition [2-4], and
neurofibrillary tangles [5].

The adult brain has two stable regions of mitotic activity, the
subventricular zone of the lateral ventricle in the frontal cortex
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and the subgranular zone of the dentate gyrus in the
hippocampus [6,7]. Parallel to the diminution in neurogenesis,
is the decline of growth factors [8,9]. Remarkably in AD, levels
of neurotrophic factors are decreased in patient brains,
including insulin like growth factor (IGF-I), brain-derived growth
factor (BDNF), and vascular endothelial growth factor (VEGF)
among others [10-13].

The technology of plasma rich in growth factors (PRGF-
Endoret or formerly Endoret) is a relatively new biological
therapy that uses patient’s own proteins and growth factors as
therapeutics [14-16]. In fact, it is obtained from patient’'s own
blood and it consists in a supernatant enriched in plasma and
platelet-derived proteins and morphogens. The biological basis
of Endoret relies on the concentration of platelets within a
defined plasma volume. Platelets are then activated by means
of calcium to effectively release the protein content stored
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Table 1. Demographic characteristics of patients and
controls.

Mean age Gender
Men Women

Young subjects 334 +1.81 5 5
Aged patients 755+23 7 3
MCI patients 80.25+25 3 5
AD patients

mild 80+1.11 4 9
moderate/severe 80 +2.22 1 6

doi: 10.1371/journal.pone.0073118.t001

within their alpha granules [17]. The latter are full of
morphogens including platelet-derived growth factor (PDGF),
transforming growth factor beta (TGF-B), VEGF, fibroblast
growth factor (FGF), epidermal growth factor (EGF), IGF-I and
nerve growth factor (NGF) among others [15,18]. Many of
these growth factor factors are known to accelerate cell
proliferation and differentiation, promote cell survival and
stimulate angiogenesis [19-22].

To test the hypothesis that Endoret also functions as a
regenerative therapy with an impact on neurodegeneration in
AD, we investigated the efficacy of the pool of plasma and
platelet-derived proteins as a neurogenic agent in vivo using
amyloid precursor protein/presenilin-1 (APP/PS1) mice. One
critical problem is the way to deliver growth factors in a
localized manner within the brain tissue to avoid undesirable
peripheral side effects. The development of a less invasive
delivery method for brain uptake may significantly improve the
prospects of growth factor clinical uses. Intranasal delivery
provides a practical, non-invasive method of bypassing the
blood-brain barrier (BBB) to deliver therapeutic agents to the
brain. In view of this, we explored the hypothesis that intranasal
Endoret treatment can improve neurogenesis and ameliorate
neurodegeneration in this mouse model of AD.

Materials and Methods

Human samples

Five groups of human subjects were studied: (1) young
subjects, (2) elderly non-demented controls, (3) mild cognitive
impairment (MCI) patients, and two categories of AD patients;
(4) mild, and (5) moderate/severe (Table 1). All the samples
were obtained from the Neurology Service of the Hospital
Universitario 12 de Octubre (Madrid, Spain), after the approval
of the ethics committee from the Hospital Universitario 12 de
Octubre (Madrid, Spain). Patients provided written informed
consent to participate in this study according to the requirement
suggested and then approved by the ethics committee. AD
cases were diagnosed with dementia according to the
Diagnostic and Statistical Manual of Mental Disorders (DSM)-
IV criteria, and NINCDS-ADRDA criteria [23]. No neurological
symptoms or signs were recorded in elderly control group.
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Plasma rich in growth factors (Endoret)

Informed consent from all subjects was obtained prior to their
participation. Blood samples were obtained through antecubital
vein puncture. Plasma rich in growth factors (Endoret) was
obtained as follows. Briefly, blood from donor subjects was
collected into 9-mL tubes with 3.8% (wt/vol) sodium citrate.
Samples were centrifuged at 580g for 8 min at room
temperature in a PRGF-Endoret system centrifuge (BTI
Biotechnology Institute). The plasma fraction containing
platelets but not buffy coat and erythrocytes was separated
(Figure 1A). Plasma fractions were incubated with calcium
chloride (BTI Biotechnology Institute) for 1 h at 37°C in glass
tubes. The released supernatants were collected by aspiration
after centrifugation at 1000g for 20 min at 4°C. Finally, platelet
enriched plasma fractions were aliquoted and stored at —-80°C
until use. Growth factors (TGF-B1, PDGF, VEGF, HGF, EGF,
IGF-1, and NGF) were measured in the supernatants using
commercially available colorimetric sandwich enzyme-linked
immunosorbent assay (ELISA) kits (R&D). Human soluble AB,,
and AB,, levels were also measured in PRGF-Endoret samples
by an ELISA kit (Invitrogen).

Animals

Male double-transgenic APP/PS1 mice, a cross of the
Tg2576 (over-expressing human ABPP695) and mutant PS1
(M146L) mice from our in-house colony (Instituto de
Investigacion Hospital 12 de Octubre), were used. Age-
matched mice not expressing the transgene were used as wild-
type controls. The name of the Institutional Animal Care and
Use Committee (IACUC) that approved the study was Comite
de Experimentacion y Bienestar Animal. Human Endoret was
delivered intranasally 3 times per week for 5 weeks, according
to a modified procedure previously described [23]. Mice were
briefly anesthetized with isoflurane to ameliorate any suffering
and Endoret (total volume of 48 pl) was administered
intranasally to APP/PS1 mice, 3 pl at a time, alternating the
nostrils, with a lapse of 2 min between each administration, for
a total of 16 times. In the control mice, saline (0.9% w/v) was
administered. Endoret was administered to 3 and 6 months old
APP/PS1 mice groups. From day 8 of the study, 50 mg/kg of
BrdU was injected intraperitoneally to each mouse once a day
for 7 days, and mice were sacrificed, after deep anesthesia, 28
days later (Figure 1B). All animals were handled and cared for
Council Directive 2010/63/UE of 22 September 2010.

Primary cell culture assays

Primary cortical and hippocampal neurons were obtained
from Wistar rat embryos on prenatal day 17 (E17), as
previously described [24]. Cultures were kept at 37°C in
Neurobasal culture medium (Gibco, Germany) supplemented
with 0.5 mM glutamine, 1% antibiotic and 3% B27 in a
humidified atmosphere containing 5% CO, for 7 days prior to
experimentation. Cell cultures were then incubated in fresh
medium with or without Endoret, previously diluted at 7.5% and
10% in a sterile culture medium, alone or in combination with
ABy, (10 pM).
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Figure 1. Use of Endoret treatment in a mouse model of AD. A. Scheme of the different plasma fractions obtained with the
Endoret technology from blood samples. B. Experimental design for the Endoret treatment in APP/PS1 mice.

doi: 10.1371/journal.pone.0073118.g001

Immunoassays

Western blotting. For western-blot analysis, cell samples
were lysed by homogenization with lysis buffer (20 mM Tris-
HCI, pH 7.5, 1:1000 Aprotinin, 1:1000 PMSF and 1:1000
Vanadate) and centrifuged for 10 min at 10000 rpm at 4°C. The
supernatants were collected and the total protein
concentrations were measured by BCA assay (Thermo
Scientific, USA). Samples were separated by polyacrylamide
gel electrophoresis and transferred to PVDF membranes. After
blocking the membranes with 5% dry milk in TTBS for 1 h,
membranes were incubated overnight at 4°C with different
antibodies in TTBS. The antibodies used included: mouse anti-
Hsp70 (1:1000, Santa Cruz Biotechnology), rabbit anti
caspase-3 (1:1000, Cell Signaling Technology), and mouse
anti-B-actin (1:10000, Sigma). Secondary antibodies were: goat
anti-mouse HRP-conjugated (Biorad Laboratories), goat anti-
rabbit HRP-conjugated (Biorad Laboratories).
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Cell death quantification. After 48 h incubation of neuronal
primary cultures with AB,, (10 uM) and 7.5% and 10% Endoret,
DNA fragmentation undergoing apoptosis was detected with a
Cell Death Detection ELISAP-US kit (Roche), according to the
manufacture’s protocol. In an additional experiment, cell
viability 48 h after treatment with AB,, (10 M) and PRGF-
Endoret was assessed, using the LIVE/DEAD Viability/
Cytotoxicity Kit (Molecular Probes). Cell viability was also
measured using Cell Counting Kit -8 (CCK-8 assay, Sigma, St.
Louis, USA).

Immunohistochemistry

Mice were deeply anesthetized with isoforane, transcardially
perfused with 0.9% saline and brains were immediately
removed. Next, tissues were fixed in phosphate-buffered 4%
paraformaldehyde, pH 7.4, at 4°C. Fixed brains were cut on a
vibratome (Leica Microsystems) at 50 uym, and tissue sections
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Table 2. Concentration of selected proteins and growth factors in human PRGFs samples.
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GROUP NGF pg/ml VEGF pg/ml IGF-I ng/ml PDGF pg/ml HGF pg/ml TGF ng/ml
Young 81.65+22.4 130.46+ 36.57 95.22+7.98 10.03+2.96 194.5+23.22 13.35+2.23
Aging 49.57+16.8 121.91£32.1 56.15+8.78* 11.76+2.54 308.5+17.3** 9.6+2.3
MCI 71.68+26.9 184.11456.62 56.93+8.04 5.95+1.26 325.66+36.9 10.7 £2
AD mild 56.01+28.2 254.41+68.9 52.2348.1 4.060.94 388.84+49.8 9.68+2.02
AD moderate/severe 67.68+25.4 135.36+31.75 66.78+7.64 7.241.12 389.41+13.7 12.44+1.87

Data are mean + SEM; *p<0.05 and **p<0.01 vs young group.
doi: 10.1371/journal.pone.0073118.t002

were collected in cold PB 0.1 M, and incubated overnight with
primary antibodies at 4 °C. Primary antibodies were: mouse
anti-BrdU (1:20000, Hybridoma Bank), rat anti-BrdU (1:400,
Chemicon), goat anti- doublecortin (DCX, 1:500, Santa Cruz
Biotechnology), mouse anti-NeuN (1:500, Millipore), mouse
anti-BllI-Tubulin  (1:1000, Promega), rabbit anti-embryonic
nerve cell adhesion molecule (ENCAM, 1:500, Millipore) mouse
anti-synaptophysin (1:1000, Chemicon), and rabbit anti-
synapsin (1:250, Sigma). After overnight incubation, primary
antibody staining was revealed using the avidin-biotin complex
method (VECTASTAIN Elite ABC Kit, Vector Laboratories,
Burlingame, CA) or fluorescence-conjugated secondary
antibodies from Molecular Probes.

To estimate the total number of BrdU-positive cells in the
brain, we performed DAB staining for BrdU on every sixth brain
section. The number of BrdU-positive cells in the granule cell
and subgranular cell layer of the dentate gyrus were counted,
using light microscopy (Zeiss microscope) at a magnification of
40X, to estimate the total number of BrdU-positive cells in the
entire dentate gyrus. Based on a modified stereological method
[25], BrdU-positive were counted in one of every six sections
from rostral (2 mm from bregma) to caudal (-4.3 mm from
bregma). To determine the fate of dividing cells 100-150 BrdU-
positive cells across 4-6 sections per mouse were analyzed by
confocal microscopy for co-expressing with NeuN. The number
of double-positive cells was expressed as a percentage of
BrdU-positive cells.

Fluoro-Jade B labeling has been shown to stain
degenerated, but not healthy, neurons [26]. Fluoro-Jade B
(Histochem, Jefferson, AR) staining was carried out as
described previously [27]. Briefly, paraformaldehyde-fixed brain
sections were mounted on 1.5% gelatin-coated slides, air-dried
overnight at room temperature and then for 30 minutes at 40°C
before staining. Sections were immersed for 5 min in a solution
containing 1% sodium hydroxide in 80% alcohol, then for 2
minutes in 70% ethanol, and finally for 1 min in distilled water.
Sections were then oxidized by immersion for 10 min in 0.06%
KMnO4, under moderate shaking. After several rinses in
distilled water, sections were incubated for 30 min in 0.004%
Fluoro-Jade-B dye in 0.1% acetic acid, rinsed thoroughly in
distilled water, and placed into a heater set to 40°C until the
tissue was completely dry. Finally, they were cleared in xylene
and coverslipped using D.P.X. mounting medium (Sigma).
Morphometrical analysis, using ImageJ software (NIH Image),
was done as described [20], and results expressed as number
of Fluoro-Jade B-positive cells.

PLOS ONE | www.plosone.org

Table 3. Concentration of AR,, and AB,, in PRGF-Endoret
of donor samples.

GROUPS AB49 pg/ml AB42 pg/ml
Young 6.96+2.93 1.35£0.23
Aging 2.91+1.69 2.11+0.61
(o] 6.25+4.41 2.94+1.23
AD mild 6.6614.12 1.88+0.49
AD moderate-severe 4.8+3.8 1.65+0.38

doi: 10.1371/journal.pone.0073118.t003

Data and statistical analysis

Results are expressed as means * standard error of the
mean (SEM). Statistical analyses were performed using a two-
way ANOVA followed by Tukey's post hoc test for multiple
comparisons. All calculations were made using SPSS v15.0
software. Statistical significance was set at p<0.05.

Results

Characterization of Endoret in human samples

As shown in Figure 1, plasma rich in growth factors was
obtained following instruction described above (Methods
section) from five groups of human subjects (young and old
healthy patients, patients with mild cognitive impairment and
patients with mild AD and moderate/severe AD) (Table 1), and
the levels of some of the most important growth factors were
determined (Table 2). We found that IGF-1 levels were
significantly reduced and HGF levels were increased in elderly
non-demented individuals compared with the young group, but
no differences were found between age-matched groups.
Because platelets contained APP and AB peptides [28-32], we
investigated levels of AR peptides in all the Endoret samples.
No significant differences in the concentrations of AB,, and
AB4, in the Endoret formulations were found between groups
(Table 3), suggesting donor suitability of Endoret preparations.

Effects of Endoret on proliferation and differentiation in
neuronal cell cultures

In a first set of experiments, we used Endoret from the
healthy young control group. Because some of the growth
factors present in Endoret preparation are involved in
modulation of neurogenesis, including IGF-I [20,33], and VEGF
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Figure 2. Effects of Endoret on proliferation of primary cultured neurons. A. Fluorescence microscopy images showing BrdU-
labeling cells in B27- and Endoret-treated primary cultured neurons. B. Quantitative analysis of BrdU-labeling cells. C Calbindin
immunocytochemistry shows an increase in the presence of calbindin-positive neurons in PRGF-treated primary cultured neurons
than in B27-treated control group. D. The histogram shows quantitation of calbindin absorbance in each experimental group. E.
Representative confocal microscopy images showing co-localization of ENCAM (green) with BrdU (red) in B27- and Endoret-treated
primary cultured neurons. F. Quantitative analysis of double ENCAM (green) and BrdU (red)-labeling cells. One representative
experiment is shown (n = 3 experiments). Data are mean + SEM; *p<0.05, **p<0.01 vs control culture.

doi: 10.1371/journal.pone.0073118.g002

[34,35], we explored whether Endoret could play a role in
hippocampal neurogenesis. When primary neuronal cells were
treated with 7.5% or 10% Endoret for 7 days in vitro, an
increased incorporation of BrdU into cells was observed
(Figure 2A,B). This effect was concentration-dependent and
was associated with an increase in cell viability, as
demonstrated by calbindin-stained cells (Figure 2C) and XTT
absorbance (Figure 2D). Next, we investigated differentiation
potential of Endoret analyzing co-localization of neuronal
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lineage, and we found higher incorporation of BrdU mainly in
cells that expressed the immature neuronal marker ENCAM
(Figure 2E). Statistical analysis showed the ability of Endoret to
increase the number of cell stained with antibodies against
BrdU and ENCAM, at concentration of 7.5% and 10% (Figure
2F).

Then, we observed that 10% Endoret preparation from
young, old and AD patient groups equally enhanced
incorporation of BrdU in cultured cells expressing ENCAM
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Figure 3. In vitro effects of Endoret from young, old and AD patient groups. A. Endoret obtained from different donors
(healthy young and old donors and old patients with AD) protects against Ab,_, (10pM)-induced cell death in neuronal cell culture.
B. Effects of Endoret on proliferation of primary cultured neurons. Representative confocal microscopy images showing co-
localization of ENCAM (green) with BrdU (red) after exposure to 7.5% Endoret from young, elderly, and AD groups. One
representative experiment is shown (n = 3 experiments). Data show mean + SEM; **p<0.01 vs control culture.

doi: 10.1371/journal.pone.0073118.g003

(Figure 3A,B), suggesting an efficacy potential of Endoret
independently of the donor’s age or health status.

Protective effects of Endoret against Ab-induced
neurotoxicity

To determine whether amyloidogenic environment could
affect cell survival, we investigated the effects of Endoret on
neurotoxicity induced by AR in primary neuronal cultures.
Cultured cells were treated with AB,, (10 uM) for 48 h. As
expected [36,37], there was a significant increase in neuronal
death in these cultures treated with AB,,, and this result was
completely blocked after co-treatment with 7.5 or 10% Endoret
from healthy young control group (Figure 4A). Our findings
revealed that modulator effects of Endoret on AB,-induced
neurotoxicity correspond to either reduction of dead neurons
but also an increase of live cells (Figure 4B,C). We also tested
Endoret from young, old and AD patient groups, and we found
that all Endoret preparations prevented AB-induced reduction in
cell survival in primary neurons (Figure 4D). Western blot
analysis performed to assess protein level alterations revealed
that this effect in AB,,-induced cell death was preceded by a
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significant increase in caspase-3 and heat shock protein
HSP-70 expression in neuronal culture samples, and co-
treatment with PRGF-Endoret was able to block it (Figure
4E,F).

Endoret enhances hippocampal neurogenesis in
APP/PS1 mice

Finally, we investigate in vivo effects of Endoret from healthy
young control group using APP/PS1 mice. To determine
whether Endoret also stimulates BrdU incorporation in the brain
of APP/PS1 mice, Endoret was intranasal administered for 5
weeks, and BrdU (50 mg/kg i.p.) was given daily for 7 days,
and brains were examined 4 weeks later. Because a
relationship among Ab pathology and hippocampal
neurogenesis has been suggested [3,22,25], we used 3 and 6
month-old APP/PS1 mice. Effects of Endoret on cell
proliferation were assessed in mouse brain section through the
hippocampus, one of the two principal neuroproliferative
regions of the adult brain. BrdU-labeled cells were mainly
distributed in the inner layer of the granular cell layer of the
dentate gyrus (Figure 5A). These BrdU-labeled cells were
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counted, and we found that there was a significant increase in
the number of BrdU-positive cells in the dentate gyrus in both 3
and 6 month-old APP/PS1 mice after Endoret treatment (Figure
5A,B). To ascertain whether Endoret induced the incorporation
of BrdU into neurons in vivo, as demonstrated above in vitro,
brain sections from Endoret- and vehicle-treated APP/PS1
mice were processed for double-label immunohistochemistry
with antibodies against BrdU and against cell-type-specific
markers. The number of DCX-positive newly born neurons in
the dentate gyrus in both the early and later stages of the
pathogenesis of this mouse model was enhanced by ~400% in
Endoret-treated APP/PS1 mice compared with the vehicle-
treated group (Figure 5C,D). This length of time (28 days) is
known to be sufficient for newly proliferated cells to differentiate
into their mature phenotypes. The extent of differentiation of
BrdU-labeled cells was determined by double labeling
immunohistochemistry with antibodies for BrdU and NeuN (a
neuronal marker). Analysis of colocalization of BrdU with NeuN
using confocal microscopy indicated that the number of BrdU-
labeled cells possessing the neuronal phenotype was
significantly increased in 6 month-old APP/PS1 mice with
Endoret treatment (Figure 5E,F).

Endoret reduces neurodegeneration in APP/PS1 mice

Because we have found neuroprotective effects of Endoret
on AB-induced toxicity in primary neuronal cultures (Figure 4),
we examined neuronal degeneration in APP/PS1 mice treated
with or without Endoret. Neuronal degeneration was visualized
using Fluoro-Jade B staining [27,38], also used as cell death
marker [39]. Widespread Fluoro-Jade B-positive neurons were
detected in the cerebral cortex and hippocampus of 6 month-
old APP/PS1 mice (Figure 6A). Five weeks after treatment with
Endoret, Fluoro-Jade B labeling was reduced in the cerebral
frontal cortex, and in the hippocampal region in APP/PS1 mice
(Figure 6A). Stereological analysis of multiple stained section
revealed that the number of Fluoro-Jade B-positive
neurodegenerative neurons was reduced in the cerebral cortex
(Figure 6B) and the hippocampal dentate gyrus (Figure 6C) of
APP/PS1 mice treated with Endoret.

Furthermore, to illustrate the effects of PRGF-Endoret on
synaptic markers, synaptophysin, and synapsin were labeled in
hippocampus of APP/PS1 mice. Confocal microscopy revealed
an increase in these synaptic markers in dentate gyrus of 6
month-old APP/PS1 mice treated with autologous cocktail of
proteins (Figure 6D,F). By stereological analysis, we
demonstrated that Endoret induced significant recovery of
synaptic markers in and dentate gyrus of APP/PS1 mice
(Figure 6E,G).

Discussion

Several recombinant growth factors have been suggested as
potential therapeutic agents to prevent or decrease AB-
associated neurodegeneration. However, the therapeutic role
of human plasma and platelet-derived pool of growth factors,
delivered by using Endoret technology, in AD pathology has
not yet been explored. The main finding of this study is that
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chronic intranasal Endoret treatment improved neurogenesis
and reduced neurodegeneration in APP/PS1 mice.

It is well recognized that new dentate granule cells are
continuously generated from neural progenitor cells and are
integrated into the existing hippocampal circuitry in the adult
mammalian brain through an orchestrated process termed
adult neurogenesis [40]. Neurogenesis is regulated by a variety
of physiological and pathological stimuli. Increased
neurogenesis has been observed in patients with AD, where it
could give rise to cells that replace lost neurons [41]. In AD
mouse models of amyloidosis, increased hippocampal
neurogenesis has also been reported [25,42]. All these findings
suggest that stimulating hippocampal neurogenesis could
provide a unique approach to AD treatment.

Endoret is an autologous platelet-rich plasma technology by
which it is possible to obtain different growth factor-enriched
formulations that can be used in the repair and regeneration of
a wide range of tissues. The effects of Endoret on tissue
regeneration have been demonstrated in dentistry, oral
implantology, orthopedics, sports medicine, and treatment of
skin disorders [15]. Similarly, the biological effects of plasma
and platelet-derived growth factors on the proliferation of
various types of cells have been demonstrated [43-45].
However, to our knowledge this is the first report showing
potential of Endoret technology on neuronal cells. Although
further research is needed to clarify the molecular events that
regulate Endoret biological activity, it seems reasonable that
some of the proteins present in the autologous cocktail may
have played key roles in cell proliferation, differentiation, and
survival. Some growth factors present in Endoret preparations
have been described as key regulators of neurogenesis,
including IGF-l or VEGF [19-22]. Endoret promoted the
proliferation and differentiation of neuronal cells in this study,
supporting all these previously experimental data. Generating
new neurons is a multistep process that includes proliferation,
fate choice, migration, survival, and differentiation. We
demonstrated for the first time that Endoret promotes
proliferation of neuronal progenitors in vitro. Although in vitro
testing is useful, an effective delivery system must be able to
mediate successful expression in a relevant in vivo model.
Stress has been demonstrated to decrease cell proliferation in
the dentate gyrus [46]. To avoid these stress-induced effects
on neurogenesis, we decided to use an intranasal
administration via, which is capable of up taking brain cells,
including adult neurons, by entering into the brain, via BBB
[47]. Proteins, including growth factors such as insulin or IGF-I,
can cross the BBB by an extracellular route along the olfactory
bulb or trigeminal neural pathways, as observed by tracing
studies with ['?1]. After intranasal administration, grow factors
achieved direct access to the cerebrospinal fluid within 30
minutes, bypassing the bloodstream [48]. Intranasal via system
has been shown to efficiently and stably affect brain cells. Drug
delivery to the brain via the nasal route is a subject of
increasing interest because the nasal mucosa offers rapid
absorption with an abundantly vascularized and relatively large
absorptive surface area [49], does not require a complicated
administration method, and can easily be carried out by
medical services for chronic care such as in the case of AD.
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Figure 5. Endoret treatment modulates neurogenesis in APP/PS1 mice. A. Representative fields of BrdU immunostaining in
the hippocampal dentate gyrus (DG) of 3 (upper) and 6 months of age (bottom) APP/PS1 mice treated with vehicle or Endoret.
Scale bar = 20um. B. Quantification of BrdU-positive cells after vehicle or Endoret intranasal administration in 3 and 6 month-old
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SEM; **p<0.01 vs APP/PS1 + vehicle.
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Growing evidences support this technique in preclinical studies
[50-53]. Additionally, numerous clinical trials with Alzheimer’s
patients have been successfully performed using intranasal
administration of insulin [54-56]. The present data suggest that
following intranasal administration of Endoret reached the brain
and increased hippocampal neurogenesis.

Another interesting finding herein was the role of Endoret in
AB-mediated neurotoxicity. Neuroprotection induced by growth
factors in AD has been extensively studied [10,11,13,57]. Most
of these reports, however, have been focused on the use of a
single recombinant growth factor. Additionally, since high
doses of recombinant growth factors are needed to achieve
biological effects, the risk of systemic side effects would also
increases. We have observed that Endoret prevents neuronal
death evoked by AB, which kills neurons at least partly via
inflammatory activation of glia [58]. Endoret also increases the
number of live neurons, suggesting that enhanced neuronal
survival contributes to neurogenesis in the hippocampus. While
it is not completely understood what role the replacement of
neurons plays in the brain, it has been suggested that the
production of new neurons and their subsequent integration
into the neurocircuitry of the brain contribute to cognitive
processes including learning and memory [59-61], and could
potentially be useful in AD.

We observed that Endoret significantly reduced neuronal
degeneration. This result is particularly important because the
microenvironment of the AD brain may be toxic to new
neurons, and may constitute an important factor in the
progression of the neuronal loss, typically observed in patients
with AD [62]. This may be one of the reasons why in AD there
is a limited repair capacity via neurogenesis. This study
demonstrates the extensive trophic actions of Endoret on
hippocampal neurons. Our results suggest that in Endoret
administration has an important dual action: first, it has a
stimulatory effect on neuronal progenitor proliferation, and
secondly, it induces a reduction on AB-induced
neurodegeneration, including in the dentate gyrus, the
hippocampal region mainly involved in neurogenesis and
memory [63]. These actions also include enhancement of
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