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Abstract

Exponential random graph models (ERGMs) are widely used for modeling social networks

observed at one point in time. However the computational difficulty of ERGM parameter

estimation has limited the practical application of this class of models to relatively small net-

works, up to a few thousand nodes at most, with usually only a few hundred nodes or fewer.

In the case of undirected networks, snowball sampling can be used to find ERGM parameter

estimates of larger networks via network samples, and recently published improvements in

ERGM network distribution sampling and ERGM estimation algorithms have allowed ERGM

parameter estimates of undirected networks with over one hundred thousand nodes to be

made. However the implementations of these algorithms to date have been limited in their

scalability, and also restricted to undirected networks. Here we describe an implementation

of the recently published Equilibrium Expectation (EE) algorithm for ERGM parameter esti-

mation of large directed networks. We test it on some simulated networks, and demonstrate

its application to an online social network with over 1.6 million nodes.

Introduction

Exponential random graph models (ERGMs) are a class of statistical model often used for

modeling social networks [1, 2]. Parameter estimation in these models is a computationally

difficult problem, and algorithms based on Markov chain Monte Carlo (MCMC) are generally

used [2–10]. The computational time required by these methods places a limit on the size of

networks for which models can be estimated in practice. A recently published new algorithm

for sampling from the ERGM distribution can reduce this time by an order of magnitude [11],

and a new estimation algorithm even more [12], however scalability is still a problem when

extremely large networks are considered. It is also worth noting that the state space for a

directed network is far larger than for an undirected network with the same number of nodes

[13], and so this problem is even more difficult in the case of directed networks.

One solution to this problem is to take snowball samples [14–18] from the original network,

and estimate ERGM parameters from these [19, 20]. The first description of such a method

was [19]. However this method requires that estimation over the entire set of random tie
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variables is feasible, limiting the size of networks to which the method can be applied in prac-

tice. A more recently proposed method [20] is to estimate parameters for each sample in paral-

lel with conditional estimation [21], combining the estimates with a meta-analysis [22] or

using bootstrap methods [23] to estimate the standard errors. This work, however, was only

applied to undirected networks.

However the problem of directly estimating ERGM parameters for a very large network

(rather than from snowball samples) remains, particularly for directed networks where snow-

ball sampling is not straightforward. Here we describe an implementation of the Equilibrium

Expectation (EE) method [12] extended to directed networks, which is scalable and efficient

enough to be used to estimate ERGM parameters for networks with over one million nodes.

Hunter & Handcock (p. 581 of [6]) note that the largest network estimated to date (in 2006)

was the N = 2209 nodes adolescent friendship network estimated by Hunter, Goodreau, &

Handcock [24]. However this network was treated as undirected. Larger undirected networks

subsequently had ERGM models estimated indirectly by snowball sampling, with the largest

having 40 421 nodes [20]. By using an improved ERGM distribution sampler, Byshkin et al.

[11] could directly estimate ERGM parameters for a 3061 node patient transfer network

(treated as undirected), and the Equilibrium Expectation algorithm was demonstrated on

an undirected online social network with 104 103 nodes [12]. Using the implementation

described in this paper, modified to use a simplified EE algorithm, Borisenko, Byshkin, &

Lomi [25] are able to estimate a simple ERGM model of a 75 879 node directed network.

We note that social networks are typically sparse, and we assume sparsity for efficient data

structures. There is some specific work on sampling methods for ERGMs for large sufficiently

dense networks with additional assumptions [26] such as the presence of block structure [27,

28] but here we assume only sparsity, and that the network can plausibly be described by an

exponential random graph model.

In this paper, we describe an implementation of the EE algorithm, including the improved

fixed density ERGM sampler [11] for application to directed networks. By implementing these

algorithms and the associated computations of change statistics in a more efficient and scalable

manner, we are able to estimate ERGM parameters for networks far larger than previously pos-

sible, even using existing implementations of the algorithms used for the computational exper-

iments in the papers originally describing them [11, 12]. The implementation we describe

allows ERGM parameter estimation for a model of a directed network with over one million

nodes, while existing methods are only practical on networks of a few thousand nodes at most.

We test the implementation first on simulated networks with known model parameters, in

order to validate that it works correctly, and then demonstrate its application to an online

social network with over 1.6 million nodes.

Exponential random graph models

An ERGM is a probability distribution with the form

PrðX ¼ xÞ ¼
1

k
exp

X

A

yAzAðxÞ

 !

ð1Þ

where

• X = [Xij] is a 0-1 matrix of random tie variables,

• x is a realization of X,

• A is a configuration, a (small) set of nodes and a subset of ties between them,
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• zA(x) is the network statistic for configuration A,

• θA is a model parameter corresponding to configuration A,

• κ is a normalizing constant to ensure a proper distribution.

Which configurations A are allowed depends on the assumptions as to which ties are inde-

pendent. Here we will use the social circuit dependence assumption [7, 29], under which two

potential ties are conditionally dependent exactly when, if they were observed, they would

form a 4-cycle in the network [13]. Configurations allowed by other, simpler, dependence

assumptions (Bernoulli, dyad-independent, Markov (pp. 56–57 of [1]) are also allowed in

these models.

Under this assumption, we will now describe the structural configurations used in this

work. In the following, N is the number of nodes in the network.

The simplest configuration, included in every model, is Arc, analogous to the intercept

in a regression. Arc is included to account for the overall density of the network observed.

Its corresponding statistic is zL ¼
PN

i¼1

PN
j¼1
xij, the number of arcs in the graph. The Reci-

procity parameter is used to test for propensity of arcs to be reciprocated, and its statistic is

zReciprocity ¼
PN

i¼1

PN
j¼1
xijxji.

The degree distribution in a directed network is modeled with the alternating k-out-star

and alternating k-in-star configurations defined by [29] and illustrated in Fig 1. The statistic

for k-out-star is defined as:

zAoutS ¼
XN� 1

k¼2

ð� 1Þ
k SOutk

l
k� 2

ð2Þ

where SOutk is the number of k-out-stars and λ� 1 is a damping parameter. We use λ = 2 in

this work, as used previously in, for example, [20, 29]. We note that in a more general form of

ERGM, the curved exponential family random graph model [6], it is also possible to estimate

(a parameter equivalent to) the parameter λ, and this is routinely done using the statnet soft-

ware [30–33]. However the EE algorithm requires that every model parameter has a corre-

sponding change statistic, and so cannot estimate curved ERGMs [12]. For this reason assume

a fixed value for λ.

Fig 1. Alternating k-star structures for modeling degree distribution in directed networks. Alternating k-in-star

models popularity spread and alternating k-out-star models activity spread.

https://doi.org/10.1371/journal.pone.0227804.g001
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The zAinS statistic for k-in-stars is defined similarly.

Path closure and multiple connectivity are modeled with the alternating transitive k-trian-

gles and alternating two-paths effects defined by [29] and illustrated in Fig 2. These statistics

are defined as [34]:

zAT� T ¼ l
XN

i¼1

XN

j¼1

xij 1 � 1 �
1

l

� �L2ði;jÞ
" #

ð3Þ

where L2ði; jÞ ¼
PN

h¼1
xihxhj is the number of directed two-paths from i to j, and

zA2P� T ¼ l
XN

i<j

1 � 1 �
1

l

� �L2ði;jÞ
" #

ð4Þ

As well as path closure (AT-T) we can also define cyclic closure (AT-C), in which arcs

constituting the triangles form a cycle. Its statistic zAT−C is defined analogously to zAT−T but

Fig 2. Alternating transitive k-triangle and alternating k-2-paths structures. These are used for modeling social circuit dependence including path closure and

shared popularity. The A2P-TD configuration counts k-2-paths (A2P-T) and shared popularity (A2P-D) configurations in a single configuration, adjusting for double

counting.

https://doi.org/10.1371/journal.pone.0227804.g002
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counting cyclic k-triangles rather than transitive k-triangles:

zAT� C ¼ l
XN

i¼1

XN

j¼1

xji 1 � 1 �
1

l

� �L2ði;jÞ
" #

ð5Þ

We also include the shared popularity configuration A2P-D [13], the statistic for which

zA2P−D is defined analogously to zA2P−T, but rather than counting directed paths between two

nodes via k intermediate nodes, it counts “paths” where the each of the k intermediate nodes

have arcs directed towards each of the two nodes (see Fig 2):

zA2P� D ¼ l
XN

i<j

1 � 1 �
1

l

� �L2Dði;jÞ
" #

ð6Þ

where L2Dði; jÞ ¼
PN

h¼1
xhixhj. We then define the configuration A2P-TD which is the sum of

the A2P-D and A2P-T statistics, adjusting for double-counting:

zA2P� TD ¼ zA2P� T þ
zA2P� D

2
ð7Þ

The shared activity configuration A2P-U [13], the statistic for which is zA2P−U is similar to

A2P-D, but counts “paths” where each of the k intermediate nodes have arcs directed from the

pairs of nodes to the intermediate nodes (see Fig 2):

zA2P� U ¼ l
XN

i<j

1 � 1 �
1

l

� �L2U ði;jÞ
" #

ð8Þ

where L2Uði; jÞ ¼
PN

h¼1
xihxjh.

The statistics for the closures corresponding to the open path types A2P-D and A2P-U,

popularity closure (AKT-D) and activity closure (AKT-U), respectively, are defined similarly

to the way path closure (AKT-T) is defined for the corresponding multiple two-paths A2P-T.

These configurations are illustrated in Fig 2.

In addition, we will allow nodes to have binary, categorical, or continuous attributes, and

use the following additional configurations using these nodal attributes. For the binary attri-

bute, we use the four configurations Sender, Receiver, and Interaction, illustrated in Fig 3. The

Sender parameter indicates increased propensity of a node with the True value of the binary

attribute to “send” a tie to another node, and the Receiver the increased propensity of a node

with the True value of the attribute to “receive” a tie from another node (both irrespective of

the attribute value of the other node). The Interaction parameter indicates increased propen-

sity for two nodes both with the True value of the attribute to have an arc connecting them.

The corresponding statistics are defined as follows (where we now use the notation ∑i,j for

Fig 3. Binary attribute configurations. The dark nodes represent actors with the binary attribute, and the lighter

shaded nodes represent actors with or without the attribute.

https://doi.org/10.1371/journal.pone.0227804.g003
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summation over all pairs of nodes i 2 {1. . .N}, j 2 {1. . .N}, i 6¼ j):

zSender ¼
X

i;j

aixij ð9Þ

zReceiver ¼
X

i;j

ajxij ð10Þ

zInteraction ¼
X

i;j

aiajxij ð11Þ

where ai 2 {0, 1} is the value of the binary attribute on node i.
For the categorical attribute, the Matching and Mismatching parameters indicate the

increased propensity for a node to send a tie to another node with, respectively, the same, or

different, value of the categorical attribute. The Matching reciprocity and Mismatching reciproc-
ity parameters indicate the increased propensity for such ties to be reciprocated. These config-

urations are illustrated in Fig 4 and the corresponding statistics are defined by:

zMatching ¼
X

i;j

dci ;cj xij ð12Þ

zMismatching ¼
X

i;j

ð1 � dci ;cjÞxij ð13Þ

zMatching reciprocity ¼
X

i;j

dci ;cj xijxji ð14Þ

zMismatching reciprocity ¼
X

i;j

ð1 � dci ;cjÞxijxji ð15Þ

where ci is the value of the categorical attribute at node i and δx,y is the Kronecker delta func-

tion

dx;y ¼

(
0 if x 6¼ y;

1 if x ¼ y:
ð16Þ

Fig 4. Categorical attribute configurations. The filled and empty nodes represent actors with two different values of

the categorical attribute.

https://doi.org/10.1371/journal.pone.0227804.g004
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For a continuous attribute ui on a node i, we also define the (continuous) Sender, Receiver

and Difference statistics as follows:

zcontinuousSender ¼
X

i;j

uixij ð17Þ

zcontinuousReceiver ¼
X

i;j

ujxij ð18Þ

zDiff ¼
X

i;j

jui � ujjxij ð19Þ

These indicate, respectively, the increased propensity of a node to send ties for higher values of

its continuous attribute, the increased propensity of a node to receive ties for higher values of

its continuous attribute, and the increased propensity of nodes to have a tie between them for

smaller absolute differences in their continuous attributes. The latter is a simple measure of

homophily, the tendency for nodes with similar values of the attribute to have a tie between

them.

Note that in ERGM estimation algorithms these statistics as defined above never actually

need to be computed directly. Instead only the corresponding change statistics are computed

[6, 10, 24, 29, 31]. The change statistic is the change in the statistic due to the addition or dele-

tion of an arc, which is much faster to compute. For example the most basic statistic is zL, the

count of the number of arcs in the graph. Computing this statistic therefore requires counting

the number of arcs in the graph, however the corresponding change statistic is simply the con-

stant 1 (or -1 for deleting an arc): adding an arc increases the statistic by 1, and deleting an arc

decreases it by 1.

Equilibrium expectation algorithm

Monte Carlo based methods, such as Markov chain Monte Carlo maximum likelihood estima-

tion (MCMCMLE) [6] and stochastic approximation [5] as well as Bayesian methods [8], as

reviewed for example by Hunter et al. [10], all require drawing simulated networks from the

ERGM distribution. This can be achieved using a Metropolis–Hastings algorithm, and a num-

ber of samplers are available [5, 10, 11, 35]. However all these methods require that a number

of network samples are drawn from the stationary ERGM distribution, for each updated value

of the parameter vector being estimated, which may require a very large number of iterations,

and limits the size of networks to which these methods can be applied in practice.

In contrast, the EE algorithm [12] does not require these potentially very long MCMC

simulations between parameter updates. The EE algorithm is related to persistent contrastive

divergence (PCD) [25, 36, 37] and is fast because it adjusts its parameters according the differ-

ence between the observed network statistics and the statistics of a current non-equilibrium

state of the Markov chain of simulated networks. It may be thought of as a kind of gradient

ascent method, and depends on the property of the exponential family (to which the ERGM

distribution belongs) that the expected value of a statistic is a monotonically increasing func-

tion of the corresponding parameter (see Ch. 8 of [38]). It works by starting the chain of simu-

lated networks at the observed network (not the empty network for example), and taking only

a small number of Metropolis–Hastings steps, before adjusting the estimated parameter values

according to the divergence of the simulated network statistics from the observed network

statistics. After sufficiently many iterations of this process (which in practice is many orders

of magnitude smaller than the number of Metropolis–Hastings steps required to find the

ERGM parameter estimation for very large directed networks
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stationary ERGM distribution), the divergence of each of the statistics from the observed statis-

tics oscillates around zero, and the corresponding parameters oscillate around a value which is

taken to be an estimate of the MLE.

A version of contrastive divergence (CD) [39] is used to compute initial values of the

ERGM parameter estimates [40, 41] for the EE algorithm [12]. Details of the EE algorithm, as

first described in the Supplementary Information of [12], and of the IFD sampler, [11] are pro-

vided in S1 Appendix.

Materials and methods

Parameter estimation

Parameters are estimated using a new implementation of the EE algorithm, which we call

EstimNetDirected. This implementation has change statistics for directed (rather than undi-

rected as in the original description [12]) networks, and uses efficient data structures in order

to scale to very large (over one million node) networks. Both the “basic” ERGM sampler (as

used in the PNet [42] software) and the improved fixed density (IFD) ERGM sampler [11] are

implemented.

The network is stored as an adjacency list data structure for space efficiency and fast com-

putation of change statistics. A “reversed” adjacency list is also maintained. This stores, for

each node j, a list of nodes i for which the arc i! j exists. This allows efficient computation of

change statistics that require the in-neighbours of a node. In addition, a flat list of all arcs is

maintained, for efficient implementation of the IFD sampler, which requires finding an arc

uniformly at random for arc deletion moves [11].

For efficient computation of the “alternating” two-path and triangle change statistics, it is

necessary to keep track of the counts of two-paths between each pair of nodes. It is not scalable

to store these two-paths matrices as arrays as in earlier implementations [12, 42], so instead

hash tables can be used, where the key is a node pair (i, j) and the value is the relevant two-

path count (which is zero if the key is not present). This takes advantage of the sparsity

(approximately 0.06% nonzero in the empirical example described here) of these matrices and

still allows fast (asymptotically constant time) lookup. In addition, a Bloom filter [43] is used

so that the overwhelmingly more frequent case of looking up an entry that is not present is

faster. During the MCMC ERGM sampling process, in which arcs are added and deleted,

entries in the two-path tables that fall to zero are deleted, in order to stop the tables from grow-

ing in size indefinitely, however this diminishes the effectiveness of the Bloom filter.

We run a number of estimations independently (and in parallel to minimize elapsed time).

Standard error estimation

For each parallel estimation run, the point estimates and their standard errors are estimated.

The point estimate (mean) and asymptotic covariance matrix for MCMC standard error are

estimated using the multivariate batch means method [44, 45] using the mcmcse R package

[46]. The covariance matrix for the error in inherent in using the MLE is estimated as the

inverse of the covariance matrix of the simulated statistics (Fisher information matrix) [5, 6]

also using mcmcse. The total estimated covariance matrix is then estimated as the sum of

these two covariance matrices, and from this we compute the standard error as the square root

of the diagonal.

The overall estimate and its standard error are then computed as the inverse variance

weighted average (see Ch. 4 of [47]) of the results calculated from each independent (parallel)

estimation.

ERGM parameter estimation for very large directed networks
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Implementation and availability

EstimNetDirected is implemented in the C programming language using the message passing

interface (MPI) for parallelization on computing clusters. The uthash [48] macro collection

is used to implement hash tables (including Bloom filter) and the Random123 counter-based

pseudo-random number generator [49] is used to generate pseudo-random numbers for the

MCMC process. Scripts for processing network data formats, estimating standard errors, and

generating plots and fitting heavy-tailed distributions are written in R and Python and use the

igraph [50], SNAP [51], ggplot2 [52], PropCIs [53], mcmcse [46], and poweRlaw
[54] packages.

All source code and scripts are publicly available on GitHub at https://github.com/stivalaa/

EstimNetDirected.

Simulated networks

To ensure that the parameter estimation algorithm works correctly, we first apply it to estimat-

ing ERGM parameters of networks with known true values, and measure the bias, root mean

square error (RMSE), coverage, and Type I and Type II error rates in statistical inference. To

do so we simulate sets of 100 networks sampled from an ERGM network distribution with

known parameters, and then estimate the parameters of each of the 100 networks with Estim-

NetDirected. This allows the mean bias and RMSE to be estimated. The coverage is then the

percentage of the 95% confidence intervals which contain the true value of the parameter. Cov-

erage higher than the nominal 95% indicates overly conservative (high) estimates of the stan-

dard error, and coverage lower than the nominal value indicates overly optimistic (low) values

of the standard error (uncertainty). In addition, we estimate the Type II error rate in inference

(the false negative rate), as the percentage of estimations in which the estimated 95% confi-

dence interval includes zero.

To estimate the Type I error rate (false positive rate) for inference of an ERGM parameter

significance, we generate simulated networks in which the parameter in question is zero, and

proceed as just described. Then the Type I error rate is estimated as the percentage of estima-

tions in which the 95% confidence interval does not include zero.

We generate two sets of graphs from ERGM distributions, both with N = 2000 nodes. First,

a network with binary node attributes and parameters (Arc, Reciprocity, AinS, AoutS, AT-T,

A2P-TD, Interaction, Sender, Receiver) = (-1.00, 4.25, -2.00, -1.50, 0.60, -0.15, 2.00, 1.50, 1.00),

and, second, a network with categorical node attributes and parameters (Arc, Reciprocity,

AinS, AoutS, AT-T, A2P-TD, Matching, Matching reciprocity) = (-1.00, 4.25, -2.00, -1.50,

1.00, -0.15, 1.50, 2.00). For each of the two sets of parameters, we generated 100 samples from

a network distribution with those parameters using PNet [42]. For networks with a binary

attribute, 50 of the nodes (2.5%), selected at random, have the True value, and the rest False.

For networks with a categorical attribute, the attribute at each node is assigned one of three

possible values uniformly at random. The networks are sampled with sufficient burn-in (of the

order of 109 iterations) to ensure initialization effects are minimized, and samples are taken

sufficiently far apart (separation of the order of 108 iterations) to ensure that they are essen-

tially independent. Table 1 shows summary statistics of the simulated networks.

Empirical network

As an example application we use EstimNetDirected to estimate an ERGM model of the Pokec

online social network [55] which is publicly available from the Stanford large network dataset

collection [56]. Pokec is the most popular online social network in Slovakia [55] and represents

a sizable percentage of Slovakia’s population [57]. This publicly available data is also unusual

ERGM parameter estimation for very large directed networks
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and particularly useful as a test case for social network algorithms as it is the entire online

social network at a point in time, rather than a sample as is often the case, and the nodes are

annotated with attributes, specifically including gender, age, and region (187 of them, Slovakia

or elsewhere) which we use as nodal covariates in the model.

This network has 1 632 803 nodes and 30 622 564 arcs (directed graph density approxi-

mately 10−5 and mean degree 37.5). The nodes are users of the Pokec online social network,

and arcs represent directed “friendship” relations, i.e. unlike many online social networks,

“friendships” are not assumed to be automatically reciprocated (undirected). In fact only

approximately 54% of the “friendship” relations are reciprocated. More details and descriptive

statistics of this network are in [55].

The Pokec online social network has been previously used as a test bed for social network

analysis algorithms, and in particular by Kleineberg & Boguñá [57] who use it to test a model

of the evolution of an online social network. They treat the final state of the network as a repre-

sentation of a true social network, as do we, in order to demonstrate EstimNetDirected estima-

tion of an ERGM, which is a cross-sectional network model. However they treat the network

as undirected, including only reciprocated ties, while we maintain the directed nature of the

network.

The Pokec degree distribution was described as “scale-free” in [55], but based only on visual

examination of the degree-frequency plot. This technique, or similarly, fitting a straight line to

a degree-frequency log-log plot, is now well known to be not a sound technique for assessing

whether a distribution is scale-free or follows a power law [58–60]. Using the statistical method

described by Clauset et al. [58] as implemented in the powerRlaw R package [54], we find that

the neither the in- nor out-degree distribution of the Pokec online social network is consistent

with a power law distribution (Fig 5).

Table 1. Statistics of the simulated directed networks.

N Attributes Zero effect Mean components Mean degree Mean density Mean c.c.

2000 Binary None 1.05 2.65 0.00132 0.00482

2000 Categorical None 1.00 3.79 0.00189 0.05655

2000 Binary Sender 1.02 2.60 0.00130 0.00323

2000 Binary Receiver 1.03 2.61 0.00131 0.00338

2000 Binary Reciprocity 1.03 2.58 0.00129 0.00339

2000 Binary Interaction 1.00 2.63 0.00131 0.00326

2000 Binary AT-T 1.00 2.63 0.00132 0.00215

2000 Binary A2P-TD 1.00 3.68 0.00184 0.13192

2000 Binary AinS 1.00 9.95 0.00498 0.32332

2000 Binary AoutS 1.00 6.74 0.00337 0.36730

2000 Categorical Matching 1.04 2.67 0.00134 0.00643

2000 Categorical Match. Recip. 1.00 3.16 0.00158 0.00966

2000 Categorical Reciprocity 1.00 3.04 0.00152 0.00707

2000 Categorical AT-T 1.00 3.49 0.00175 0.00331

2000 Categorical A2P-TD 5.97 1.83 0.00092 0.00802

2000 Categorical AinS 1.00 5.38 0.00269 0.10851

2000 Categorical AoutS 1.11 3.16 0.00158 0.04159

“c.c.” is the global clustering coefficient. Note that for the Categorical attribute networks with AinS, AoutS, and A2P zero effects, the Arc parameter is set to -4.0 rather

than -1.0 to avoid the network becoming dense.

https://doi.org/10.1371/journal.pone.0227804.t001
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Nevertheless, it is clear from Fig 5 that there are hubs in the network, that is, nodes with an

order of magnitude higher degree than most other nodes. In particular, there is a noticeable

“break” in the empirical cumulative distribution function (CDF) plot at degree 1000, most

noticeable for the out-degree distribution. According to Takac & Zabovsky, “hubs in Pokec are

not people but commercial companies. . .” (p. 5 of [55]).

Based on these observations, and on the fact that an initial attempts to estimate an ERGM

for the entire network did not converge, we remove all nodes with in- or out-degree greater

than 1000 from the network. There are only 20 such nodes (0.001% of the nodes), and remov-

ing them does not significantly change the density or mean degree. However it breaks the net-

work, which was initially a single connected component, into 577 components, although the

giant component has 1 632 199 nodes (99.96% of the total). This indicates that these hubs are

not performing the function of holding different components of the network together into a

connected whole, as their removal only results in the creation of a relatively small number of

isolated nodes, rather than splitting the network into multiple large components, and that

therefore their removal is not substantively changing the nature of the network structure. The

in-degree distribution of network with hubs removed is consistent with a power law, although

the out-degree distribution is not (Fig 6).

Fig 5. Pokec network degree distribution. Neither the in- nor the out-degree distribution are consistent with power law or log-normal distributions

(p< 0.01).

https://doi.org/10.1371/journal.pone.0227804.g005

Fig 6. Pokec network degree distribution after hub nodes are removed. After removing the 20 nodes that have in- or out-degree greater than 1000,

the resulting network’s in-degree distribution is consistent with a power law distribution, but not with a log-normal distribution (p< 0.01). The out-

degree distribution is consistent with neither a power law nor a log-normal distribution (p< 0.01).

https://doi.org/10.1371/journal.pone.0227804.g006
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The EstimNetDirected parameter settings used in the estimations are detailed in Table A in

S1 Appendix.

Convergence tests

As in [12] we use a t-ratio check for convergence, but for larger directed networks we weaken

the criterion to conclude non-convergence if the absolute value of any parameter’s t-ratio is

greater than 0.3. If the covariance matrix computed in the standard error estimation step is

(nearly) computationally singular then that estimate is considered non-converged, possibly

due to model degeneracy.

For empirical network estimations where there are not a large number of automated esti-

mations to process, visual inspection of the parameter and statistic trace plots is used as a heu-

ristic to confirm convergence. In the case of the simulated networks where large numbers of

estimations are run, we automate the additional heuristic that estimations with numeric over-

flow (“NaN” values) or “huge” (greater in magnitude than 1010) parameter values are non-

converged.

An additional heuristic (visual) convergence test for modeling empirical networks is to plot

various network statistics of the observed network on the same plot as the distribution of these

statistics in the EE algorithm simulated networks. This is the same principle as the t-ratio test,

but it includes statistics other than those explicitly included in the model in order to give some

indication of how well the model fits. The statistics included are the degree distribution, reci-

procity, giant component size, average local and global clustering coefficients, triad census,

geodesic distribution, and edgewise and dyadwise shared partners (similar to goodness-of-fit

plots in statnet [30–33]).

Note, however, that these plots are not goodness-of-fit plots, as the simulated networks

are not generated ab initio (e.g. from the empty network) from the estimated parameters, but

rather are the networks that have been simulated in the EE algorithm where the starting point

is the observed network. Hence the plots may be “over-optimistic” in indicating a good model

fit: however a plot clearly showing a poor model fit definitely indicates lack of convergence or

a poor model.

In addition, for every large networks it is impractical to compute some distributions in rea-

sonable time (such as the edgewise and dyadwise shared partners, and the geodesic distribu-

tion) and so these plots are excluded for very large networks. An example of a convergence

plot is shown in S1 Fig.

Results and discussion

Simulated networks

Table 2 shows the bias, RMSE, Type II error rate, and coverage in estimating the simulated

networks. It can be seen that the Type II error rate in inference is very low on all parameters

except for Arc and and A2P-TD. In the case of the Arc parameter, this is of little concern as we

do not in practice need to make a statistical inference on this parameter, as previously noted it

is analogous to an intercept and simply used to control for network density. Figs 7 and 8, plot-

ting the point estimates and their error bars, shed some more light on this problem. It seems

the high Type II error rate for Arc and A2P-TD is at least partly explained by the small magni-

tude of the true values of these parameters. The coverage in most of these cases indicates overly

conservative error estimates (higher than the nominal 95%), and the Type II error rate is high.

Additionally, in the case of the Arc parameter especially, the parameter estimates appear

to be biased. Although the Type II error rate is very low, in the case of the networks with

binary attribute, the coverage rate is low for the Sender, Interaction, and (to a lesser degree)

ERGM parameter estimation for very large directed networks
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Reciprocity parameters. Fig 8 shows that this appears to be because of bias in these parameter

estimates. In the case of the networks with a categorical attribute, Fig 7 shows positive bias in

the Arc parameter resulting in a high Type II error rate despite lower than nominal coverage.

We should not be surprised by bias in the parameter estimates, as the MLE for ERGM

canonical parameters is biased precisely because it is unbiased by construction in the mean

value parameter space [61] (that is, the mean values of the statistics, not the corresponding

ERGM parameters). For this reason, van Duijn, Gile, & Handcock [61] propose a framework

for assessing estimators in which bias is compared in the mean value parameter space, by gen-

erating large numbers of simulated networks from the estimated parameter values, and com-

paring them to the statistics of the original simulated networks. However for large directed

networks this procedure is impractical due to the time it takes to simulate each set of networks

(the very reason the EE algorithm is so fast is that it avoids doing this). In addition, as the pur-

pose of ERGM parameter estimation is usually to make statistical inferences from the esti-

mated parameters, it is useful to measure the inferential error in this procedure.

In Tables 2 and 3, the 95% confidence interval for the Type II and Type I error rate, respec-

tively, is computed as the Wilson score interval [62].

Table 3 shows the coverage and Type I error rates estimated from simulated networks with

zero effects. Note that in this case, coverage and Type I error rate are effectively the same thing

(as percentages, coverage is 100 − α where α is the Type I error rate) as the known true value of

the parameter is zero by design. This table shows that the Type I error rate in all but two cases

is within the nominal 5% range. In one case, Matching Reciprocity for the categorical net-

works, the point estimate of the Type I error rate is 9% but the 95% confidence interval extends

Table 2. Results from estimation of simulated networks using EstimNetDirected estimating Type II error rate.

N Attributes Effect Bias RMSE estim. lower upper in C.I. (%) NC NR

2000 Categorical A2P-TD -0.0285 0.0411 40 31 50 100 100 2.00

2000 Categorical AinS 0.0060 0.1298 0 0 4 100 100 2.00

2000 Categorical AKT-T 0.0157 0.0208 0 0 4 100 100 2.00

2000 Categorical AoutS -0.4346 0.4506 0 0 4 98 100 2.00

2000 Categorical Arc 0.5514 0.6120 100 96 100 85 100 2.00

2000 Categorical Matching -0.0058 0.0396 0 0 4 100 100 2.00

2000 Categorical MatchingReciprocity 0.0930 0.2901 0 0 4 100 100 2.00

2000 Categorical Reciprocity -0.0636 0.2745 0 0 4 100 100 2.00

2000 Binary A2P-TD -0.0243 0.0439 69 59 77 100 100 1.98

2000 Binary AinS -0.0109 0.0974 0 0 4 100 100 1.98

2000 Binary AKT-T 0.0316 0.1335 3 1 8 90 100 1.98

2000 Binary AoutS -0.2228 0.2395 0 0 4 100 100 1.98

2000 Binary Arc 0.2118 0.3077 67 57 75 98 100 1.98

2000 Binary Interaction -0.1350 0.1915 0 0 4 50 100 1.98

2000 Binary Receiver -0.0348 0.1083 0 0 4 97 100 1.98

2000 Binary Reciprocity -0.1359 0.1638 0 0 4 63 100 1.98

2000 Binary Sender -0.2470 0.2617 0 0 4 16 100 1.98

The “estim.”, “lower”, and “upper” columns show the point estimate and lower and upper 95% confidence interval (C.I.), respectively, of the Type II error rate (false

negative rate). This C.I. is computed as the Wilson score interval. The “in C.I. (%)” column is the coverage rate for the nominal 95% confidence interval of the

EstimNetDirected point and standard error estimates. Results are over 100 networks, each of which has 32 parallel estimation runs. NC is the number of networks for

which a converged estimate was found (out of 100). NR is the mean number of runs that converged (out of 32). Runs that did not converge are not included in the

estimates.

https://doi.org/10.1371/journal.pone.0227804.t002
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down to 5%. However the other case, Matching for categorical networks, the point estimate of

the Type I error rate is 11% and the confidence interval extends down to only 6%, so for this

particular case the Type I error rate is too high. We note that the coverage for this zero parame-

ter is only 89%, so it would appear that our method is potentially subject to inferential error in

such cases where Matching Reciprocity is included in the model but the corresponding base-

line Matching parameter is not. We would recommend not using such a model, and always

including the corresponding baseline parameters, as is standard practice in ERGM model

building, where configurations are nested within one another (Ch. 3 of [1]).

Also note that for two of the sets of simulated networks, the binary node attribute networks

with the Interaction or Reciprocity effects set to zero, the number of runs and networks for

which estimations converged is very low (less than half). This is not problematic, as these

tests, where an effect not present in the network is included in the model, could be considered

instances of model mis-specification, so the possibility of estimations not converging is to be

expected. Note that for estimations shown in Table 2, where the model is exactly correct (it is

the same model that generated the networks), converged estimates are obtained for all the sim-

ulated networks.

Fig 7. EstimNetDirected parameter estimates for 2000 node networks with categorical attribute. The error bars show the nominal 95% confidence interval. The

horizontal line shows the true value of the parameter, and each plot is also annotated with the mean bias, root mean square error (RMSE), the percentage of samples for

which the true value is inside the confidence interval, the coverage (% in CI), and the Type II error rate (False Negative Rate, FNR). NC is the number of networks (of the

total 100) for which a converged estimate was found, each of which is shown on the plot.

https://doi.org/10.1371/journal.pone.0227804.g007
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Empirical network example

Table 4 shows a model estimated for the Pokec online social network with the 20 highest

degree hubs removed (N = 1 632 783). This estimation took approximately 22 hours on cluster

nodes with Intel Xeon E5-2650 v3 2.30GHz processors using two parallel tasks with 512 GB

RAM each.

Regarding structural features, these results confirm centralization on both in- and out-

degree in the Pokec online social network. There is a significantly positive reciprocity effect:

friendships are more likely to be reciprocated than not, conditional on the other features in the

model. There is also positive activity closure: people who send friendship ties to the same peo-

ple also tend to be friends. There is also positive path (transitive) closure, in combination with

negative two-paths: friends of friends tend also to be friends. This can also be interpreted in

terms of the “forbidden triad” [63], in which an open two-path (of what we assume to be

“strong” ties as they represent friendship) is not closed transitively. Such a triad is indeed less

likely than by chance, conditional on the other parameters in the model, in this network.

There is homophily on both region and age: people who live in the same region are more

likely to be friends than those who live in different regions, and people of similar ages are more

Fig 8. EstimNetDirected parameter estimates for 2000 node networks with binary attribute. The error bars show the nominal 95% confidence interval. The

horizontal line shows the true value of the parameter, and each plot is also annotated with the mean bias, root mean square error (RMSE), the percentage of samples for

which the true value is inside the confidence interval, the coverage (% in CI), and the Type II error rate (False Negative Rate, FNR). NC is the number of networks (of the

total 100) for which a converged estimate was found, each of which is shown on the plot.

https://doi.org/10.1371/journal.pone.0227804.g008
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likely to be friends. Interestingly, there is significant heterophily on the gender attribute: peo-

ple of different genders are more likely to be friends on this online social network.

The convergence test plot for the Pokec online social network estimation is shown in

S1 Fig.

Table 3. Results from estimation of full network using EstimNetDirected estimating Type I error rate.

N Attributes Effect Bias RMSE estim. lower upper in C.I. (%) NC NR

2000 Categorical A2P-TD -0.0217 0.0657 1 0 5 99 100 1.94

2000 Categorical AinS -0.0017 0.0648 1 0 5 99 100 2.00

2000 Categorical AKT-T -0.0154 0.0837 0 0 4 100 100 2.00

2000 Categorical AoutS -0.0129 0.0706 1 0 5 99 100 2.00

2000 Categorical Matching 0.0239 0.0440 11 6 19 89 100 2.00

2000 Categorical MatchingReciprocity 0.1246 0.1981 9 5 16 91 100 2.00

2000 Categorical Reciprocity 0.4809 0.5493 2 1 7 98 100 0.86

2000 Binary A2P-TD -0.0143 0.0198 2 1 7 98 100 2.00

2000 Binary AinS -0.1234 0.1830 1 0 5 99 100 2.00

2000 Binary AKT-T -0.2473 0.5563 1 0 5 99 100 9.32

2000 Binary AoutS -0.0011 0.0954 0 0 4 100 100 2.00

2000 Binary Interaction -0.7966 3.0590 4 1 15 96 46 7.02

2000 Binary Receiver 0.0313 0.1577 5 2 11 95 100 1.33

2000 Binary Reciprocity -0.3127 1.2360 0 0 14 100 24 6.96

2000 Binary Sender 0.0244 0.1252 2 1 7 98 100 0.73

The “estim.”, “lower”, and “upper” columns show the point estimate and lower and upper 95% confidence interval (C.I.), respectively, of the Type I error rate (false

positive rate). This C.I. is computed as the Wilson score interval. The “in C.I. (%)” column is the coverage rate for the nominal 95% confidence interval of the

EstimNetDirected point and standard error estimates. Results are over 100 networks, each of which has 32 parallel estimation runs. NC is the number of networks for

which a converged estimate was found (out of 100). NR is the mean number of runs that converged (out of 32). Runs that did not converge are not included in the

estimates.

https://doi.org/10.1371/journal.pone.0227804.t003

Table 4. Parameter estimates for the Pokec online social network with hubs removed.

Effect Estimate Std. error

Arc -20.642 0.381 �

Isolates -7.711 2.269 �

Reciprocity 33.473 3.834 �

Popularity spread (AinS) 1.720 0.128 �

Activity spread (AoutS) 1.900 0.280 �

Two-path (A2P-T) -0.014 0.003 �

Shared popularity (A2P-D) 0.021 0.003 �

Shared activity (A2P-U) 0.022 0.003 �

Path closure (AKT-T) 2.151 0.411 �

Popularity closure (AKT-D) 2.270 0.439 �

Activity closure (AKT-U) 2.270 0.407 �

Sender age 0.021 0.014

Receiver age 0.022 0.013

Diff age -0.099 0.012 �

Matching gender -1.164 0.287 �

Matching region 3.172 0.543 �

Asterisks (�) indicate statistical significance at p< 0.05.

https://doi.org/10.1371/journal.pone.0227804.t004
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The algorithm parameters used for this estimation are shown in Table A in S1 Appendix in

the column for the Pokec network. As a general guideline, we recommend using these parame-

ters, with the exception of EEsteps. It may be useful to start with the default value of 1 000

(or even smaller) for this parameter, to relatively quickly obtain initial results and check the

trace plots for any obvious failure to converge, such as a parameter value clearly diverging (due

to a bad model for instance). If there are no obvious problems then the EEsteps parameter

can be increased if the t-ratios or trace plots (as described in the section “Convergence tests”)

indicate that the estimation has not yet converged.

Conclusion

We have demonstrated an implementation of the EE algorithm for ERGM parameter estima-

tion capable of estimating models for social networks with over one million nodes, which is far

larger than previously possible (without using network sampling). However there are several

limitations and scope for future work. The implementation described here requires tuning

some algorithm parameters (Table A in S1 Appendix), however a simplified version of the EE

algorithm requires fewer parameters [25] and may make it easier to obtain converged models.

Although the use of hash tables to efficiently store the sparse two-path matrices allows scal-

ability to networks of millions of nodes, it depends on sufficient sparsity of these matrices, and

not all empirical networks of interest satisfy this requirement. For example the physician refer-

ral network described by An et al. [64], although having approximately one million nodes,

making it smaller than the Pokec online social network, does not have a sufficiently sparse

two-path table for our implementation to work even with the largest memory cluster node

available to us (512 GB memory). Further work is required to find a means of alleviating this

problem.

Although the convergence heuristic plots we have described resemble a goodness-of-fit test

superficially, they are not actually goodness-of-fit tests. The difficulty of generating (simulat-

ing) numbers of very large networks from estimated ERGM parameters for conventional

goodness-of-fit tests for ERGM makes these methods impractical for such large networks. One

possibility to investigate is to simulate snowball samples from the estimated parameters and

compare the distribution of network statistics of these simulated samples to the corresponding

distributions of network statistics in snowball sample taken from the observed network. More

generally, the idea of such goodness-of-fit tests for extremely large networks may have to be

fundamentally re-examined, in light of the difficulty of any simple model adequately fitting

such a large network—and the homogeneity assumption that the same local processes operate

across such a large network may also no longer be realistic.

In addition, the ERGM MLE bias in canonical parameters may need to be addressed by

some bias correction technique, as was originally explored for maximum pseudolikelihood

estimation [61], but does not appear to have been successfully pursued since for other, now

preferred (not least due to the results of [61]), estimation methods.

An important next step is the strengthening of the theoretical basis for the the EE algorithm.

Existing commonly used methods for ERGM parameter estimation are based on well-known

algorithms with well developed theoretical foundations such as stochastic approximation [5]

using the Robbins–Monro algorithm [65] or MCMCMLE [6] based on the Geyer–Thompson

method [66] with increasingly sophisticated variants [9]. In contrast, there are no theoretical

guarantees behind the EE algorithm [12], and although contrastive divergence [39, 40] and

persistent contrastive divergence [36, 37] are becoming widely used, more theoretical work

is required to understand their convergence properties in general, and for ERGM parameter

estimation in particular [67]. Regarding the EE algorithm, the experiments with simulated
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networks described in this paper give encouragement for the validity and usefulness of this

approach, but further work to understand its convergence properties is a potentially fruitful

area of research [25].

Supporting information

S1 Appendix. Algorithm descriptions and EstimNetDirected parameter settings.

(PDF)

S1 Fig. Convergence test plot for Pokec (hubs removed) estimation. The observed network

statistics are plotted in red with the statistics of the EE algorithm simulated networks on the

same plot as black boxplots, or blue on histogram plots. Note that on the triad census plots, tri-

ads 003, 012, and 102 are omitted as the extremely large counts cause numeric overflow in the

igraph library [50] for a network this large.

(PDF)
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