
materials

Article

Predictive Models for the Binary Diffusion Coefficient at
Infinite Dilution in Polar and Nonpolar Fluids

José P. S. Aniceto , Bruno Zêzere and Carlos M. Silva *

����������
�������

Citation: Aniceto, J.P.S.; Zêzere, B.;

Silva, C.M. Predictive Models for the

Binary Diffusion Coefficient at Infinite

Dilution in Polar and Nonpolar Fluids.

Materials 2021, 14, 542. https://doi.

org/10.3390/ma14030542

Received: 23 December 2020

Accepted: 19 January 2021

Published: 23 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro,
3810-193 Aveiro, Portugal; joseaniceto@ua.pt (J.P.S.A.); brunozezere@ua.pt (B.Z.)
* Correspondence: carlos.manuel@ua.pt

Abstract: Experimental diffusivities are scarcely available, though their knowledge is essential to
model rate-controlled processes. In this work various machine learning models to estimate diffu-
sivities in polar and nonpolar solvents (except water and supercritical CO2) were developed. Such
models were trained on a database of 90 polar systems (1431 points) and 154 nonpolar systems
(1129 points) with data on 20 properties. Five machine learning algorithms were evaluated: mul-
tilinear regression, k-nearest neighbors, decision tree, and two ensemble methods (random forest
and gradient boosted). For both polar and nonpolar data, the best results were found using the
gradient boosted algorithm. The model for polar systems contains 6 variables/parameters (tempera-
ture, solvent viscosity, solute molar mass, solute critical pressure, solvent molar mass, and solvent
Lennard-Jones energy constant) and showed an average deviation (AARD) of 5.07%. The nonpolar
model requires five variables/parameters (the same of polar systems except the Lennard-Jones con-
stant) and presents AARD = 5.86%. These results were compared with four classic models, including
the 2-parameter correlation of Magalhães et al. (AARD = 5.19/6.19% for polar/nonpolar) and the
predictive Wilke-Chang equation (AARD = 40.92/29.19%). Nonetheless Magalhães et al. requires
two parameters per system that must be previously fitted to data. The developed models are coded
and provided as command line program.

Keywords: diffusion coefficient; machine learning; modeling; nonpolar; polar; prediction

1. Introduction

Diffusivities are important properties for the proper design, simulation and scale-up
of rate-controlled separations and chemical reactions, where they are required for the
estimation of dispersion coefficients, convective mass transfer coefficients, and catalysts
effectiveness factors [1–3]. However, diffusivity data is scarce both in terms of compounds
and operating conditions, leading to the need of accurate models capable of predicting
diffusivities when no experimental data is available [4].

Currently the Wilke-Chang model [5], proposed in 1955, remains the most widely used
equation to estimate binary diffusivities mainly due to its simplicity. It requires only knowl-
edge of solvent viscosity, solute molar mass, solute volume at normal boiling point and
operating conditions like temperature. Other hydrodynamic equations have been proposed
such as Scheibel [6], Tyn-Calus [7], and Hayduk and Minhas [8]. Correlative models vali-
dated for both polar and nonpolar systems have been put forward by Magalhães et al. [9,10],
and one may also cite the 2-parameter correlation of Dymond–Hildebrand–Batschinski
(DHB) [11,12], based on the free-volume theory, for nonpolar and weakly polar systems at
moderate densities. However, these correlations require that data of a given system is avail-
able in order to interpolate and extrapolate diffusivities for the desired condition. Hybrid
models are also available, such as the predictive Zhu et al. [13] and the predictive Tracer
Liu-Silva-Macedo (TLSM) and its 1-parameter correlations (TLSMd and TLSMen) [4,14,15].
These are Lennard-Jones fluid models and comprehend two contributions: a free-volume
part and an energy component.
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With the increase of readily available computing power, Artificial Intelligence and
machine learning (ML) techniques have been increasingly applied for the estimation of
physical properties of various compounds. In the chemistry field, machine learning is
commonly applied in the scope of quantitative structure-property relationship (QSPR)
or quantitative structure-activity relationship (QSAR) studies. These are regression or
classification models that relate the structure and physicochemical properties of a molecule
with a desired response: a chemical property, in the case of QSPR, or a biological activity,
in the case of QSAR. QSPR/QSAR approaches have been applied to predict the diffusivity
of pure chemicals [16] and acids in water [17] using a database of 320 chemicals and
65 acids, respectively. In both cases, a genetic algorithm was employed to select the
molecular descriptors while feed-forward and radial basis function neural networks were
used to build the diffusion coefficients models. A squared correlation coefficient above
0.98 was obtained for the test set in either case. Beigzadeh and coworkers [18] developed a
feed-forward artificial neural network to estimate the Fick diffusion coefficient in binary
liquid systems, using a database of 851 points. Results showed superior performance
when compared with other theoretical and empirical correlative models commonly used,
with a total average relative deviation of 4.75%. Eslamloueyan and Khademi [19] used
a database of 336 experimental data points to developed a feed forward neural network
to predict binary diffusivities of gaseous mixtures at atmospheric pressure as a function
of temperature and based on the critical temperature, critical volume and molecular
weight of each component. This model showed a relative error of 4.47%, lower than other
alternative correlations. A QSRP model by Abbasi and Eslamloueyan [20] applied a multi-
layer perceptron (MLP) neural network and an adaptive neuro-fuzzy inference system
(ANFIS) to estimate the binary diffusion coefficients of liquid hydrocarbons mixtures.
These models were constructed on a database of 345 experimental points and showed
very good accuracies, with average absolute relative deviation (AARD) of 7.79% for the
test data, when compared with five semi-empirical correlations, such as the Tyn-Calus
and Wilke-Chang equations. Another QSPR model with five parameters based on genetic
function approximation has been proposed to predict diffusion coefficient of non-electrolyte
organic compounds in air at ambient temperature [21]. It used a dataset of 4579 organic
compounds and provided a very low AARD of 0.3%. The authors applied leverage value
statistics to define the applicability domain of the final model. A neural network model
based on mega-trend diffusion algorithm was proposed to predict CO2 diffusivity in
biodegradable polymers [22]. It showed better precision when compared with free-volume
and conventional back-propagation models. More recently, machine learning and neural
networks models have also been applied to the estimation of the thermal diffusivity of
hydrocarbons [23], aromatic compounds insulating material [24], and diffusivity of solutes
in supercritical carbon dioxide [25].

In this work we develop models for the prediction of binary diffusion coefficients in
polar and nonpolar systems by employing several machine learning algorithms, such as
decision tree, nearest neighbors and ensemble methods. A large database of experimental
data was collected, divided into polar and nonpolar systems, and used for training the mod-
els. The database comprehends experimental points for liquids (except water), compressed
gases and supercritical fluids (except CO2). Water was excluded due to its usual distinct
behavior from other polar solvents, and the large amount of experimental data available for
aqueous systems may cause a bias in the model. This later argument also applies to binary
diffusivities in supercritical CO2. Results were compared with four methods to estimate
diffusivities: two hydrodynamic equations (Wilke-Chang and Tyn-Calus), a 2-parameter
correlation (Magalhães et al.), and a hybrid model (Zhu et al.).

2. Theory and Methods

The methodology used in this work to develop machine learning (ML) models for the
prediction of diffusivities can be summarized in the following steps: (i) variable selection;
(ii) learning algorithms selection; (iii) data splitting into training and testing sets; (iv) data
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scaling; (v) hyper-parameters optimization by grid search with cross validation; and (vi)
final model evaluation. These steps are detailed below. The ML models were compared
with the hydrodynamic models of Wilke-Chang [5] and Tyn-Calus [7], the hybrid model of
Zhu et al. [13] and one of the correlations proposed by Magalhães et al. [9].

2.1. Database Compilation

The database of binary diffusivities used in this work relied on the recent compi-
lation published by Zêzere et al. [4], in the case of nonpolar solvent systems, and on
an updated version of the database reported by Magalhães et al. for polar solvent
systems [10]. Globally, database covers a wide range of temperatures (213.2–567.2 K)
and densities (0.30–1.65 g cm−3) being composed by 244 binary systems and 2560 data
points. This includes 90 polar systems (polar solvent/solute) totalizing 1431 points and 154
nonpolar systems (nonpolar solvent/solute) totalizing 1129 points. Data were collected
for the 20 properties shown in Table 1. Whenever not reported by the authors, densi-
ties and viscosities were taken from the National Institute of Standards and Technology
(NIST) database or calculated by the following set of equations: Yaws [26], Cibulka and
Ziková [27], Cibulka et al. [28,29], Cibulka and Takagi [30], Przezdziecki and Sridhar [31],
Viswanath et al. [32] the Lucas method [33], Assael et al. [34], Cano-Gómez et al. [35] and
Pádua et al. [36]. Solute molar volumes at normal boiling point were estimated by Tyn–
Calus equation [37]. The critical constants, whenever not provided with the diffusion data
and not found in the other references [26,31,38–44], were estimated by Joback [31,45,46],
Somayajulu [47], Klincewicz [31,48], Ambrose [31,49–51] and Wen–Qiang [52] methods.
For ionic liquids the critical constants were retrieved from Valderrama and Rojas [53]. The
acentric factors, when not provided, were estimated by the Lee-Kesler [54] and Pitzer [55]
equations or retrieved from [26,31,38–44]. The Lennard-Jones diameter and energy were
taken from Silva et al. [12] and, when not available, were estimated by equations 7 and 8
from Liu et al. [15] and equation 9 from Magalhães et al. [14]. Detailed information on the
database used, including pure compound properties, is presented in Table 2.

Table 1. Properties and variables available for each system in the database.

Property Units Description

D12 cm2 s−1 Diffusion coefficient
T K Temperature
ρ1 g cm−3 Solvent density
µ1 cP Solvent viscosity
M1 g mol−1 Molar mass of solvent
M2 g mol−1 Molar mass of solute
Tc,1 K Critical temperature of solvent
Tc,2 K Critical temperature of solute
Tbp,1 K Normal boiling point temperature of solvent
Tbp,2 K Normal boiling point temperature of solute
Pc,1 bar Critical pressure of solvent
Pc,2 bar Critical pressure of solute
Vc,1 cm3 mol−1 Critical volume of solvent
Vc,2 cm3 mol−1 Critical volume of solute
w1 - Acentric factor of solvent
w2 - Acentric factor of solute
σLJ,1 Å Lennard-Jones diameter of solvent
σLJ,2 Å Lennard-Jones diameter of solute
εLJ,1/kB K Lennard-Jones energy constant of solvent
εLJ,2/kB K Lennard-Jones energy constant of solute
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Table 2. Pure compounds properties and respective sources.

Compound Formula CAS M (g mol−1) Tc (K) Tb (K) Pc (bar) Vc (cm3 mol−1) w σLJ (Å) εLJ/kB (K)

[Bmim][bti] C10H15N3F6S2O4 174899-83-3 419.40 1269.90 a 862.40 a 27.60 a 990.10 a 0.3004 a 7.59636 t 982.90 t

[Emim][bti] C8H11N3F6S2O4 174899-82-2 391.31 1249.30 a 816.70 a 32.70 a 875.90 a 0.2157 a 7.23444 t 966.96 t

[Hmim][bti] C12H19N3F6S2O4 382150-50-7 447.42 1292.80 a 908.20 a 23.90 a 1104.40 a 0.3893 a 7.90445 t 1000.63 t

[Omim][bti] C14H23N3F6S2O4 862731-66-6 475.50 1317.80 a 954.00 a 21.00 a 1218.60 a 0.4811 a 8.17464 t 1019.98 t

1,1-dimethylferrocene C12H14Fe 1291-47-0 214.09 514.45 b 353.55 c 27.41 b 400.64 b 0.3453 d 5.88660 t 398.18 t

1,2,3,5-tetrafluorobenzene C6H2F4 2367-82-0 150.08 555.49 e 375.38 f 36.40 e 351.05 e 0.3817 d 5.52349 t 429.95 t

1,2,4,5-tetrafluorobenzene C6H2F4 327-54-8 150.08 535.25 g 357.61 g 37.47 g 351.05 e 0.3437 d 5.41106 t 414.28 t

1,2,4-trichlorobenzene C6H3Cl3 120-82-1 181.45 725.00 h 486.15 h 37.20 h 395.00 h 0.3580 h 5.95446 t 561.15 t

1,2,4-trifluorobenzene C6H3F3 367-23-7 132.09 558.22 e 371.13 f 38.98 e 335.05 e 0.3377 d 5.41530 t 432.06 t

1,2-butanediol C4H10O2 584-03-2 90.12 622.14 h 463.46 h 50.30 h 291.50 h 1.1410 h 5.17223 t 481.54 t

1,3,5-trimethylbenzene C9H12 108-67-8 120.20 637.30 i 437.90 i 31.30 i 433.00 h 0.3990 i 6.03392 t 493.27 t

1,3-dibromobenzene C6H4Br2 108-36-1 235.91 761.00 h 491.15 h 46.60 h 372.00 h 0.2930 h 5.64056 t 589.01 t

1,4-butanediol C4H10O2 111-63-4 90.12 667.00 h 501.15 h 48.80 h 297.00 h 1.1890 h 5.33697 t 516.26 t

12-crown-4 C8H16O4 294-93-9 176.21 780.66 e 540.08 f 33.59 e 444.75 e 0.4598 d 6.27811 t 604.23 t

15-crown-5 C10H20O5 33100-27-5 220.27 876.80 e 625.60 f 28.72 e 548.75 e 0.5562 d 6.79750 t 678.64 t

18-crown-6 C12H24O6 17455-13-9 264.32 970.51 e 711.12 f 24.95 e 652.75 e 0.6510 d 7.26959 t 751.17 t

1-butanol C4H10O 71-36-3 74.12 563.10 i 390.90 i 44.20 i 275.00 i 0.5930 i 5.22056 t 435.84 t

1-octene C8H16 111-66-0 112.22 566.70 i 394.40 i 26.20 i 464.00 i 0.3860 i 6.14478 t 438.63 t

1-propanol C3H8O 71-23-8 60.10 536.80 i 370.30 i 51.70 i 219.00 i 0.6230 i 4.49190 u 2120.83 u

1-tetradecene C14H28 1120-36-1 196.37 691.00 j 524.25 j 16.27 j 865.00 j 0.6503 j 7.44105 t 534.83 t

2,2,4-trimethylpentane C8H18 540-84-1 144.23 543.80 h 372.39 h 25.70 h 468.00 h 0.3030 h 6.10433 t 420.90 t

2,3-dimethylbutane C6H14 79-29-8 86.18 500.00 i 331.10 i 31.30 i 358.00 i 0.2470 i 5.60227 t 387.00 t

2-phenylethyl acetate C10H12O2 103-45-7 164.10 712.23 k 505.16 f 30.12 k 524.15 k 0.5442 d 6.31046 t 551.27 t

2-propanol C3H8O 67-63-0 60.10 508.30 i 355.40 i 47.60 i 220.00 i 0.6650 i 4.93749 t 393.42 t

3-phenylpropyl acetate C11H14O2 122-72-5 178.30 718.70 k 518.16 f 27.23 k 580.37 k 0.5924 d 6.51801 t 556.27 t

9,10-dimethylanthracene C16H14 781-43-1 206.29 899.22 e 645.06 f 26.27 e 724.55 e 0.5451 d 7.01984 t 696.00 t

acetone C3H6O 67-64-1 58.08 508.10 i 329.20 i 47.00 i 209.00 i 0.3040 i 4.67012 u 332.97 u

acetonitrile C2H3N 75-05-8 41.05 545.50 i 354.80 i 48.30 i 173.00 i 0.3270 i 4.02424 u 652.53 u

acridine C13H9N 260-94-6 179.22 905.00 l 619.15 l 36.40 l 543.00 l 0.4381 d 6.40475 t 700.47 t

ammonia NH3 7664-41-7 17.03 405.50 i 239.80 i 113.30 i 72.50 i 0.2500 i 4.24397 u 4.46 u

argon Ar 7440-37-1 39.95 150.80 i 87.30 i 48.70 i 74.90 i 0.0010 i 3.40744 u 123.55 u

astaxanthin C40H52O4 472-61-7 596.84 1148.51 f 1047.00 f 5.30 f 1877.50 f 2.8439 d 9.98026 t 888.95 t

benzene C6H6 71-43-2 78.11 562.20 i 353.20 i 48.90 i 259.00 i 0.2120 i 5.19165 u 308.43 u
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Table 2. Cont.

Compound Formula CAS M (g mol−1) Tc (K) Tb (K) Pc (bar) Vc (cm3 mol−1) w σLJ (Å) εLJ/kB (K)

benzoic acid C7H6O2 65-85-0 122.12 752.00 i 523.00 i 45.60 i 341.00 i 0.6200 i 5.65763 t 582.05 t

benzonitrile C7H5N 100-47-0 103.12 699.35 h 464.15 h 42.15 h 339.00 h 0.3520 h 5.66827 t 541.30 t

benzothiophene C8H6S 95-15-8 134.20 764.00 j 494.05 j 47.60 j 379.00 j 0.3071 j 5.61049 t 591.34 t

benzyl acetate C9H10O2 140-11-4 150.18 699.00 h 486.65 h 31.80 h 449.00 h 0.4700 h 6.17454 t 541.03 t

biphenyl C12H10 92-52-4 154.21 789.00 i 529.30 i 38.50 i 502.00 i 0.3720 i 6.04576 t 610.69 t

carbon dioxide CO2 124-38-9 44.01 304.10 i 194.70 h 73.80 i 93.90 i 0.2390 i 3.26192 u 500.71 u

carbon disulfide CS2 75-15-0 76.13 552.00 i 319.00 i 79.00 i 160.00 i 0.1090 i 4.29901 u 376.51 u

carbon monoxide CO 630-08-0 28.01 132.90 i 81.70 i 35.00 i 93.20 i 0.0660 i 3.53562 t 102.86 t

carbon tetrabromide CBr4 558-13-4 331.63 724.91 h 462.65 h 96.31 h 328.50 h 0.5010 h 4.41501 t 561.08 t

carbon tetrachloride CCl4 56-23-5 153.82 556.40 i 349.90 i 45.60 i 275.90 i 0.1930 i 5.29240 u 418.84 u

chlorobenzene C6H5Cl 108-90-7 112.56 632.40 i 404.90 i 45.20 i 308.00 i 0.2490 i 5.56838 u 207.50 u

chlorotrifluoromethane CClF3 75-72-9 104.46 302.00 i 193.20 i 38.70 i 180.40 i 0.1980 i 4.37636 u 410.79 u

chromium(III)
acetylacetonate Cr(acac)3 21679-31-2 349.32 858.85 b 613.15 m 18.92 b 627.04 b 0.3631 d 5.71650 v 845.60 v

cyclohexane C6H12 110-82-7 84.16 553.50 i 353.80 i 40.70 i 308.00 i 0.2120 i 5.73075 u 224.87 u

deuterium oxide D2O 7789-20-0 20.03 643.89 i 374.55 i 216.71 i 56.26 i 0.3447 d 3.26304 t 498.37 t

dibenzothiophene C12H8S 132-65-0 184.26 897.00 j 604.61 j 38.60 j 512.00 j 0.3983 j 6.27791 t 694.28 t

dibenzyl ether C14H14O 103-50-4 198.27 777.00 h 561.45 h 25.60 h 608.00 h 0.5910 h 6.78621 t 601.40 t

dicyclohexano-18-crown-6 C20H36O6 16069-36-6 372.50 1177.47 e 906.84 f 16.24 e 1002.75 e 0.7675 d 8.41774 t 911.36 t

dicyclohexano-24-crown-8 C24H44O8 17455-23-1 460.61 1357.66 e 1077.88 f 13.48 e 1210.75 e 0.9120 d 8.62250 t 1050.83 t

disperse blue 14 C16H14N2O2 2475-44-7 266.00 1137.33 f 881.88 f 27.18 f 765.50 f 1.1790 d 7.41187 t 880.29 t

disperse orange 11 C15H11NO2 82-28-0 237.25 1103.62 f 831.19 f 31.17 f 670.00 f 0.9859 d 7.08580 t 854.20 t

ethane C2H6 74-84-0 30.07 305.40 i 184.60 i 48.80 i 148.30 i 0.0990 i 4.17587 u 213.99 u

ethanol C2H6O 64-17-5 46.07 513.90 i 351.40 i 61.40 i 167.10 i 0.6440 i 4.23738 u 1291.41 u

ethyl acetate C4H8O2 141-78-6 88.11 523.20 i 350.30 i 38.30 i 286.00 i 0.3620 i 5.33606 t 404.96 t

ethylbenzene C8H10 100-41-4 106.17 617.20 i 409.30 i 36.00 i 374.00 i 0.3020 i 5.72572 t 477.71 t

ethylene C2H4 74-85-1 28.05 282.40 i 169.30 i 50.40 i 130.40 i 0.0890 i 4.04838 u 169.08 u

ethylene glycol C2H6O2 107-21-1 62.07 645.00 h 470.45 h 75.30 h 191.00 h 1.1907 d 4.60221 t 499.23 t

ethylferrocene C12H14Fe 1273-89-8 214.08 554.21 b 381.75 n 27.41 b 400.64 b 0.3556 d 6.02127 t 428.96 t

eucalyptol C10H18O 470-82-6 154.25 695.50 o 449.50 f 31.40 o 509.50 o 0.6490 b 6.18868 t 538.32 t

ferrocene C10H10Fe 102-54-5 186.04 786.27 b 522.15 n 32.07 b 317.77 b 0.2638 d 6.37838 t 608.57 t

gallic acid C7H6O5 149-91-7 170.12 1136.70 p 789.90 p 34.90 p 276.20 p 0.4984 d 6.92304 t 879.81 t
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Table 2. Cont.

Compound Formula CAS M (g mol−1) Tc (K) Tb (K) Pc (bar) Vc (cm3 mol−1) w σLJ (Å) εLJ/kB (K)

glycerol C3H8O3 56-81-5 92.10 723.00 h 563.15 h 40.00 h 264.00 h 1.4986 d 5.81929 t 559.60 t

hexafluorobenzene C6F6 392-56-3 186.06 516.70 i 353.40 i 33.00 i 335.00 i 0.3960 i 5.56763 t 399.93 t

hydrogen H2 1333-74-0 2.02 33.00 i 20.30 i 12.90 i 64.30 i −0.2160 i 5.94111 u 0.00 u

Ibuprofen C13H18O2 15687-27-1 206.29 769.63 e 580.45 q 22.85 e 686.35 e 0.8512 d 6.98841 t 595.69 t

indole C8H7N 204-420-7 117.15 790.00 h 526.15 h 43.40 h 431.00 h 0.4293 y 5.83184 t 611.46 t

krypton Kr 7439-90-9 83.80 209.40 i 119.90 i 55.00 i 91.20 i 0.0050 i 2.89870 u 511.92 u

linoleic acid methyl ester C19H34O2 112-63-0 294.48 870.78 r 700.66 f 12.54 r 1070.95 r 0.9952 d 8.34769 t 673.98 t

methane CH4 74-82-8 16.04 190.40 i 111.60 i 46.00 i 99.20 i 0.0110 i 3.58484 u 167.15 u

methanol CH4O 67-56-1 32.04 512.60 i 337.70 i 80.90 i 118.00 i 0.5560 i 3.79957 u 685.96 u

m-xylene C8H10 108-38-3 106.17 617.10 i 412.30 i 35.40 i 376.00 i 0.3250 i 5.75507 t 477.64 t

naphthalene C10H8 91-20-3 128.17 748.40 i 491.10 i 40.50 i 413.00 i 0.3020 i 5.85874 t 579.26 t

n-butanol C410O 71-36-3 74.12 563.10 i 390.90 i 44.20 i 275.00 i 0.5930 i 5.22056 t 435.84 t

n-decane C10H22 124-18-5 142.29 617.70 i 447.30 i 21.20 i 603.00 i 0.4890 i 6.71395 u 434.86 u

n-dodecane C12H26 112-40-3 170.34 658.20 i 489.50 i 18.20 i 713.00 i 0.5750 i 7.00451 u 672.90 u

n-eicosane C20H42 112-95-8 282.56 767.00 i 617.00 i 11.10 i 1190.00 h 0.9070 i 8.33954 t 593.66 t

n-heptane C7H16 142-82-5 100.21 540.30 i 371.60 i 27.40 i 432.00 i 0.3490 i 5.94356 u 404.05 u

n-hexadecane C16H34 544-76-3 226.45 722.00 i 560.00 i 14.10 i 930.00 i 0.7420 i 7.36480 u 1669.19 u

n-hexane C6H14 110-54-3 86.18 507.50 i 341.90 i 30.10 i 370.00 i 0.2990 i 5.61841 u 434.76 u

nitrous oxide N2O 10024-97-2 44.01 309.60 i 184.70 i 72.40 i 97.40 i 0.1650 i 3.67545 t 239.63 t

n-octane C8H18 111-65-9 114.23 568.80 i 398.80 i 24.90 i 492.00 i 0.3980 i 6.17328 u 478.32 u

n-propylbenzene C9H12 103-65-1 120.20 638.20 i 432.40 i 32.00 i 440.00 i 0.3440 i 5.99624 t 493.97 t

n-tetradecane C14H30 629-59-4 198.39 693.00 i 526.70 i 14.40 i 830.00 i 0.5810 i 7.68286 t 536.38 t

octafluorotoluene C7F8 434-64-0 236.06 534.47 g 377.73 g 27.05 g 428.00 g 0.4758 d 5.97931 t 413.68 t

o-difluorobenzene C6H4F2 367-11-3 114.09 554.46 h 364.66 h 40.67 h 299.50 h 0.3200 hb 5.33270 t 429.15 t

oxygen O2 7782-44-7 32.00 154.60 i 90.20 i 50.40 i 73.40 i 0.0250 i 3.29728 t 119.66 t

o-xylene C8H10 95-47-6 106.17 630.30 i 417.60 i 37.30 i 369.00 i 0.3100 i 5.70029 t 487.85 t

palladium(II)
acetylacetonate C10H14O4Pd 14024-61-4 304.64 651.12 b 573.15 n 4.13 b 435.41 b 1.0014 d 4.90200 x 994.14 x

p-chloronitrobenzene C6H4ClNO2 100-00-5 157.56 751.00 h 515.15 h 39.80 h 432.00 h 0.4910 h 5.89621 t 581.27 t

p-difluorobenzene C6H4F2 540-36-3 114.09 556.00 h 362.00 h 44.00 h 299.50 h 0.2990 h 5.20720 t 430.34 t

pentafluorobenzene C6HF5 363-72-4 168.07 530.97 g 358.89 g 35.31 g 324.00 g 0.3711 d 5.49825 t 410.97 t

phenanthrene C14H10 85-01-8 178.23 873.00 i 613.00 i 29.00 h 554.00 i 0.4950 h 6.77034 t 675.70 t

phenylbutazone C19H20N2O2 50-33-9 308.38 861.18 e 674.85 e 18.38 e 933.55 e 1.0126 d 7.63140 t 666.55 t
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Table 2. Cont.

Compound Formula CAS M (g mol−1) Tc (K) Tb (K) Pc (bar) Vc (cm3 mol−1) w σLJ (Å) εLJ/kB (K)

propane C3H8 74-98-6 44.09 369.80 i 231.10 i 42.50 i 203.00 i 0.1530 i 4.50412 u 457.99 u

propene C3H6 115-07-1 42.08 364.90 i 225.50 i 46.00 i 181.00 i 0.1440 i 4.49020 t 282.43 t

p-xylene C8H10 106-42-3 106.17 616.20 i 411.50 i 35.10 i 379.00 i 0.3200 i 5.76754 t 476.94 t

pyrene C16H10 129-00-0 202.26 936.00 h 667.95 h 26.10 h 630.00 h 0.5090 h 7.11077 t 724.46 t

quercetin C15H10O7 117-39-5 302.24 1468.74 f 1187.59 f 66.64 f 730.50 f 2.4842 d 6.17951 t 1136.80 t

squalene C30H50 111-02-4 410.73 716.50 s 678.39 q 7.03 s 1601.00 f 0.6380 d 9.46409 t 554.57 t

s-trioxane C3H6O3 110-88-3 90.08 604.00 h 387.65 h 58.20 h 206.00 h 0.3340 h 4.89292 t 467.50 t

sulfur hexafluoride SF6 2551-62-4 146.05 318.70 i 209.60 i 37.60 i 198.80 i 0.2860 i 4.76629 u 271.68 u

tetrabutyltin C16H36Sn 1461-25-2 347.17 767.97 b 548.45 c 17.25 b 760.75 b 0.3212 d 7.53290 t 594.41 t

tetraethyltin C8H20Sn 597-64-8 234.95 655.92 b 456.25 c 25.75 b 429.28 b 0.3747 d 6.45047 t 507.68 t

tetramethyltin C4H12Sn 594-27-4 178.85 511.77 b 347.65 c 34.18 b 263.54 b 0.3807 d 5.49115 t 396.11 t

tetrapropyltin C12H28Sn 2176-98-9 291.06 759.88 b 536.35 c 20.66 b 595.01 b 0.3479 d 7.16031 t 588.15 t

toluene C7H8 108-88-3 92.14 591.80 i 383.80 i 41.00 i 316.00 i 0.2630 i 5.45450 u 350.74 u

vitamin K3 C11H8O2 58-27-5 172.18 893.85 e 638.20 f 31.96 e 537.20 e 0.6105 d 6.62867 t 691.84 t

water H2 O 7732-18-5 18.02 647.30 i 373.20 i 221.20 i 57.10 i 0.3440 i 3.24681 t 501.01 t

xenon Xe 7440-63-3 131.30 289.70 i 165.00 i 58.40 i 118.40 i 0.0080 i 3.85754 t 224.23 t

a Taken from Valderrama and Rojas [53]; b Estimated by the Klincewicz method [31,48]; c Taken from ChemSpider [38]; d Estimated by the Lee-Kesler relation [54]; e Average of the values by the Joback [31,45,46]
and Ambrose [31,49–51] methods; f Estimated by the Joback method [31,45,46]; g Taken from Korea Thermophysical Properties Data Bank (KDB) [39]; h Taken from Yaws (1998) [26]; i taken from Reid et al. [31]; j

Taken from DIPPR database [40]; k Average of the values by the Joback [31,45,46] and Wen-Qiang [52] methods; l Taken from Yaws (2008) [41]; m Taken from sigma Aldrich data sheet; n Taken from LookChem
[42]; o Taken from Zêzere et al. [56]; p Taken from Leite et al. [57]; q Taken from ASPEN database [43]; r Average of the values by the Joback [31,45,46] and Somayajulu [47] methods; s Taken from Catchpol et al.
[58]; u Taken from Silva and Liu 2008 [59]; t Estimated by Equations (8) and (9) from reference [14]; v Taken from Cordeiro et al. [60]; x Taken from Cordeiro [44]; y Estimated by the Pitzer [55] equation.
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Polar and nonpolar systems were separated into two databases based on the polarity
of the solvent and, for each, data were split randomly 70/30% into training and testing sets.
The training set was used for model learning and fitting, and the testing set was used to
evaluate the performance of the fitted model after learning. Information from the testing
set is never known during learning. In order to guarantee that all models are fed the same
data, these data sets were also used for the evaluation of the classic models.

Most learning algorithms benefit from scaling input variables in order to improve
model robustness and training speed [61]. The most common scaling strategies are normal-
ization or standardization. Normalization consists in transforming the real range of values
into a standard range (e.g., [0, 1] or [−1, 1]). Standardization consists in transforming
variables so that they follow a standard normal distribution (mean of zero and standard
deviation of one). In this work, variables were normalized to the [0, 1] range before passing
them to training.

2.2. Variable Selection and Hyper-Parameter Optimization

Model variables were selected from the ones shown in Table 1 while removing collinear
variables systematically. For each pair of variables with collinearity above a defined
threshold of 0.50, the one with lower correlation with D12 was removed from the model.
The simplicity of obtaining a variable for a given system was also considered if both show
similar correlation with D12. This was done to improve the simplicity and ease of use of
the final model.

Besides the model parameters discussed thus far, each learning algorithm possesses
a set of parameters, which can be seen as configuration options, that specify how the
algorithm behaves. These variables are often called hyper-parameters and are not fitted to
data but rather must be set before training. Hyper-parameters were optimized for each
learning algorithm using a grid search method with 4-fold cross validation implemented
using GridSearchCV of scikit-learn (version 0.22.1). This method performs an exhaustive
search for the best hyper-parameter values in a predefined grid by evaluating the model
performance by 4-fold cross-validation. The k-fold cross-validation approach divides the
training set into k subsets and trains the model with data from k − 1 of the folds while
testing it on the fold. This process is repeated using every different k − 1 fold combination
and the best model (best combination of hyper-parameters) emerges as that with the best
average performance while avoiding both overfitting and underfitting of the models. The
evaluated hyper-parameters for each learning algorithm are showed in Table S1 of the
Supplementary Material.

2.3. Machine Learning Algorithms

Five ML algorithms were evaluated for the prediction of binary diffusivities: A
multilinear regression, a k-nearest neighbors model, a decision tree algorithm, and two
ensemble methods (random forest and gradient boosted). Models were implemented using
the Python machine learning library scikit-learn version 0.22.1 [62].

A simple ordinary least squares multilinear regression was used as a baseline model
for the prediction of binary diffusivities. In a multilinear regression [63], the target value,
y, is a linear combination of explanatory variables, xi, weighted by coefficients bi. The
coefficients are optimized to minimize the residual sum of squares between the observed
and the calculated values. It was implemented using the LinearRegression class in scikit-learn.

The k-nearest neighbors (kNN) [64,65] is one of the simplest machine learning algo-
rithms. Its prediction is the average of its k closest neighbors in the input space. Neighbors
are selected from a set of examples for which the target property is known. This can
be seen as the training set, although unlike other algorithms, kNN does not require an
explicit training phase. The nearest neighbors are identified by position vectors in the
multidimensional input space, usually in terms of Euclidean distance, nonetheless other
distance measures could be applied. The kNN algorithm was implemented using the
KNeighborsRegressor class in scikit-learn.
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Decision tree [65,66] models take the training data and create a set of decision rules
that are applied to the explanatory variables. Prediction is performed by following these
tree-like rule graphs and selecting the paths that return the best metric, usually lowest
entropy or largest information gain, until an output node is reached. The decision tree
algorithm was implemented using the DecisionTreeRegressor class in scikit-learn.

Finally, ensemble methods are a combination of a large number of simple models,
thus improving generalizability and robustness over a single model [63]. They can be
divided into averaging ensemble methods, as the random forest algorithm, and boosting
ensemble methods, such as the gradient boosted model, and have proven to be effective
for regression learning [67].

Random forests [65,68] are comprised by several strong models, such as decision trees,
trained independently. For the construction of each tree a random subset of training data is
selected, while the remaining subset is used for testing. The final prediction is obtained
as an average of the ensemble. Random forests are fast and simple to apply as they have
simpler hyper-parameters settings than other methods, can be applied in cases with a
large amount of noise and are less prone to overfitting [65]. The random forest model was
implemented in scikit-learn using the RandomForestRegressor class.

Gradient boosted [69] models combine several learners, which are not independently
trained but combined so that each new learner mitigates the bias of the previous one. The
gradient boosted model also uses decision trees which are fitted to the gradient of a loss
function, for instance, the squared error. The gradient is calculated for every sample of
the training set but only a random subset of those gradients is used at by each learner.
Gradient boosted has showed to provide very good predictions at least on par with random
forests and usually superior to other methods [70]. The gradient boosted algorithm was
implemented using the GradientBoostingRegressor class.

2.4. Classic Models

Several classic D12 models were used as a benchmark for the proposed ML models,
including the still extensively used Wilke-Chang equation [5], the Tyn-Calus equation [7],
one of the Magalhães et al. correlations [9], and the Zhu et al. hybrid model [13]. Bellow,
these models are briefly presented.

The Wilke-Chang equation [5] is an empirical modification of the Stokes-Einstein
relation and is given by:

D12

(
cm2s−1

)
=

7.4× 10−8(φM1)
0.5T

µ1

(
Vbp,2

)0.6 (1)

where φ (dimensionless) is the association factor of the solvent (1.9 for the case of methanol,
1.5 for ethanol and 1.0 if it is unassociated [31]), and Vbp,2 (cm3 mol−1) is the solute molar
volume at normal boiling temperature, which can be estimated using the critical volume
(Vc,i) by the Tyn-Calus relation [31,37]:

Vbp,i = 0.285×V1.048
c,i (2)

The Tyn-Calus equation [7] is another commonly used hydrodynamic equation, which
is described by:

D12

(
cm2s−1

)
= 8.93× 10−8

V0.267
bp,1

V0.433
bp,2

T
µ1

(3)

Magalhães et al. [9] proposed nine correlations for D12, and four of them depend
explicitly on solvent viscosity and temperature. Here we adopt the following:

D12 = a
T
µ1

+ b (4)
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where a and b are fitted parameters for each system. This equation consists of a modification
of the Stokes–Einstein theory [31].

Zhu et al. [13] developed a hybrid model containing a component related with the
free volume and another related with energy. It was devised for the estimation of D12 of
real nonpolar fluids. It is described by:

D12 = 3
8
√

π

√
σ2

LJ,12εLJ,12
m1

√
T∗12

ρ∗12

(
1− ρ∗12

1.029079T∗12
0.165377

)
×
[

1 + ρ∗12
0.126978

(
0.596103(ρ∗12−1)

0.539292(ρ∗12−1)+T∗12
(0.400152−0.41054ρ∗12)

+ 0.68856
)]

×exp
(
− ρ∗12

2T∗12

) (5)

where the subscripts 1 and 2 denominate solvent and solute, respectively, m1 is the mass
of the solvent, and ρ∗12 and T∗12 are the density and temperature reduced using binary
Lennard-Jones (LJ) parameters εLJ,12 and σLJ,12 as described by:

T∗12 = T/(εLJ,12/kB) (6)

ρ∗12 = ρn,1σLJ,12
3 (7)

The binary LJ parameters are calculated by the following combining rules:

σLJ,12 =
(

1− kd
12

) (σLJ,2 + σLJ,1)

2
; εLJ,12/kB =

√
(εLJ,1/kB)(εLJ,2/kB) (8)

and the interaction parameter kd
12 is estimated through:

kd
12 = 0.7926

(σLJ,2 − σLJ,1)

(σLJ,2 + σLJ,1)
(9)

Finally, the LJ parameters εLJ/kB and σLJ for the solute are calculated by:

εLJ,2/kB = Tc,2/1.313; σLJ,2 = (0.13εLJ,2/Pc,2) (10)

and for the solvent:

εLJ,1/kB = Tc,1/1.313(1 + 0.47527332ρr,1 + (0.06300484 + 0.12374707ρr,1)Tr,1) (11)

σLJ,1 = (0.31/ρn,c,1)
1/3(1− 0.0368868ρr,1 + (0.00006945 + 0.01089228ρr,1)Tr,1) (12)

where ρn,c,1 is the number critical density (cm−3) and ρr,1 and Tr,1 are the reduced den-
sity and reduced temperature of the solvent, calculated with the corresponding critical
constants: Pr,1 = P1/Pc,1 and Tr,1 = T1/Tc,1.

3. Results and Discussion
3.1. Machine Learning Models

The first step towards model development was the choice of relevant variables for the
model. Selection was conducted on the basis of the collinearities between the available
variables/properties and their level of correlation with the diffusivity. Figures 1 and 2
show the correlation matrix (in the form of a heat map) for the polar and nonpolar data
sets, where the values represent the absolute Pearson correlation. When two variables
presented collinearities above a defined threshold of 0.50, only one was kept in the model,
namely the one providing of the best correlation with diffusivity. Following this procedure,
six variables were selected for the polar diffusivity model: temperature, solvent viscosity,
solute molar mass, solute critical pressure, solvent molar mass, and the Lennard-Jones en-
ergy constant of solvent. For the nonpolar diffusivity model, temperature, solvent viscosity,
solute molar mass, solute critical pressure, and solvent molar mass were chosen, totaling
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five variables. A summary of the variables required for the machine learning models for
polar (ML Polar) and nonpolar (ML Nonpolar) systems is presented in Table 3, together
with the required inputs for the classic models of Wilke-Chang, Tyn-Calus, Magalhães
et al., and Zhu et al. The two hydrodynamic equations require four input variables, the
same number as the Magalhães et al. correlation although, in this later case, two of the
four parameters must be fitted to experimental data, thus reducing the model applicability.
The Zhu et al. hybrid model requires the larger number of parameters (seven) and is only
applicable to nonpolar systems.

The performance of all models was evaluated by calculating the average absolute
relative deviation (AARD) of each system:

AARD(%) =
100

NDP

NDP

∑
i=1

∣∣∣∣∣D
calc
12,i − Dexp

12,i

Dexp
12,i

∣∣∣∣∣ (13)

where superscripts calc and exp denote calculated and experimental values, and NDP is
the number of data points of a system. For the whole database, the global deviation (i.e.,
weighted AARD) and the arithmetic systems average (AARDarith) were calculated. The
minimum and maximum system AARD are reported as an indication of the performance
of the best and worst systems. The root mean square error (RMSE) was also calculated and
is defined as:

RMSE =

√√√√ 1
NDP

NDP

∑
i=1

(
Dcalc

12,i − Dexp
12,i

)
2 (14)

The coefficient of determination, R2, which is calculated for the training set, and the
Q2 value, which corresponds to R2 value obtained when applying the model to the test set,
are also reported for all models.

Table 3. Required inputs for the new and classic diffusivity models.

Parameters
Proposed Models Classic Models

ML Polar ML Nonpolar Wilke-Chang
(Equation (1))

Tyn-Calus
(Equation (3))

Magalhães et al. [9]
(Equation (4))

Zhu et al. [13]
(Equations (5)–(10))

T • • • • • •
ρ1 •
µ1 • • • • •
M2 • •
Tc,2 •

Tbp,2
Pc,2 • • •
Vc,2 • •
w2

σLJ,2
εLJ,2/kB

M1 • • • •
Tc,1 •

Tbp,1
Pc,1
Vc,1 • •
w1

σLJ,1
εLJ,1/kB •
Fitted - - - - 2 -
Count 6 5 4 4 4 7

Note: The • indicates the parameters required in each model.
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A final validation of the best machine learning models was conducted by performing
a y-randomization test (also called y-scrambling). This test compares the performance of
the original model with that of models built for a scrambled (randomly shuffled) response
while still following the original model building procedure. The randomization process
eliminates the relation between the independent variables and target response. If the
performance of the models when using scrambled data is much lower than when using
original data, one can be confident of the relevance of the original model. Five algorithms
were tested to develop the supervised learning models including a multilinear regression,
k-nearest neighbors, decision tree, random forest (an averaging ensemble method), and
gradient boosted (a boosting ensemble method). The performance of the several machine
learning algorithms when applied to the test set of polar data, covering 79 systems and 430
points, is shown in Table 4. The gradient boosted algorithm presents the best performance
for the test set (pure prediction) with an AARD of 5.07% followed by the random forest,
decision tree, k-nearest neighbors, and multilinear regression (from lower to higher AARD).
Similar trends are present when analyzing the arithmetic average of 79 systems AARD, as
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well as the minimum and the maximum AARD. As expected, the multilinear regression
exhibits much worse results than the other four algorithms for all the AARD metrics. The
gradient boosted algorithm also presents the lowest RMSE and highest Q2. The Q2 value is
also close to R2 indicating that the model works well independently of its training data.
Figure 3 plots the diffusivities predicted by the gradient boosted ML model against the
respective experimental values for the test set of polar systems, showing a very good
distribution along the diagonal. Similar representations are provided for the remaining
four algorithms in Figures S1–S4 of the Supplementary Material. The multilinear regression
model presents significant underestimation at higher values of D12 and overestimation
in the intermediate region. On the other hand, the remaining three algorithms show
good dispersion around the diagonal, however with larger deviations than the gradient
boosted model.
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Table 4. Performance of several machine learning (ML)models for the prediction of diffusivities in polar systems (test set)
and comparison with classic predictive and correlation models.

Model NSys NDP Global
AARD (%)

AARDarith
(%)

AARDmin
(%)

AARDmax
(%) RMSE Q2 (R2)

***

ML Polar Multilinear
Regression 79 430 84.65 80.65 4.00 899.66 3.33 × 10−5 0.7215 (0.7504)

ML Polar k-Nearest Neighbors 79 430 8.94 17.55 0.22 317.43 1.20 × 10−5 0.9641 (1.0000)
ML Polar Decision Tree 79 430 7.14 12.68 0.22 229.69 7.83 × 10−6 0.9846 (1.0000)

ML Polar Random Forest 79 430 5.67 9.44 0.04 82.92 6.67 × 10−6 0.9889 (1.0000)
ML Polar Gradient Boosted 79 430 5.07 8.00 0.08 76.23 5.68 × 10−6 0.9919 (0.9998)

Wilke-Chang 79 430 40.92 41.35 1.37 197.71 3.15 × 10−5 0.7519 (0.6790)
Tyn-Calus 79 430 46.49 38.41 2.88 97.11 2.30 × 10−5 0.8672 (0.8399)

Magalhães et al. 76 * 419 5.19 6.23 0.15 92.77 5.81 × 10−6 0.9917 (0.9977)
Zhu et al. ** ** ** ** ** ** ** **

* Magalhães et al. correlation cannot be applied in three systems of the database due to the low number of points. ** Model of Zhu et al.
is not applicable to polar systems. NSys: number of systems; NDP: number of data points; Global AARD: weighted deviation of all
systems; AARDarith: arithmetic average of all systems; AARDmin: minimum AARD; and AARDmax: maximum AARD. *** Q2 (R2): R2 is the
coefficient of determination for training and Q2 is the corresponding value for testing, in the case of ML models. For the Wilke-Chang,
Tyn-Calus and Zhu et al. models all values are predicted.
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(Gradient Boosted): (a) plot including all calculated results; (b) plot zooming on lower D12 range.

Table 5 presents the results obtained using each ML algorithm for the test set of
nonpolar compounds (130 systems and 342 points). Once again, the gradient boosted
algorithm presents the best global AARD for the 130 systems of the test set (5.86%), followed
by the random forest, then by the decision tree and k-nearest neighbors with similar
results, and lastly by the multilinear regression with significantly worst results. A similar
trend is visible when calculating a simple arithmetic average of systems AARD. The
gradient boosted algorithm shows the lowest RMSE and highest Q2. The calculated versus
experimental diffusivities for the test set of nonpolar compounds using the Gradient
Boosted model are plotted in Figure 4, showing unbiased distribution along the diagonal
over all range of experimental points. Figures S5–S8 of the Supplementary Material provide
the calculated against experimental plots for the remaining four algorithms. As in the
case of the polar data, the multilinear regression model once again presents significant
deviations. The k-nearest neighbors, decision tree, and random forest algorithms provide
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better scattering around the diagonal. Few outliers may be observed, particularly in the
case of the decision tree model.

Table 5. Performance of several machine learning (ML) models for the prediction of diffusivities in nonpolar systems (test
set) and comparison with classic predictive and correlation models.

Model NSys NDP Global
AARD (%)

AARDarith
(%)

AARDmin
(%)

AARDmax
(%) RMSE Q2 (R2 ) **

ML Nonpolar Multilinear
Regression 130 342 96.65 111.95 0.91 1731.52 8.37 × 10−5 0.5590 (0.5779)

ML Nonpolar k-Nearest
Neighbors 130 342 13.64 13.86 0.00 63.05 2.93 × 10−5 0.9461 (0.9998)

ML Nonpolar Decision Tree 130 342 13.29 14.08 0.00 90.96 5.08 × 10−5 0.8380 (0.9998)
ML Nonpolar Random Forest 130 342 9.94 10.29 0.00 62.04 1.83 × 10−5 0.9789 (0.9998)

ML Nonpolar Gradient Boosted 130 342 5.86 6.02 0.03 25.87 1.39 × 10−5 0.9879 (0.9866)
Wilke-Chang 130 342 29.19 28.20 0.26 172.30 6.66 × 10−5 0.7214 (0.5546)

Tyn-Calus 130 342 28.84 27.82 0.18 64.97 7.01 × 10−5 0.6909 (0.7465)
Magalhães et al. 125 * 324 6.19 6.21 0.04 128.38 1.82 × 10−5 0.9801 (0.9890)

Zhu et al. 130 342 37.93 45.19 1.40 222.45 6.35 × 10−5 0.7466 (0.8343)

* Magalhães et al. correlation cannot be applied in five systems of the database due to the low number of points. NSys: number of
systems; NDP: number of data points; Global AARD: weighted deviation of all systems; AARDarith: arithmetic average of all systems;
AARDmin: minimum AARD; and AARDmax: maximum AARD. ** Q2 (R2): R2 is the coefficient of determination for training and Q2 is the
corresponding value for testing, in the case of ML models. For the Wilke-Chang, Tyn-Calus and Zhu et al. models all values are predicted.
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As a final validation of the gradient boosted models selected for polar and nonpolar
systems, a y-randomization test was performed by scrambling the diffusivity vector. This
process was repeated 200 times and always returned random models with performances
much lower than the original ones, thus confirming the significance of the proposed models.
Figure S9 of the Supplementary Material shows the contrast between the Q2 values of our
models (0.9919 for polar and 0.9879 for nonpolar) and the lower ones obtained for the
permutations. It is worth noting that: (i) the best possible score of Q2 (and R2) is 1.0; (ii) for
a constant model that always predicts the expected value of the response, both indicators
are zero; (iii) Q2 (and R2) can be negative for arbitrarily worse model.

Summarily, the ML Polar Gradient Boosted model showed good performance for the
prediction of diffusivities of multiple solutes in polar solvents in the following train and
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test domain: T = 268–554 K; µ1 = 0.0241–17.6 cP; M2 = 17–674 g mol−1; Pc,2 = 4.1–221.2
bar; M1 = 20–113 g mol−1; and εLJ,1/kB = 208–2121 K. Likewise the ML Nonpolar Gradient
Boosted can be applied over: T = 213–567 K; µ1 = 0.0229–2.92 cP; M2 = 2–461 g mol−1;
Pc,2 = 12.5–96.3 bar; and M1 = 30–395 g mol−1. Both models showed good interpolation
capability, however it is expected that they can also provide reasonable extrapolations.

The ML Polar Gradient Boosted and ML Nonpolar Gradient Boosted models are
provided as a command line program in the Supplementary Material.

3.2. Detailed Comparison of ML Gradient Boosted and Classic Models

Four classic models for the calculation of diffusivities were adopted for comparison:
two hydrodynamic equations (Wilke-Chang [5] and Tyn-Calus [7]), a correlation by Mag-
alhães et al. [9], and the hybrid model of Zhu et al. [13]. The performance metrics of the
classic models are shown in Table 4, for the polar systems, and Table 5, for the nonpolar
systems. Overall, the proposed ML models outperform the classic models.

The Wilke-Chang and Tyn-Calus hydrodynamic equations provide similar performance
indicators in both data sets, though the former shows much higher maximum AARDs (Table 4:
197.71% vs. 97.11%; Table 5: 172.30% vs. 64.97%). Analyzing Figure 5a,b, where the calculated
versus experimental diffusivities are plotted for the polar data set over the entire range and over
a low range of values, we see that the Wilke-Chang equation overestimates higher diffusivities
and tends to underestimate lower ones. The Tyn-Calus equation for polar solvents provides
systematic underestimation as shown in Figure S10 of the Supplementary Material. In the
case of nonpolar systems, both Wilke-Chang (Figure 6a,b) and Tyn-Calus (Figure S11) models
exhibit a dual biased distribution of the calculated D12 values.

The correlation of Magalhães et al. is able to deliver the best performance among
the classic models, with a unbiased distribution along the diagonal in Figure 5c,d and
Figure 6c,d and an AARD only slightly above that provided by the machine learning
gradient boosted models proposed in this work (5.19% and 6.19% for the polar and nonpolar
sets, respectively). However, the Magalhães et al. can often be difficult to apply since it
requires that data on the system of interest is available in order to fit its two parameters.
In this work, data in the train sets was used to fit the a and b parameters for each system,
which were then applied to the calculation of diffusivities for the test sets. For this reason,
fewer points were calculated for the Magalhães et al. model, corresponding to the systems
where not enough data were available in the train sets to optimize parameters a and b.
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and (c,d) Magalhães et al. (Equation (4)) [9] models. Note the distinct scale between plots.

Finally, the Zhu et al. model, which was developed for nonpolar and weakly polar
fluids, does not appear to provide any benefit over the much simpler Wilke-Chang and
Tyn-Calus equations when applied to the nonpolar data set of this work. It provides higher
AARD (Table 5: 37.93%) than both hydrodynamic equations (Table 5: 29.19% and 28.84%,
respectively), although it shows lower biased dispersion along diagonal (Figure S12).
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Table 6 details the results of the best machine learning (gradient boosted) and classic
diffusivity models for each system of the polar database, as well as the distribution of
points among train and test sets. The best results are found for the ethylbenzene/acetone
system (AARD of 0.08%) and the worst for the ethylene glycol/ethanol system (76.23%).
However, these two systems have only one and two points in the test set, respectively.
Considering only cases where at least 10 points are available for train and test sets, the
carbon dioxide/n-butanol shows the best result (1.19%) while ammonia/1-propanol has
the worst (5.65%).

Table 7 presents equivalent information for the nonpolar systems. In this case, the
n-decane/n-dodecane and tetraethyltin/n-decane systems show the best (0.03%) and worst
(25.87%) results, respectively, but, once again, with only one point in the test set. If
only systems with at least five points in the train and test sets are considered, the best
result appears for 1,3,5-trimethylbenzene/n-hexane (2.98%) and the worst for toluene/n-
hexane (4.58%).

The models proposed in this work can be easily retrained as new experimental data
is made available, thus increasing its robustness and scope. A program that allows the
estimation of diffusivities in polar and nonpolar systems is provided in the Supplementary
Material, along with instructions on its use.



Materials 2021, 14, 542 19 of 33

Table 6. Calculated deviations of the individual systems of the polar database (divided into test and train sets) achieved by the best machine learning model of this work (Gradient
Boosted) and classic equations adopted for comparison.

NDP
AARD (%)

Data Ref.ML Gradient Boosted Wilke-Chang Tyn-Calus Magalhães et al.

Solvent Solute Total Test Train Test Train Test Train Test Train Test Train

1-propanol ammonia 31 14 17 5.65 0.60 33.93 31.25 19.49 21.11 4.53 2.23 [71]
1-propanol carbon dioxide 27 11 16 1.74 0.69 54.34 57.12 71.29 73.03 3.57 2.73 [71]
1-propanol propane 36 9 27 4.04 0.87 48.26 53.11 62.76 66.25 4.84 4.87 [71]
1-propanol propene 36 12 24 2.66 1.22 51.82 56.37 66.01 69.22 3.84 4.81 [71]
1-propanol water 5 2 3 38.77 0.16 153.58 119.30 46.19 26.42 18.77 0.93 [72]
2-propanol benzene 10 2 8 1.61 0.18 19.82 8.26 35.37 26.16 28.53 6.52 [73]
2-propanol naphthalene 10 3 7 0.93 0.23 7.64 13.02 24.72 24.05 9.06 10.74 [73]
2-propanol n-decane 10 3 7 0.74 0.20 11.68 20.45 23.09 30.72 3.81 15.80 [73]
2-propanol n-tetradecane 9 5 4 6.36 0.72 15.44 14.88 20.85 21.60 24.45 2.49 [73]
2-propanol phenanthrene 9 3 6 10.06 0.46 23.85 5.46 34.66 13.53 92.77 1.72 [73]
2-propanol toluene 10 1 9 7.16 0.19 18.91 9.87 36.94 26.77 13.69 8.03 [73]
2-propanol water 5 1 4 41.12 0.44 130.88 143.02 33.10 40.10 4.57 0.83 [72]

acetone 1,2,4-trichlorobenzene 6 2 4 5.85 0.48 10.53 11.95 27.10 28.26 3.59 1.08 [74]
acetone 1,3,5-trimethylbenzene 5 2 3 0.75 0.06 18.81 19.10 32.77 33.01 0.15 0.61 [74]
acetone benzene 6 6 0.19 13.32 34.40 0.36 [74]
acetone biphenyl 6 1 5 4.35 0.63 18.79 18.79 30.99 30.99 0.46 0.40 [74]
acetone chlorobenzene 6 6 0.14 13.57 32.58 0.85 [74]
acetone ethylbenzene 6 1 5 0.08 0.23 18.76 19.07 34.44 34.68 0.17 0.43 [74]
acetone naphthalene 5 5 0.28 18.33 32.93 0.42 [74]
acetone n-propylbenzene 5 4 1 0.98 0.00 21.09 21.14 34.47 34.52 [74]
acetone toluene 5 5 0.12 16.89 34.87 0.38 [74]
acetone water 4 1 3 5.94 0.06 83.53 85.64 6.60 7.82 0.80 0.87 [75]

acetonitrile [Bmim][bti] 5 1 4 2.19 0.51 50.27 49.10 48.63 47.43 0.60 1.19 [76]
acetonitrile [Emim][bti] 5 1 4 1.63 0.02 47.83 46.64 47.25 46.06 1.10 1.35 [76]
acetonitrile [Hmim][bti] 5 5 0.29 48.77 46.06 1.94 [76]
acetonitrile [Omim][bti] 5 1 4 1.12 0.26 48.99 49.22 45.36 45.61 0.18 1.04 [76]
acetonitrile carbon disulfide 5 3 2 16.39 3.76 22.64 28.64 41.91 46.42 10.72 [77]
acetonitrile methanol 20 6 14 6.49 0.96 20.28 15.79 43.25 40.05 1.44 1.78 [77]

chlorobenzene propene 32 9 23 0.95 0.25 9.43 9.88 32.77 32.49 1.01 1.12 [78,79]
chlorotrifluoromethane 1,3-dibromobenzene 12 3 9 9.31 1.21 147.23 148.48 75.18 76.06 6.85 4.14 [80]
chlorotrifluoromethane acetone 10 2 8 16.17 0.78 93.87 93.66 24.18 24.05 8.00 3.55 [80]
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Table 6. Cont.

NDP
AARD (%)

Data Ref.ML Gradient Boosted Wilke-Chang Tyn-Calus Magalhães et al.

Solvent Solute Total Test Train Test Train Test Train Test Train Test Train

chlorotrifluoromethane p-xylene 8 1 7 7.05 0.65 75.61 98.40 24.84 41.04 2.31 3.68 [80]
deuterium oxide oxygen 18 7 11 5.43 0.27 20.33 16.57 38.87 35.99 4.64 7.55 [81]

ethanol 1,2-butanediol 5 2 3 37.20 1.27 30.65 27.41 13.27 15.42 2.61 0.24 [82]
ethanol 1,3,5-trimethylbenzene 13 5 8 4.09 0.54 13.22 18.95 21.13 19.42 1.65 1.92 [83]
ethanol 1,4-butanediol 4 4 63.79 48.40 2.88 [82]
ethanol 1-butanol 4 3 1 20.44 3.64 17.25 17.95 22.96 22.49 [82]
ethanol 2-phenylethyl acetate 15 4 11 2.64 1.38 16.89 17.80 38.86 39.53 2.98 1.97 [84]
ethanol 3-phenylpropyl acetate 15 3 12 2.59 0.91 14.30 13.49 35.82 35.21 3.93 1.76 [84]
ethanol ammonia 18 5 13 3.84 2.00 36.24 42.92 29.11 25.63 5.32 3.18 [71]
ethanol benzene 21 8 13 3.42 1.16 27.35 24.37 25.74 35.54 6.16 12.16 [82,83]
ethanol benzonitrile 16 8 8 1.86 0.97 24.97 25.34 48.86 49.11 0.83 1.02 [85]
ethanol benzyl acetate 15 5 10 4.43 0.98 17.97 13.93 41.27 38.38 3.36 2.89 [84]
ethanol carbon dioxide 27 9 18 4.82 2.21 49.74 46.56 72.64 70.90 5.08 3.73 [71]
ethanol chromium(III) acetylacetonate 9 1 8 7.17 0.77 20.79 16.81 8.31 11.33 2.99 2.24 [86,87]
ethanol dibenzyl ether 15 5 10 3.00 1.52 22.47 25.90 41.47 44.06 4.26 1.37 [84]
ethanol disperse blue 14 8 2 6 2.75 5.23 22.10 22.73 38.77 39.26 5.61 10.24 [88]
ethanol disperse orange 11 12 2 10 0.44 0.17 20.42 15.17 38.89 34.86 6.15 2.75 [88]
ethanol ethylene glycol 5 2 3 76.23 0.05 61.03 57.90 4.28 2.65 5.06 1.36 [82]
ethanol eucalyptol 12 4 8 7.02 1.06 10.58 13.85 34.55 36.94 0.48 0.65 [56]
ethanol gallic acid 24 5 19 5.14 0.61 134.06 132.71 53.92 53.04 1.57 0.79 [57]
ethanol glycerol 5 5 1.08 52.51 4.59 3.28 [82]
ethanol Ibuprofen 16 7 9 4.87 1.07 4.97 5.51 19.05 18.63 0.92 0.81 [89]
ethanol naphthalene 13 2 11 8.86 0.16 21.43 14.25 30.88 20.36 11.33 1.13 [83]
ethanol nitrous oxide 5 5 0.26 44.94 69.83 0.68 [90]
ethanol palladium(II) acetylacetonate 4 1 3 4.84 0.03 15.52 18.85 17.74 15.36 0.67 0.80 [87]
ethanol phenanthrene 13 2 11 11.23 0.06 4.25 11.34 22.56 17.30 2.83 1.26 [83]
ethanol phenylbutazone 8 1 7 7.87 2.02 10.27 10.72 10.26 9.89 2.01 2.13 [91]
ethanol propane 30 7 23 4.31 1.93 43.06 42.56 64.52 64.21 7.48 8.90 [71]
ethanol propene 30 5 25 1.78 1.52 43.30 45.74 65.37 66.86 7.80 7.72 [71]
ethanol quercetin 16 6 10 7.15 1.79 40.58 40.59 9.60 9.61 0.86 1.11 [92]
ethanol toluene 14 7 7 5.02 0.12 20.45 17.54 24.14 20.86 8.93 0.70 [83]
ethanol water 15 2 13 15.26 0.90 131.04 145.20 15.31 22.37 4.86 4.30 [75,82,93]
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Table 6. Cont.

NDP
AARD (%)

Data Ref.ML Gradient Boosted Wilke-Chang Tyn-Calus Magalhães et al.

Solvent Solute Total Test Train Test Train Test Train Test Train Test Train

ethyl acetate astaxanthin 12 5 7 1.50 0.56 11.44 14.29 8.83 11.61 1.51 2.85 [94]
ethyl acetate quercetin 16 4 12 2.90 0.52 44.69 50.17 19.78 24.31 3.18 1.80 [92]
ethyl acetate squalene 12 2 10 2.01 0.57 7.70 8.86 12.34 13.44 1.54 0.98 [94]

ethylene glycol propene 31 9 22 1.36 0.86 48.94 48.81 64.24 64.14 1.41 1.70 [78,79]
methanol [Bmim][bti] 11 5 6 3.46 1.69 42.58 41.65 54.56 53.82 5.00 2.15 [76,95]
methanol [Emim][bti] 11 4 7 5.07 0.23 40.25 41.85 53.72 54.96 5.24 1.64 [76,95]
methanol [Hmim][bti] 5 2 3 4.25 0.54 36.57 39.04 48.83 50.82 3.91 0.74 [76]
methanol [Omim][bti] 5 5 0.61 39.02 49.96 1.33 [76]
methanol 1,3,5-trimethylbenzene 4 4 1.15 15.85 42.38 3.25 [73]
methanol acetonitrile 26 9 17 2.94 1.30 27.88 26.50 57.94 57.13 2.19 1.63 [77]
methanol ammonia 24 6 18 0.93 1.78 106.11 114.44 3.67 7.78 4.25 3.93 [71]
methanol benzene 4 1 3 2.79 0.55 1.88 12.49 38.59 45.23 3.28 4.28 [73]
methanol carbon dioxide 25 10 15 3.80 0.79 30.72 30.86 63.70 63.77 4.05 3.84 [71]
methanol carbon monoxide 8 1 7 4.88 0.52 23.36 14.78 59.89 55.02 8.75 3.60 [96]
methanol disperse blue 14 8 2 6 3.70 0.59 57.69 51.97 67.99 63.66 8.22 1.11 [88]
methanol disperse orange 11 16 5 11 2.65 0.26 51.25 52.71 63.97 65.05 3.01 1.96 [88]
methanol naphthalene 4 2 2 7.59 0.08 17.60 15.98 44.04 42.94 19.90 [73]
methanol p-chloronitrobenzene 18 7 11 1.47 0.60 22.46 22.66 46.93 47.06 1.08 1.07 [97]
methanol phenanthrene 4 1 3 13.71 0.48 12.15 21.29 37.19 43.73 4.44 3.14 [73]
methanol propane 27 11 16 2.14 1.50 24.08 27.00 54.47 56.22 2.43 2.45 [71]
methanol toluene 4 4 0.25 14.12 44.35 3.66 [73]
methanol vitamin K3 4 4 0.45 25.59 47.09 0.45 [98]
methanol water 5 2 3 28.86 0.74 310.36 281.35 97.11 83.18 11.09 0.18 [99]
n-butanol ammonia 64 17 47 2.63 1.75 38.12 38.41 20.73 20.56 5.36 5.81 [71]
n-butanol carbon dioxide 66 19 47 1.19 1.06 47.26 45.51 68.33 67.28 5.98 6.27 [71]
n-butanol propane 98 33 65 1.86 1.51 49.70 49.52 65.43 65.31 2.58 3.15 [71]
n-butanol propene 135 45 90 2.83 1.66 50.48 48.53 66.64 65.33 5.15 3.90 [71]
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Table 7. Calculated deviations of the individual systems of the nonpolar database (divided into test and train sets) achieved by the best machine learning model of this work (Gradient
Boosted) and classic equations adopted for comparison.

Solvent Solute
NDP

AARD (%)

Data Ref.
ML Gradient

Boosted Wilke-Chang Tyn-Calus Magalhães
et al. Zhu et al.

Total Test Train Test Train Test Train Test Train Test Train Test Train

2,2,4-trimethylpentane 1,3,5-trimethylbenzene 4 4 2.11 21.44 17.70 0.64 171.90 [100]
2,2,4-trimethylpentane benzene 4 1 3 2.49 1.36 11.31 14.98 31.05 28.78 0.04 2.33 128.60 119.69 [100]
2,2,4-trimethylpentane ethylbenzene 4 4 3.68 19.42 21.11 1.79 157.43 [100]
2,2,4-trimethylpentane o-xylene 4 4 1.96 16.19 23.43 2.78 147.48 [100]
2,2,4-trimethylpentane p-xylene 4 1 3 6.04 6.76 15.57 5.11 23.48 33.84 4.27 2.74 116.04 126.93 [100]
2,2,4-trimethylpentane toluene 4 4 2.21 10.10 29.38 2.07 126.50 [100]

2,3-dimethylbutane benzene 11 2 9 3.22 3.10 14.74 13.29 40.85 39.84 1.78 1.74 9.45 7.59 [101]
2,3-dimethylbutane naphthalene 9 2 7 1.28 1.68 18.35 19.02 38.53 39.04 0.61 2.18 1.80 2.59 [101]
2,3-dimethylbutane phenanthrene 11 2 9 0.65 0.63 20.75 20.51 37.19 36.99 2.44 1.63 2.39 5.87 [101]
2,3-dimethylbutane toluene 10 2 8 2.52 3.36 15.89 17.53 39.58 40.75 2.84 2.17 4.97 4.77 [101]

cyclohexane 1,1′-dimethylferrocene 5 2 3 1.07 1.64 9.73 8.30 17.40 18.48 2.41 0.26 192.52 197.96 [102]
cyclohexane 1,3,5-trimethylbenzene 12 1 11 9.04 3.82 6.73 14.13 28.83 14.33 8.28 8.32 16.07 59.79 [103,104]
cyclohexane acetone 4 2 2 2.31 0.01 20.96 19.77 46.91 46.10 0.96 106.99 92.31 [104]
cyclohexane argon 7 3 4 9.78 4.63 6.89 2.54 43.32 44.85 5.54 2.05 40.33 66.48 [105]
cyclohexane benzene 12 2 10 12.00 2.96 24.55 17.57 13.13 18.78 12.40 8.05 92.05 61.13 [104,106]
cyclohexane carbon tetrachloride 7 2 5 0.50 1.02 15.04 23.35 18.88 13.02 3.28 0.96 53.23 103.63 [105]
cyclohexane ethane 5 1 4 13.53 1.23 3.43 2.22 34.57 37.18 0.29 1.23 183.33 86.88 [107]
cyclohexane ethylene 5 1 4 1.93 1.06 0.26 1.74 37.99 37.80 1.60 1.08 66.73 110.83 [107]
cyclohexane ethylferrocene 6 1 5 0.68 0.49 5.53 8.18 20.56 18.56 1.18 0.75 178.04 169.05 [102]
cyclohexane ferrocene 5 3 2 2.84 0.08 15.24 13.62 16.70 17.87 1.37 0.20 49.79 58.60 [102]
cyclohexane krypton 6 3 3 9.01 2.60 16.32 15.16 32.42 33.09 3.07 1.27 54.85 78.43 [105]
cyclohexane methane 6 4 2 13.80 0.41 9.74 9.08 46.78 46.39 7.63 49.30 22.59 [105]
cyclohexane m-xylene 4 4 1.01 21.96 41.90 1.29 94.56 [104]
cyclohexane naphthalene 12 4 8 10.33 3.64 14.64 10.87 14.91 18.18 9.98 6.90 41.94 39.98 [104,106]
cyclohexane phenanthrene 8 3 5 5.64 1.43 4.82 4.27 19.02 23.03 4.82 2.49 4.34 7.53 [106]
cyclohexane p-xylene 8 8 2.31 4.13 28.00 3.63 28.67 [106]
cyclohexane tetrabutyltin 7 2 5 10.03 1.38 20.87 25.56 7.51 9.58 3.79 1.64 11.64 14.39 [105]
cyclohexane tetraethyltin 7 2 5 0.61 1.78 24.37 24.29 7.91 8.24 1.43 2.17 57.43 57.01 [105]
cyclohexane tetramethyltin 7 2 5 4.77 0.48 29.90 33.82 9.13 7.47 2.31 1.06 90.37 95.59 [105]
cyclohexane tetrapropyltin 6 4 2 3.96 1.01 21.89 30.99 7.23 8.08 2.03 21.99 21.49 [105]
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Table 7. Cont.

Solvent Solute
NDP

AARD (%)

Data Ref.
ML Gradient

Boosted Wilke-Chang Tyn-Calus Magalhães
et al. Zhu et al.

Total Test Train Test Train Test Train Test Train Test Train Test Train

cyclohexane toluene 12 2 10 8.49 3.06 16.22 10.84 18.75 20.21 11.65 7.31 51.76 56.57 [104,106]
cyclohexane xenon 7 6 1 5.42 0.02 25.17 14.32 23.88 30.48 83.09 150.96 [105]

ethane 1-octene 6 2 4 6.96 1.27 3.27 5.54 1.86 5.43 5.88 1.96 17.16 9.15 [108]
ethane 1-tetradecene 9 4 5 6.06 0.28 20.10 20.84 13.67 14.48 3.84 3.71 21.78 13.41 [108]

n-decane 12-crown-4 4 1 3 8.73 4.44 20.77 23.64 17.52 15.56 0.66 4.99 42.67 40.09 [109]
n-decane 15-crown-5 4 1 3 8.77 1.24 41.39 22.03 0.18 13.54 22.17 0.69 28.31 21.11 [109]
n-decane 18-crown-6 4 1 3 2.17 2.05 30.58 25.53 4.63 8.31 14.50 4.29 3.54 4.36 [109]
n-decane argon 3 2 1 11.89 0.11 12.79 10.56 44.32 55.28 26.35 91.32 [110]
n-decane carbon tetrachloride 3 3 5.74 17.09 26.45 1.24 71.87 [110]
n-decane dicyclohexano-18-crown-6 4 4 0.68 25.60 2.44 1.27 83.59 [109]
n-decane dicyclohexano-24-crown-8 4 3 1 7.95 0.13 25.82 33.28 3.15 8.46 119.04 192.36 [109]
n-decane krypton 3 3 2.49 23.85 35.90 3.27 69.93 [110]
n-decane s-trioxane 4 4 2.24 24.60 25.63 0.91 50.71 [109]
n-decane tetrabutyltin 4 1 3 3.53 0.71 29.41 29.09 2.91 3.22 1.57 0.96 22.54 20.34 [110]
n-decane tetraethyltin 4 1 3 25.87 24.86 1.63 6.66 33.23 30.98 0.59 1.98 19.15 13.44 [110]
n-decane tetramethyltin 4 2 2 4.38 7.90 37.59 36.56 14.25 14.90 2.61 75.10 68.10 [110]
n-decane tetrapropyltin 4 1 3 0.83 1.65 26.81 29.97 8.87 6.60 0.68 2.00 26.72 24.34 [110]
n-decane xenon 8 1 7 15.12 2.57 1.46 18.76 46.61 35.66 5.99 3.19 137.71 82.50 [110,111]

n-dodecane 1,3,5-trimethylbenzene 4 2 2 4.64 0.31 6.99 1.70 39.23 35.47 3.02 130.38 107.10 [104]
n-dodecane acetone 5 1 4 6.18 0.82 5.13 4.64 45.44 45.15 0.90 1.37 98.06 103.24 [104]
n-dodecane benzene 4 2 2 3.42 0.69 4.97 3.88 43.25 42.60 1.57 0.00 122.78 121.55 [104]
n-dodecane carbon dioxide 9 3 6 5.85 2.86 61.83 88.25 19.08 9.16 11.39 1.56 30.14 22.67 [112]
n-dodecane carbon monoxide 9 3 6 15.15 2.87 73.13 52.06 13.55 24.07 7.28 7.69 24.57 29.78 [112]
n-dodecane hydrogen 9 5 4 7.78 6.84 25.13 21.17 64.97 63.11 10.12 9.67 47.72 49.66 [112]
n-dodecane linoleic acid methyl ester 4 4 1.10 13.54 13.08 0.37 42.50 [104]
n-dodecane m-xylene 4 4 1.39 10.17 42.74 0.62 108.09 [104]
n-dodecane naphthalene 5 2 3 4.99 0.75 5.64 10.11 38.86 41.75 3.55 0.93 79.40 81.82 [104]
n-dodecane n-decane 5 1 4 0.03 2.21 56.61 45.00 8.43 4.59 1.98 3.71 11.30 34.63 [113]
n-dodecane n-hexadecane 5 1 4 10.77 1.08 65.59 57.28 23.68 17.47 5.92 0.83 19.21 19.32 [113]
n-dodecane n-octane 9 6 3 2.31 0.16 47.87 50.94 6.18 3.73 10.34 1.17 33.86 8.63 [113]
n-dodecane n-tetradecane 5 1 4 2.94 1.23 39.89 59.70 2.42 16.92 16.34 1.53 20.35 16.40 [113]
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Table 7. Cont.

Solvent Solute
NDP

AARD (%)

Data Ref.
ML Gradient

Boosted Wilke-Chang Tyn-Calus Magalhães
et al. Zhu et al.

Total Test Train Test Train Test Train Test Train Test Train Test Train

n-dodecane toluene 4 2 2 5.84 0.79 7.90 11.57 43.05 45.33 2.72 95.30 125.51 [104]
n-dodecane vitamin K3 4 1 3 0.19 0.22 10.31 11.59 39.14 40.01 0.22 0.98 34.63 38.39 [104]
n-eicosane carbon dioxide 5 2 3 16.17 0.01 172.30 147.95 21.79 12.93 0.71 1.13 8.06 29.92 [114]
n-eicosane carbon monoxide 5 2 3 10.88 4.29 114.69 136.89 8.76 7.81 0.55 0.54 50.15 19.59 [114]
n-eicosane hydrogen 5 1 4 3.25 110.78 8.54 252.32 61.72 129.43 128.38 73.30 4.12 99.16 [114]
n-eicosane n-dodecane 5 2 3 13.72 1.97 138.63 134.49 52.19 49.55 1.74 0.91 67.82 55.95 [114]
n-eicosane n-hexadecane 5 4 1 16.16 1.99 141.26 144.68 61.19 63.48 61.96 30.75 [114]
n-eicosane n-octane 5 2 3 7.53 0.63 134.16 124.83 39.95 34.37 2.54 1.67 54.76 57.07 [114]
n-heptane 1,3,5-trimethylbenzene 4 2 2 0.87 0.75 4.11 5.33 23.55 22.65 1.43 7.92 9.31 [115]
n-heptane 2,2,4-trimethylpentane 4 2 2 4.54 0.52 1.39 2.85 24.53 23.44 0.58 0.10 23.40 21.87 [116]
n-heptane benzene 11 4 7 3.62 2.15 4.50 6.14 29.86 28.76 1.91 3.07 8.71 12.97 [115,117]
n-heptane ethylbenzene 4 4 5.10 8.27 22.51 0.23 14.85 [115]
n-heptane n-decane 6 1 5 4.29 2.79 15.13 6.99 33.96 24.47 8.69 2.42 10.94 5.52 [113,118]
n-heptane n-dodecane 6 3 3 5.28 0.14 4.41 14.00 19.20 31.09 59.49 2.21 6.13 24.60 [113,118]
n-heptane n-hexadecane 9 3 6 6.51 0.65 5.88 5.39 17.14 16.55 1.00 1.38 26.09 25.64 [119–121]
n-heptane n-hexane 11 3 8 5.03 0.79 8.45 10.02 34.59 35.72 2.67 0.77 16.44 10.75 [113,119,121]
n-heptane n-octane 13 3 10 7.32 1.72 7.36 9.29 27.53 31.88 2.94 1.28 4.50 2.94 [113,118]
n-heptane n-tetradecane 6 3 3 2.73 1.12 7.65 9.45 21.46 22.01 2.56 1.51 28.62 33.71 [113,118]
n-heptane o-xylene 4 2 2 4.35 2.02 7.08 2.49 29.03 29.16 0.62 3.70 3.50 [115]
n-heptane p-xylene 4 1 3 6.86 2.70 5.35 7.22 32.10 33.44 0.70 0.66 1.40 1.36 [115]
n-heptane toluene 4 3 1 5.71 1.04 3.63 5.00 33.00 27.03 4.30 5.86 [115]

n-hexadecane carbon dioxide 10 4 6 2.02 1.81 92.63 112.99 13.75 15.19 7.11 4.53 37.48 32.03 [112]
n-hexadecane carbon monoxide 10 3 7 3.49 3.59 80.63 91.32 16.76 13.82 3.77 4.83 52.93 49.96 [112]
n-hexadecane hydrogen 10 7 3 6.89 1.04 24.77 18.43 59.19 54.00 12.88 0.99 38.66 34.17 [112]
n-hexadecane n-decane 5 1 4 10.89 1.40 62.63 79.23 5.76 16.55 5.16 1.59 152.48 39.94 [122]
n-hexadecane n-dodecane 5 5 1.16 75.79 17.71 2.72 55.76 [122]
n-hexadecane n-octane 10 1 9 6.82 0.57 88.97 76.42 18.59 10.71 1.45 3.00 22.13 68.70 [122]
n-hexadecane n-tetradecane 5 2 3 1.59 1.09 70.97 78.33 17.57 22.63 2.13 2.39 50.42 36.41 [122]

n-hexane 1,1′-dimethylferrocene 4 1 3 0.96 0.27 15.92 16.74 13.20 12.58 1.01 0.08 45.28 46.51 [102]
n-hexane 1,2,3,5-tetrafluorobenzene 7 2 5 4.31 3.24 20.21 17.52 41.62 39.64 1.22 5.13 7.14 10.04 [123]
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Table 7. Cont.

Solvent Solute
NDP

AARD (%)

Data Ref.
ML Gradient

Boosted Wilke-Chang Tyn-Calus Magalhães
et al. Zhu et al.

Total Test Train Test Train Test Train Test Train Test Train Test Train

n-hexane 1,2,4,5-tetrafluorobenzene 7 2 5 1.98 1.25 20.44 16.25 41.78 38.72 3.09 4.44 13.93 16.22 [123]
n-hexane 1,2,4-trifluorobenzene 7 2 5 4.61 0.87 24.28 14.88 45.04 38.22 5.76 1.46 12.96 6.40 [123]
n-hexane 1,3,5-trimethylbenzene 20 7 13 2.98 1.59 10.09 8.34 31.66 30.42 5.24 5.79 8.52 4.45 [103,104]
n-hexane 9,10-dimethylanthracene 8 4 4 13.89 3.00 12.79 19.02 27.56 32.73 6.22 0.32 116.02 83.34 [124]
n-hexane acetone 5 2 3 2.70 1.08 5.05 3.73 36.55 34.67 5.60 1.05 10.75 4.24 [104]
n-hexane acetonitrile 7 7 2.40 5.79 39.09 2.70 22.16 [125]
n-hexane benzene 48 18 30 3.48 2.39 6.16 7.86 31.07 31.34 9.04 6.60 15.66 25.65 [103,104,107,123,

125–128]
n-hexane carbon disulfide 10 4 6 4.49 3.58 2.32 10.16 35.24 29.75 7.20 3.52 44.88 76.81 [125]
n-hexane carbon tetrabromide 8 1 7 7.97 1.02 30.34 19.55 5.72 16.14 1.95 8.28 168.32 115.24 [124]
n-hexane ethylferrocene 4 4 0.61 18.11 11.55 0.12 35.49 [102]
n-hexane ferrocene 4 1 3 3.84 0.40 31.11 22.97 5.72 11.57 0.41 0.15 17.28 16.84 [123]
n-hexane hexafluorobenzene 7 2 5 2.23 1.89 7.46 10.50 31.30 34.96 2.19 3.76 15.66 21.90 [123]
n-hexane indole 2 2 0.62 10.64 32.22 13.24 [104]
n-hexane linoleic acid methyl ester 2 2 2.02 2.08 12.90 95.99 [104]
n-hexane m-xylene 5 2 3 1.77 0.04 9.32 8.01 32.84 31.87 1.82 2.56 5.26 4.57 [104]
n-hexane naphthalene 21 5 16 3.43 2.44 12.23 11.95 33.92 33.71 4.95 4.32 8.19 10.88 [103,104,125,126]
n-hexane n-heptane 11 5 6 4.88 1.16 13.00 12.35 29.03 33.49 7.30 0.93 13.25 2.53 [119–121,129]
n-hexane n-octane 7 2 5 2.01 1.14 12.76 12.64 32.28 32.19 1.05 0.30 2.05 1.68 [119,129]
n-hexane octafluorotoluene 7 1 6 0.23 0.26 21.39 8.53 40.45 30.16 4.30 2.92 13.40 15.97 [123]
n-hexane o-difluorobenzene 7 2 5 2.25 0.86 9.72 12.64 35.75 37.83 4.29 2.44 3.57 16.35 [123]
n-hexane p-difluorobenzene 7 3 4 2.62 0.44 19.67 9.73 42.83 35.76 24.35 0.79 27.69 2.93 [123]
n-hexane pentafluorobenzene 7 1 6 2.79 0.39 1.84 12.11 26.52 36.58 1.96 3.78 6.06 17.91 [123]
n-hexane phenanthrene 15 6 9 3.33 1.60 14.07 14.25 31.89 32.04 4.37 5.72 14.18 11.93 [103]
n-hexane p-xylene 17 4 13 6.35 2.44 15.89 10.62 37.62 33.72 4.15 4.56 9.32 8.04 [103,104]
n-hexane pyrene 8 2 6 10.54 10.51 62.03 50.27 31.35 21.81 8.62 4.72 153.51 103.03 [124,126]
n-hexane toluene 32 14 18 4.58 2.65 8.46 8.14 32.19 30.74 4.98 3.72 12.56 19.33 [103,104,130,131]
n-hexane vitamin K3 5 1 4 3.32 1.01 11.31 16.36 30.09 34.07 0.78 0.73 34.19 37.24 [104,132]
n-octane 1,3,5-trimethylbenzene 8 3 5 2.31 1.74 7.21 6.99 23.51 23.67 0.47 0.62 23.97 22.64 [103,104]
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Solvent Solute
NDP
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ML Gradient

Boosted Wilke-Chang Tyn-Calus Magalhães
et al. Zhu et al.

Total Test Train Test Train Test Train Test Train Test Train Test Train

n-octane argon 4 1 3 1.76 5.82 6.69 14.09 44.01 41.09 1.93 1.30 23.81 18.74 [110]
n-octane benzene 8 2 6 1.90 0.79 2.80 2.87 34.64 35.64 0.29 0.20 15.45 17.40 [100,115]
n-octane carbon tetrachloride 4 4 1.24 15.76 23.67 1.05 34.90 [110]
n-octane ethylbenzene 8 4 4 6.65 6.50 3.65 7.21 28.14 25.44 3.22 1.19 24.94 22.80 [100,115]
n-octane krypton 4 1 3 14.06 1.75 22.31 30.11 33.56 29.32 3.72 0.39 40.36 36.12 [110]
n-octane methane 4 1 3 9.77 2.46 10.46 3.34 50.64 45.68 6.32 0.40 45.79 10.22 [110]
n-octane n-heptane 7 4 3 6.34 0.55 11.43 11.60 36.84 36.96 1.42 0.12 20.87 17.70 [119,133]
n-octane n-hexane 6 4 2 4.66 0.29 5.47 6.95 34.39 35.42 3.46 34.50 22.19 [119]
n-octane o-xylene 8 8 1.39 1.30 31.53 0.73 14.39 [100,115]
n-octane p-xylene 8 1 7 5.49 3.85 9.50 8.80 36.92 36.43 0.99 0.83 4.21 7.47 [100,115]
n-octane tetrabutyltin 4 1 3 0.14 1.85 21.42 33.04 4.40 10.56 14.34 3.93 5.22 14.77 [110]
n-octane tetraethyltin 5 5 4.29 34.09 14.16 3.79 17.89 [110]
n-octane tetramethyltin 4 4 1.78 44.76 15.82 8.09 35.98 [110]
n-octane tetrapropyltin 4 1 3 2.18 0.32 22.11 35.53 7.90 12.77 0.10 10.73 6.73 6.87 [110]
n-octane toluene 8 1 7 0.28 0.53 1.25 3.08 31.64 33.55 1.92 1.28 12.43 17.20 [100,115]
n-octane xenon 8 3 5 7.17 2.42 14.65 18.84 34.81 33.03 3.50 5.95 43.59 48.17 [110,111]

n-tetradecane acridine 8 4 4 6.32 0.99 25.62 19.86 18.67 21.21 5.12 7.85 50.28 48.90 [134]
n-tetradecane argon 4 1 3 13.85 3.81 4.21 24.13 55.48 60.17 3.71 4.35 44.66 76.49 [110]
n-tetradecane benzothiophene 7 3 4 9.79 2.27 37.15 40.83 15.35 13.08 2.67 3.25 112.41 81.45 [134]
n-tetradecane carbon tetrachloride 4 4 2.36 16.38 32.05 2.54 181.74 [110]
n-tetradecane dibenzothiophene 8 3 5 12.20 2.93 31.28 40.52 14.59 8.58 7.34 2.43 58.10 73.29 [134]
n-tetradecane krypton 4 4 4.58 17.50 49.11 6.70 102.06 [110]
n-tetradecane methane 4 2 2 17.29 1.80 17.88 41.86 59.61 71.62 58.01 34.84 92.68 [110]
n-tetradecane naphthalene 7 7 2.83 14.51 28.99 2.67 74.98 [134]
n-tetradecane tetrabutyltin 4 2 2 17.37 1.95 40.27 36.01 11.38 5.16 4.94 116.75 115.45 [110]
n-tetradecane tetraethyltin 4 4 3.09 29.87 18.07 5.56 143.59 [110]
n-tetradecane tetramethyltin 4 2 2 13.08 0.06 29.05 40.68 25.25 18.52 6.64 202.70 152.93 [110]
n-tetradecane tetrapropyltin 4 1 3 13.99 0.21 53.61 25.95 2.60 15.87 6.51 1.69 67.58 126.86 [110]
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n-tetradecane xenon 8 1 7 0.64 2.42 7.11 16.22 53.23 47.68 1.98 5.78 222.45 179.79 [110,111]
propane 1-octene 8 1 7 0.07 0.88 18.41 19.52 27.34 28.33 0.06 1.68 7.42 9.54 [108]
propane 1-tetradecene 8 3 5 3.54 0.38 36.40 30.97 36.84 31.45 3.52 0.98 48.48 31.59 [108]

sulfur hexafluoride 1,3,5-trimethylbenzene 10 10 0.86 90.68 28.87 4.43 14.17 [80]
sulfur hexafluoride benzene 9 2 7 1.08 3.65 85.93 86.27 14.85 17.62 10.25 6.77 5.62 7.82 [80]
sulfur hexafluoride benzoic acid 6 3 3 22.48 4.26 150.51 144.36 62.38 58.39 3.11 0.11 22.70 11.88 [135]
sulfur hexafluoride carbon tetrachloride 7 2 5 2.81 1.69 95.35 134.58 22.01 46.52 2.71 1.86 33.23 12.98 [80]
sulfur hexafluoride naphthalene 5 2 3 4.51 1.54 62.53 74.74 8.94 17.12 9.70 0.38 16.10 7.74 [135]
sulfur hexafluoride p-xylene 52 14 38 4.09 2.16 88.28 88.44 24.32 24.42 2.51 4.62 5.61 8.54 [80]
sulfur hexafluoride toluene 11 4 7 4.37 1.95 88.43 83.35 20.52 17.27 4.95 3.50 4.66 8.66 [80]
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4. Conclusions

Two machine learning (ML) models were developed for the estimation of binary diffu-
sivities in polar and nonpolar systems. These models were trained and tested on a database
containing 20 properties for polar (90 systems and 1431 points) and nonpolar (154 systems
and 1129 points) systems. Several learning algorithms were tested, including multilinear
regression, k-nearest neighbors, decision tree, random forest and gradient boosted. The
best ML results were obtained for the gradient boosted model, which provided global
AARDs of 5.07% and 5.86% for the test set of polar and nonpolar systems, respectively. The
nonpolar model relies on five input variables/properties: temperature, solvent viscosity,
solute molar mass, solute critical pressure and solvent molar mass. The polar model takes
the Lennard-Jones energy of solvent as an additional parameter, thus requiring six inputs
totally. The classic models of Wilke-Chang, Tyn-Calus, Magalhães et al. and Zhu et al. were
adopted for comparison and demonstrated worse performance for the same test sets. The 2-
parameter correlation of Magalhães et al. showed results closer to the new gradient boosted
models with AARD of 5.19% (polar) and 6.19% (nonpolar), however, that equation requires
previous data to fit its two parameters, and thus it is impractical to apply to unknown
systems. Among the remaining classic models, Wilke-Chang provided the best result for
polar systems (40.92%) while Tyn-Calus performed best for nonpolar systems (28.84%).
The developed models are provided as application in the Supplementary Material.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-1
944/14/3/542/s1, Software, Table S1: Tested and best hyper-parameter values for each machine
learning algorithm, Figure S1: Predicted versus experimental diffusivities for the test set of polar sys-
tems using the Multilinear Regression model, Figure S2: Predicted versus experimental diffusivities
for the test set of polar systems using the k-Nearest Neighbors model, Figure S3: Predicted versus
experimental diffusivities for the test set of polar systems using the Decision Tree model, Figure S4:
Predicted versus experimental diffusivities for the test set of polar systems using the Random Forest
model, Figure S5: Predicted versus experimental diffusivities for the test set of nonpolar systems
using the Multilinear Regression model, Figure S6: Predicted versus experimental diffusivities for
the test set of nonpolar systems using the k-Nearest Neighbors model, Figure S7: Predicted versus ex-
perimental diffusivities for the test set of nonpolar systems using the Decision Tree model, Figure S8:
Predicted versus experimental diffusivities for the test set of nonpolar systems using the Random
Forest model, Figure S9: y-Randomization calculations for the selected ML Gradient Boosted models
for (a) polar systems and (b) nonpolar systems. The bars show the Q2 values for models based on
randomized diffusivity data. The dashed horizontal lines show the Q2 values of the actual models.
Figure S10: Calculated versus experimental diffusivities for the test set of polar systems for the
Tyn-Calus model. (a) full D12 range; (b) zoomed on lower D12 range, Figure S11: Calculated versus
experimental diffusivities for the test set of nonpolar systems for the Tyn-Calus model. (a) full D12
range; (b) zoomed on lower D12 range, Figure S12: Calculated versus experimental diffusivities for
the test set of nonpolar systems for the Zhu et al. model. (a) full D12 range; (b) zoomed on lower
D12 range.
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