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a b s t r a c t 

The outbreak of the SARS-CoV-2 novel coronavirus has caused a health crisis of immeasurable magni- 

tude. Signals from heterogeneous public data sources could serve as early predictors for infection waves 

of the pandemic, particularly in its early phases, when infection data was scarce. In this article, we char- 

acterize temporal pandemic indicators by leveraging an integrated set of public data and apply them to 

a Prophet model to predict COVID-19 trends. An effective natural language processing pipeline was first 

built to extract time-series signals of specific articles from a news corpus. Bursts of these temporal signals 

were further identified with Kleinberg’s burst detection algorithm. Across different US states, correlations 

for Google Trends of COVID-19 related terms, COVID-19 news volume, and publicly available wastewater 

SARS-CoV-2 measurements with weekly COVID-19 case numbers were generally high with lags ranging 

from 0 to 3 weeks, indicating them as strong predictors of viral spread. Incorporating time-series signals 

of these effective predictors significantly improved the performance of the Prophet model, which was 

able to predict the COVID-19 case numbers between one and two weeks with average mean absolute 

error rates of 0.38 and 0.46 respectively across different states 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

COVID-19, the disease caused by the SARS-CoV-2, has been 

apidly spreading across the globe and has become a substantial 

ealth threat worldwide. As of March 20, 2021, an estimated 122 

illion people worldwide have been infected with the virus, with 

n estimated 2.7 million deaths [1] . Accurately monitoring and 

orecasting regional progression of COVID-19 can help (1) health- 

are systems to ensure sufficient supply of equipment and person- 

el to reduce fatalities, (2) the pharmaceutical industry to perform 

linical trials for vaccines or medicines, and (3) world governments 

o make or adjust non-pharmaceutical interventions or vaccination 

lans. 

Internet sources and data have been employed to inform public 

ealth and policies; this application is referred to as Infodemiology 

i.e., information epidemiology) [2] . These data sources have in the 

ast nowcasted and forecasted outbreaks and epidemics of various 

nfectious diseases [3–8] . During a pandemic, leveraging infodemi- 

logical data, especially in the early phase of the pandemic when 
∗ Corresponding author. 
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here is not enough infection data to generate accurate models, can 

e a practical way to monitor viral transmission and help the gov- 

rnments to take action more quickly. 

Of particular interest to infodemiology as applied to COVID-19 

s news media, which serves as a crucial communication medium 

hat can significantly affect individuals’ behavior. News media data 

an be used to study the sentiment of the society in response to 

OVID-19-related policies and vaccinations [9] . Media coverage on 

hese topics and the corresponding sentiments can also potentially 

e useful predictive factors for COVID-19 cases. To capture specific 

ews in unstructured formats, Natural Language Processing (NLP) 

echniques are required; however, commonly used topic modeling 

ethods like Latent Dirichlet Allocation (LDA) [10] have poor per- 

ormance when analyzing COVID-19-related news as articles tend 

o repeat very similar vocabularies. This makes it difficult to parse 

pecific subjects (e.g., COVID-19-related school reopening vs. lock- 

own). Thus, a new NLP method is needed. 

Google Trends (GT) is another popular infodemiology data 

ource that is actively used in health and medicine to track and 

orecast diseases and epidemics [11] . Several papers have used GT 

ata to monitor, track, and forecast COVID-19 in the US [ 12–14 ]. 

hese studies consistently identified a high correlation between 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.patrec.2022.04.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2022.04.030&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:tschult4@its.jnj.com
https://doi.org/10.1016/j.patrec.2022.04.030
http://creativecommons.org/licenses/by-nc-nd/4.0/


Z. Liu, Z. Jiang, G. Kip et al. Pattern Recognition Letters 158 (2022) 133–140 

G

p

d

t

a

m

p

p

i

t

i

t

c

c

f

s

o

t

c

a

[

t

S

f

c

n

h

s

2

v

a

r

1

[  

a  

fl

u

t

i

m

2

a

w

t

t

e

N

b

f

f

a

s

s

h

P

t

f

3

3

fi

t

(

t

o

d

n

w

f

c

B

i

A

c

n

f

u

t

a

w

T

w

t

d

b

t

D

t

d

o

b / 

g

d

d

C

s

M

f

w

D

a

m

e

3

b

t

o

c

w

n

a

d

(

Ts of COVID-19 related terms and new COVID-19 cases for a lag 

eriod ranging from 12 to 16 days, demonstrating the strong pre- 

ictive power of GT for COVID-19 progression. However, most of 

hese studies were conducted in the early stages of the pandemic; 

t this time, the pandemic has lasted for more than a year, with 

any regions in US having experienced at least two waves. Peo- 

le’s behaviors, such as online search activities, may change as the 

andemic evolves. For example, familiarity with COVID-19-related 

nformation increases since the beginning of the pandemic and 

herefore certain search terms may fall out of interest. Therefore, 

t is necessary to re-examine the leader-follower relationship be- 

ween GT and COVID-19 case numbers with the more recent and 

omprehensive data. 

An emerging data source to track the spread of SARS-CoV-2 

omes from wastewater monitoring [ 15–17 ,]. Monitoring sewage 

or viral RNA concentrations enables effective population-level 

urveillance, providing a sensitive signal of its circulation through- 

ut communities. This data unbiasedly captures circulation without 

he need for conducting PCR testing or unaccounted asymptomatic 

ases. It has been shown that viral concentrations of wastewater 

re 0-10 days ahead of clinically diagnosed new COVID-19 cases 

 15 , 17 ], suggesting another predictor to forecast COVID-19 cases. As 

he US government initiates the National Wastewater Surveillance 

ystem in response to the COVID-19 pandemic, more data from dif- 

erent regions will be collected and reported. 

While several models have been used to forecast COVID-19 

ases, many of them cannot integrate multiple time series sig- 

als. Auto Regressive Integrated Moving Average (ARIMA) model 

as been used by researchers around the world to forecast the 

pread of this pandemic and generates accurate predictions [18–

0] . ARIMA works best when data is stationary, meaning that the 

ariance and the mean of the data remain constant over time. In 

ddition, ARIMA can only be implemented on univariate time se- 

ies. Kalman filtering is another algorithm used to forecast COVID- 

9 cases but only produces satisfying short term (daily) predictions 

 21 , 22 ]. Prophet has been widely used and accepted due to its

ccuracy and ease of usability [ 23 , 24 ]. Its automatic nature gives

exibility to time series data that have dramatic changes so that 

sers do not have to worry about their data being not suited for 

he model [23] . More importantly, Prophet provides the option to 

ntegrate other time-series covariates and thus serves as an ideal 

odel to combine various digital data streams. 

. Our contribution 

In this study, we extracted informative signals from three 

vailable public datasets (i.e., news websites, Google Trends, and 

astewater SARS-COV-2 measurements), and for the first time in- 

egrated these predictive signals into a model to forecast COVID-19 

rends. We first built an effective NLP pipeline using the Word2Vec 

mbeddings from pre-trained deep neural network [25] on Google 

ews to identify news on specific topics. We validated the pipeline 

y successfully distinguishing different groups of news and identi- 

ying “school reopen” and “lockdown” related COVID-19 news. We 

urther identified the time points when specific news broke out 

bruptly using a burst detection model. We then aligned various 

ignals with new COVID-19 cases, checked their correlations and 

ynchronies, and identified several signals as early indicators of en- 

anced spread. Finally, we integrated the selected signals into a 

rophet model to predict future COVID-19 cases and demonstrated 

hat these signals could significantly improve the base model’s per- 

ormance. 
n

134 
. Experimental 

.1. Data sets 

COVID-19 c ase numbers The number of daily cumulative con- 

rmed cases in 19 states of United States were obtained for 

he period until Dec 31, 2020 from the COVID Tracking project 

https://covidtracking.com/data/download). The column of “posi- 

ive” that contains total number of confirmed plus probable cases 

f COVID-19 reported by the state was used. For Massachusetts 

ata, there is one time point that has a smaller cumulative case 

umber than that of the previous week. That week’s case number 

as replaced with the average case number within that month. 

News a rticles The public news data in this study were obtained 

rom NewsAPI.org, which allows to search public news and arti- 

les from over 30,0 0 0 news sources in 54 countries, including ABC, 

BC, Australian Financial Reviews and others. COVID related news 

n each state were acquired by keywords searching of COVID terms 

ND a specific state’s name in each article’s title. COVID terms in- 

lude “coronavirus”, “COVID-19”, “COVID19”, “SARS-CoV-2", “2019- 

Cov”. Eventually, 33,083 relevant news and articles were collected 

rom 19 states with a period of Dec. 1, 2019 to Dec. 31, 2020. 

Google t rends Google Trends provides the relative search vol- 

me for each keyword. This value is calculated by dividing the to- 

al number of searches for a keyword by the total searches within 

 geographic and time range. Keywords can be filtered by location 

ith a resolution from worldwide to a specific city and time span. 

ime series data are presented on a normalized scale of 0 to 100, 

here 0 represents no search and 100 represent peak search ac- 

ivity for a particular keyword or string. Google Trends’ daily base 

ata were mined in this study from February 1, 2020, to Decem- 

er 31, 2020. The following keywords were searched: COVID symp- 

oms, COVID testing, covid rapid testing, school opening, lockdown. 

ata for each keyword with in each of 19 selected states were ob- 

ained. 

Wastewater COVID-19 measurement Wastewater COVID-19 

ata in Massachusetts (MA), Ohio (OH), and Arizona (AZ) were 

btained through the following links: MA: https://www.mwra.com/ 

iobot/biobotdata.htm; OH: https://coronavirus.ohio.gov/wps/portal

ov/covid-19/dashboards/other-resources/wastewater; AZ: https:// 

ata.tempe.gov/datasets/covid-wastewater-results-public-view/ 

ata?selectedAttribute = Day. Data in Arizona was limited to Tempe 

ity, while MA and OH data came from multiple sites across the 

tates. MA had the most consistent daily measurements since 

arch 2020, while the measurements in OH and AZ were less 

requent since July and April in 2020. The units of all the data 

ere converted into number of copies per liter of wastewater. 

ata of MA and AZ were averaged by week, while in OH data were 

ggregated weekly by taking the median measurements across 

ultiple sites and different days to the reduce the effect of some 

xtreme measurements. 

.2. Analytical methods 

Sentiment The sentiment score for each news was calculated 

y aggregating the polarity scores from each word in the title using 

he vaderSentiment package from NLTK. 

Search news of a specific topic The title, headline, and content 

f each news item were concatenated and all characters were 

onverted to lower case. Punctuation, text in square brackets, 

ords containing numbers, stop words from NLTK, and state 

ames were removed. The remaining words were tokenized 

nd lemmatized with NLTK packages. The Word2Vec embed- 

ings from pre-trained deep neural network on Google News 

https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors- 

egative300.bin.gz) were imported and used to vectorize each 
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ews item with the mean of word embeddings for each word 

n that article. Similarly, specific topics represented by some 

eywords were vectorized by the mean word embeddings for each 

ord (e.g., “school reopen”: “school reopen reopening schools op- 

rating schools students teachers”; “lockdown”: “lockdown restrict 

estrictions”). 

The similarity between each news item and a specific topic was 

easured by calculating the cosine of the angle between the two 

ectors that represent them: 

os ( θ ) = 

A . B 

| | A | | | | B | | = 

∑ n 
i =1 A i B i √ ∑ n 

i =1 A 

2 
i 

√ ∑ n 
i =1 B 

2 
i 

here A and B represent the vectors of the news and the topic, 

espectively. 

Cosine similarity scores of 1 and –1 represent two over- 

apping vectors and two exactly opposite vectors, respectively. 

he distributions of cosine similarity scores between each news 

tem and the target topic were examined and a threshold of 

ean + 2 × standard deviations was chosen to qualitatively iden- 

ify news related to the target topic. 

Cluster news The sum of squared distances of samples to their 

losest cluster center and the mean Silhouette Coefficient of all 

amples were calculated with functions in scikit-learn package: K- 

eans (default settings) and silhouette_score (metric = “cosine”) 

hen vectorized news item were split into different numbers of 

lusters (1–50) using K-Means. The optimal number of clusters 

eading to a low intra-cluster distance and a high mean Silhouette 

oefficient was used. The most frequent words within each cluster 

ere used to represent each cluster. 

Aggregate data by week Daily COVID-19 news numbers were 

ummed by week since the daily news numbers were generally 

mall ( < 10) in most states. The fraction of news related to a spe-

ific topic was calculated by dividing the number of target news 

tems by the total number of news items in each week for each 

tate. New weekly COVID-19 cases were derived by differencing 

ccumulative case numbers reported in each state. The weekly av- 

rage Google Trends of specific terms and wastewater COVID-19 

easurement were used. 

Burst model The “burst_detection” package (https://github. 

om/nmarinsek/burst_detection) that implements Kleinberg’s burst 

etection algorithm for batched data [26] was used in this study. 

n this model, there are two possible states: baseline state (lower 

robability) and bursty state (higher probability). The probability 

f baseline state ( p 0 ) is the overall proportion of target events: 

p 0 = 

R 

D 

here R is the sum of daily target news items (e.g., “school reopen”

r “lockdown” related news or news with negative sentiments) and 

 is the sum of all daily news items in each week. 

The bursty state probability ( p 1 ) is equal to the baseline proba- 

ility multiplied by some constant s . 

p 1 = s × p 0 

Based on the news data, s = 2 was used to detect bursts for 

school reopen” or “lockdown” related news and s = 1.2 was used 

or COVID-19-related news with negative sentiments. 

Two things could determine which state the system is in at any 

iven time: the difference between the observed proportion and 

he expected probability of each state denoted by sigma: 

( i , r t , d t ) = −ln 

[(
d t 
r t 

)
p r t 

i ( 1 − p i ) 
d t −r t 

]
here i is the state (0: baseline state; 1: bursty state), d t and r t 

re the number of target news and total news in each week. the 
135
ifficulty of transitioning from the previous state to the next state 

enoted by the transition cost, tau: 

= ( i next − i pre v ) × γ × ln ( n ) 

here n is the number of weeks and γ is the difficulty of transi- 

ioning to higher states. Note that there is no cost associated with 

taying in the same state or returning to a lower state. γ is criti- 

al to exclude false bursts generated from a small number of news, 

nd thus a specific γ was chosen to ensure that only time points 

ith enough news (more than the median of total news number 

cross all time points) were identified as bursts. 

The total cost of transitioning from one state to the other is 

qual to the sum of two functions above. The optimal state se- 

uence q that minimized the total cost would be characterized by 

he Viterbi algorithm. The weight of a burst that begins at t1 and 

nds at t2 can be estimated with the following function: 

eight = 

t2 ∑ 

t = t 1 
( σ ( 0 , r t , d t ) − σ ( 1 , r t , d t ) ) 

Burst weight demonstrates how much cost is reduced when the 

ystem is in a burst state versus the baseline state during the burst 

eriod. The greater the weight, the stronger the burst would be. 

Correlation analysis Spearman’s rank correlation coefficient 

as calculated to determine the correlation between weekly 

OVID-19 case numbers and various weekly aggregated signals. 

ime-lagged cross-correlation (TLCC) was used to identify the di- 

ectionality between two time-series signals such as a leader- 

ollower relationship in which the leader (e.g., Google Trends and 

ews volume) initiates a response which is repeated by the fol- 

ower (COVID-19 case numbers). TLCC was measured by incremen- 

ally shifting one time series vector and repeatedly calculating the 

orrelation coefficient between two signals. Specifically, it was im- 

lemented with pandas functionality (datax.corr(datay.shift(lag)), 

here datax and datay are two time series signals and lag is the 

hifting window). The correlation analyses were made for each 

tate individually. 

Predict COVID-19 trends with Prophet model In this study 

ue to the nature of weekly aggregated data, the component of 

aily/weekly/yearly seasonality or holiday was not used in the 

rophet model [23] . Only time-series signals that were shown 

s early predictors of COVID-19 trends (Google Trends of “COVID 

esting”, “covid rapid testing”, “COVID symptoms”, and “lock- 

own”, and COVID-19 related news volume: “news count”) were 

hifted and used as extra regressors in the Prophet model via the 

add_regressor” function. The extra regressor must be known for 

oth historical and future dates. Therefore, it must either be some- 

hing that has known future values or something that can be fore- 

asted elsewhere. Here, the time series data of these early predic- 

ors were shifted by one or two week(s) to generate the future val- 

es since they were leading COVID-19 case numbers for 1-3 weeks 

rom the correlation analyses. Columns with these extra regressor 

alues were put into both the fitting and prediction data frames. 

he default settings were used in the Prophet model since perfor- 

ance was not improved by tuning parameters like “mode” and 

prior_scale”. The Prophet model was applied to data from each 

tate. The data from the last five weeks were used as the test 

ata to measure its performance. The following statistical measures 

ere used: 

Mean Absolute Error (MAE): 

AE = 

1 

N 

N ∑ 

k =1 

| z k − ̂ z k | 

Mean Absolute Percentage Error (MAPE): 

AP E = 

1 

N 

N ∑ 

k =1 

∣∣∣∣ z k − ̂ z k 
z k 

∣∣∣∣



Z. Liu, Z. Jiang, G. Kip et al. Pattern Recognition Letters 158 (2022) 133–140 

Fig. 1. Search for “school reopen” related news with an NLP pipeline using Word2Vec embeddings. (A) Detailed procedures to identify “school reopen” related COVD-19 

news. (B) The times of occurrence of 13 clusters of news, each of which is represented by its two most frequent words. (C) The distribution of cosine similarity scores with 

“school reopen” in each cluster, red asterisks represent the mean. (D) Examples of “school reopen” related COVID-19 news that pass the threshold (0.5104). Blue and red 

mark news that have the largest and smallest cosine similarity scores, respectively. 

Table 1 

Notations used in this article. 

Parameters Notation Used 

Cosine similarity score cos (θ ) 

Vector representing each news A 

Vector representing the target topic B 

Probability of baseline state p 0 
Probability of bursty state p 1 
Sum of daily target news numbers R 

Sum of all daily news numbers D 

Constant to calculate the bursty state probability s 

Difference between observation and expectation σ

State i 

Week t 

Number of target news of the week r t 
Number of all news of the week d t 
Transition cost τ

Difficulty of transitioning to higher states γ

Number of weeks n 

Optimal state sequence q 

Burst weight weight

Mean absolute error MAE 

Mean absolute percentage error MAPE 

Total number of weeks in the test data N 

Week in the test data k 

Actual value of the week z k 
Predicted value of the week ̂ z k 
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here z k denotes the actual value and 

̂ z k denotes predicted value 

or the k th week. N is the total number of weeks in the test data

Table 1) . 

. Results 

.1. Id entify news of a specific topic 

The NLP pipeline to extract news on a specific topic like “school 

eopen” was shown in Fig. 1 A. Each news and target topic were 

rst preprocessed and then vectorized by averaging word embed- 

ings in the article and topic, respectively. A cosine similarity score 

as calculated using these two vectors. Thresholding the cosine 

imilarity scores could identify news related to the target topic. 

he identified news as well as clustering news based on the vec- 

ors were manually examined to validate the pipeline. 33,083 vec- 
136 
orized COVID-19 news from 19 states were divided into 13 clus- 

ers based on K-means clustering algorithm (Fig. S1) and each 

luster was represented by the most frequently occurring words 

 Fig. 1 B and Table S1). Different groups of news like “election”

cluster 2), “school” (cluster 3), “prison” (cluster 5), “sports” (clus- 

er 7), and “vaccine” (cluster 11) were successfully characterized 

y clustering their vectors. Furthermore, the times of occurrence 

f these clusters were consistent with real situations as shown in 

ig. 1 B. For example, “school”-related news (cluster 3) occurred 

n June 2020 when the second wave of COVID-19 arrived in US, 

eading to numerous discussions on school opening/closing. The 

ccurrence of “sports” news (cluster 7) was centered in Septem- 

er when major sports leagues started or resumed their seasons 

NFL: 09/10/2020; NBA: 07/30/2020; MLB: 07/23/2020). Most of 

vaccine” related news was reported in the end of the year when 

he first two COVID-19 vaccines were approved for emergency use 

Pfizer-BioNTech: 12/11/2020; Moderna: 12/18/2020). These results 

emonstrated vectors generated from Word2Vec embeddings accu- 

ately captured the information in the news. 

To identify the news of a specific topic, a cosine similarity score 

as calculated between the vectors representing the topic (e.g., 

school reopen”) and the news. As shown in Fig. 1 C, news in clus- 

er 3 representing “school” had significantly high cosine similarity 

cores with “school reopen” compared to other clusters. The distri- 

utions of cosine similarity scores of all news articles with “school 

eopen” and “lockdown” were shown in Fig. S2A and S2B, respec- 

ively. An arbitrary threshold of mean + 2 × SD shown by the 

ed dashed lines was used to identify the target news items. Ti- 

les of some examples related to “school reopen” and “lockdown”

ere shown in Fig. 1 D and Fig. S2C, respectively. While news with 

igher similarity scores were more related to the topic, most se- 

ected news items that passed the threshold was associated with 

he chosen topic. Therefore, this pipeline is very efficient to sort 

ut news based on search terms. It is noteworthy that search terms 

an be tweaked to obtain a more accurate vector to represent a 

pecific topic. 

.2. Correlation between various signals and COVID-19 case 

umbers 

Besides “school reopen”- and “lockdown”-related news, many 

ther signals were extracted from news, GT data, and viral mea- 
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Fig. 2. Align various signals with COVID-19 case numbers. (A) signals extracted from various data sources to track COVID-19 cases. (B) Several signals correlate well with 

COVID-19 case numbers in Massachusetts. r represents the Spearman’s rank correlation coefficient. 
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urements in wastewater as shown in Fig. 2 A. Since the signals ex- 

racted from news were generally related to government policies, 

ivotal events, or public opinions which could influence COVID- 

9 trends, Kleinberg’s burst detection model [26] was used to de- 

ect “bursts of activity” when these signals increased sharply (see 

urst model in Experimental), aiding in the monitoring of epi- 

emic spread (Fig. S3). All signals were then aligned with COVID- 

9 case numbers and their correlations were examined in each 

tate ( Figs. 2 B and S4). Across different states, GT of COVID-19 

elated terms (e.g., “COVID testing”, “covid rapid testing”, “COVID 

ymptoms”) and wastewater COVID-19 measurement correlated 

ell with COVID-19 cases ( Figs. 2 B and S4), while signals obtained 

rom news and their bursts had variable correlations with COVID- 

9 cases (Fig. S3 and S4). In some states like Massachusetts and 

rizona, correlation of news volume with COVID-19 cases were 

igh ( Figs. 2 B and S4). In addition, many redundant signals cor- 

elated well with each other as shown in Fig. S5. It is noteworthy 

he counts of various specific news generally correlated well with 

otal news count, indicating count signals of news of various topics 

ere biased by total number of news items and thus the ratio sig- 

als that were normalized by total count of news items were used 

n the following analyses. 

.3. Synchrony analysis 

To further identify signals that could be predictors of COVID- 

9 case numbers, Time-Lagged Cross-Correlation (TLCC) between 

ach of these signals and COVID-19 case numbers was calculated 

see Correlation Analysis in Experimental). Essentially, correlations 

etween two time series signals were repeatedly examined when 

ne signal was incrementally shifted. If the peak correlation is at 

he center (offset = 0), two signals are most synchronized at the 

ame time. However, the peak correlation may be at a different off- 

et if one signal leads another. While there were large variations 

or the offsets between signals derived from news and COVID-19 

ases, the offsets of GT of “COVID testing”, “covid rapid testing”, 

COVID symptoms”, and “lockdown”, and COVID-19 related news 

olume (“news count”) with COVID-19 case numbers were gener- 

lly consistent and had median values of -3 to -1 across different 

tates ( Figs. 3 A–G and S6), indicating a leader-follower relation- 

hip between these signals and COVID-19 cases. With small sample 

izes and inconsistent samplings, wastewater COVID-19 measure- 

ent (“mean_copies_per_liter”) in three states synchronized with 

he COVID-19 case number, consistent with the previous study 
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15] . These analyses indicated that GT of “COVID testing”, “covid 

apid testing”, “COVID symptoms”, and “lockdown”, and news vol- 

me (“news count”) could potentially serve as early predictors for 

OVID-19 cases. 

.4. Predicting future COVID-19 case numbers with the Prophet model 

To apply these early predictors into a forecast model, single and 

ultiple time series signals were shifted and used as extra re- 

ressor(s) in the Prophet model to predict future COVID-19 trends 

see Predict COVID-19 trends with Prophet model in Experimen- 

al). Fig. 4 A demonstrated the mean absolute percentage errors 

MAPEs) of predicting COVID-19 cases in one week in each state 

sing Prophet models incorporating different signals. As shown in 

ig. 4 B, though including some signals as single extra regressor did 

ot improve the model’s prediction accuracy, the error rate was 

educed when all chosen signals were integrated into the model. 

hen only two signals (GT of “COVID testing” and “COVID symp- 

oms”) that led to a smaller MAPE as a single extra regressor were 

sed, the mean error rate was almost the same with that of the 

odel using all metrics. However, in states with large mean ab- 

olute errors (MAEs) like California, Ohio, Tennessee, Illinois, Mas- 

achusetts, and Arizona, the model using two selected signals per- 

ormed much worse than the model including all signals (Fig. S7). 

ncluding wastewater measurements in the model could signifi- 

antly improve the model’s accuracy even though the data was 

imited to three states ( Fig. 4 C). The MAPEs of predicting COVID- 

9 cases in different number of weeks were shown in Figs. 4 D and

8. Although the mean prediction errors generally became larger 

s the time span of prediction increased, the median MAPE of 

wo weeks were the same with that of one week. More impor- 

antly in many states like California, Texas, and Florida that had 

arge number of COVID-19 cases, MAPEs of the prediction in two 

eeks were much smaller compared to in one week. These results 

emonstrated that these signals could be used to predict COVID- 

9 cases two weeks in advance, consistent with the results of syn- 

hrony analysis. 

. Discussion 

In this article, we aimed to extract more granular signals from 

vailable public data to forecast future SARS-CoV-2 spread. We 

uilt a simple NLP pipeline that could accurately extract news of 

 specific topic. With the pretrained Word2Vec embeddings, this 
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Fig. 3. Lead-lag correlation of weekly COVID-19 cases with some representative signals across different states. (A-F) Correlation coefficients with different offsets between 

two time-series measurements. Each line represents a state. (G) Boxplot of offsets that generate the maximum correlation coefficient across 19 states. Similar signals are 

labeled with the same color. Purple dashed line represents offset of 0. Red dashed line represents the median offset across different states. 

Fig. 4. Predicting future COVID-19 cases with selected metrics using the Prophet model. (A) Mean absolute percentage errors (MAPEs) of predicting COVID-19 case in one 

week with different Prophet models in each state. (B) Boxplot of MAPEs in (A) grouped by different Prophet models. (C) Barplot of MAPEs in predicting COVID-19 cases in 

one week using the Prophet model that incorporates different metrics including wastewater COVID-19 measurements. (D) Boxplot of MAPEs of predicting COVID-19 cases in 

1, 2, 3, and 4 weeks across different states using the Prophet model + all above metrics. Green triangles and numbers in (B) and (D) represent the mean MAPE within each 

distribution. 
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ipeline could identify any specific news item, including public 

entiment on various containment policies, and build a time se- 

ies dataset for that topic, which is novel and extensible for a vari- 

ty of scenarios. On top of these time series signals, we applied a 

urst model to mark bursty time points when special events broke 

ut. From the signal of news with negative sentiment the burst 

odel successfully captured the time point when the first con- 

rmed death from COVID-19 was reported in several states (data 

ot shown). We did not find good correlations between the sig- 

als obtained from news data with COVID-19 cases, indicating that 

here were many other confounding factors underlying these sig- 

als. For example, the amount of news was small even for large 

tates due to the strict filtering step (i.e., the title must contain 

he state name and COVID-19 related terms) in obtaining regional 

OVID-19 news. In the future, we may use alternative approaches 

uch as a classification model [27] to obtain more news data. In 

ddition, this pipeline can be applied to other related but more 

bundant data sources like Twitter and Facebook posts to extract 

nformative signals. 

In contrast to news signals, Google Trends (GT) correlated well 

ith COVID-19 case numbers and, more importantly, led 1-2 weeks 

head of the COVID-19 case numbers in almost every state that 

xamined, consistent with previous studies [ 13 , 14 ]. Interestingly, 

he lag between GT and COVID-19 case number has a very simi- 

ar range with the virus incubation period [28] , suggesting people 

ay search for COVID-19 because they suspect that they may have 

een exposed to the virus even though they are asymptomatic. We 

ncorporated some GT signals as extra regressors in the Prophet 

odel to predict the future COVID-19 case numbers, and found 

hey significantly improved the model’s performance. Based on 

hese results, it would be worthwhile to integrate these signals 

ith other COVID-19 forecasting models [ 29 , 30 ]. 

With limited data, we also demonstrated that the signal from 

astewater COVID-19 measurement aligned with COVID-19 case 

umber and could further reduce the Prophet model’s prediction 

rrors, especially in Massachusetts, which provided an adequate 

nd consistent number of measurements. As more states/counties 

ave been applying this technology [17] , more data will be gener- 

ted and reported, providing another valuable dataset that can be 

ncorporated into the COVID-19 forecasting model. 

As this framework is scaled up to cover more regions or larger 

ime spans, one issue that we might confront is the sparse time 

eries data, especially for news signals. For example, some regions 

ight be under-reported in the news. One potential solution is 

o make the data less granular by deriving time sequence using 

onth and week instead of actual date, though the resultant pre- 

iction will also be less granular and hence less useful. Another so- 

ution worth exploring is predicting missing data with latent fac- 

or models that have been commonly used in the recommender 

ystem to quantify user-item preference [ 31 , 32 ]. This will enable 

any further analyses, though the prediction of these missing val- 

es must be carefully validated. 

Here, we integrated various signals into an additive Prophet 

orecasting model, which might not make the best use of these 

ata. For example, bursty signals as a binary signal did not corre- 

ate well with continuous COVID-19 case numbers and thus were 

ot included as a regressor in the model. Therefore, a new model 

pecific for integrating these signals like [33] may generate more 

ccurate predictions. 
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