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A community effort to protect genomic data sharing,
collaboration and outsourcing
Shuang Wang1, Xiaoqian Jiang1, Haixu Tang2, Xiaofeng Wang2, Diyue Bu2, Knox Carey3, Stephanie OM Dyke4, Dov Fox5, Chao Jiang1,
Kristin Lauter6, Bradley Malin7, Heidi Sofia8, Amalio Telenti9, Lei Wang2, Wenhao Wang2 and Lucila Ohno-Machado1

The human genome can reveal sensitive information and is potentially re-identifiable, which raises privacy and security concerns
about sharing such data on wide scales. In 2016, we organized the third Critical Assessment of Data Privacy and Protection
competition as a community effort to bring together biomedical informaticists, computer privacy and security researchers, and
scholars in ethical, legal, and social implications (ELSI) to assess the latest advances on privacy-preserving techniques for protecting
human genomic data. Teams were asked to develop novel protection methods for emerging genome privacy challenges in three
scenarios: Track (1) data sharing through the Beacon service of the Global Alliance for Genomics and Health. Track (2) collaborative
discovery of similar genomes between two institutions; and Track (3) data outsourcing to public cloud services. The latter two tracks
represent continuing themes from our 2015 competition, while the former was new and a response to a recently established
vulnerability. The winning strategy for Track 1 mitigated the privacy risk by hiding approximately 11% of the variation in the
database while permitting around 160,000 queries, a significant improvement over the baseline. The winning strategies in Tracks 2
and 3 showed significant progress over the previous competition by achieving multiple orders of magnitude performance
improvement in terms of computational runtime and memory requirements. The outcomes suggest that applying highly optimized
privacy-preserving and secure computation techniques to safeguard genomic data sharing and analysis is useful. However, the
results also indicate that further efforts are needed to refine these techniques into practical solutions.
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INTRODUCTION
Rapid advances in sequencing technologies have enabled the
meaningful use of human genomic data in a wide range of
healthcare and biomedical applications.1 All of Us program,
formerly known as Precision Medicine Initiative will generate
genomic data, in combination with electronic health records and
participant-reported data, from approximately one million US
residents with diverse backgrounds.2 The availability of such data
creates many exciting opportunities to accelerate scientific
discovery, engineer better and targeted therapies for patients,
and, ultimately, improve health. Given the large amount of
genomic data, efficient sharing, proper storage and rapid
processing are critical to reach such goals. However, various
challenges have emerged in managing, sharing and processing
large-scale human genomic data, as they may require extensive
computing resources and cross-institutional collaborations that
may raise privacy concerns.
Several studies have demonstrated the vulnerability of human

genomic data if they are insufficiently protected: re-identifying
patients from an ‘anonymous’ database,3–6 reconstructing allele
frequencies for individuals,7 predicting predisposition to dis-
eases,3,7,8 and even building a 3D face from human genomic
data.9 As genomic information is shared among blood relatives,

the improper disclosure of individual genomic data may affect
family members’ privacy.10,11 Privacy concerns are further
heightened when considering the irrevocable character of human
genomic data once they are disseminated. As methods pro-
gress,8,12 new privacy threats are likely to emerge. For example, a
new privacy risk from genomic data sharing (GDS) Beacons
project13 was recently reported by Shringarpure et al.8 Beacons
are web-based services that answer queries about allele presence,
such as whether a specific nucleotide (e.g., T) exists in a data set
for a specific genomic position (e.g., on chromosome 2 in position
12,345). Shringarpure et al. demonstrated that an individual can
be re-identified by repeatedly querying the genome data sets via
an open-access Beacon for alleles associated with an individual’s
genome, with each query increasing the statistical confidence
regarding the victim’s presence in the data set. Furthermore,
genomic data from populations with rare diseases may have
higher re-identification risk than those from populations with
common diseases.14

In addition to existing technical strategies for protecting
genome data privacy,12,15–22 several policies and regulations have
been enacted. For example, the 2014 GDS Policy of the National
Institutes of Health requires human genomic data to be de-
identified23 before being shared. The GDS specifically indicates
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that de-identification should be accomplished by, at the very least,
removing the 18 explicit and quasi-identifiers defined in the Safe
Harbor method of the Privacy Rule for the Health Insurance
Portability and Accountability Act of 1996 (HIPAA). However, as
has been alluded to, various studies show that genomic data
without explicit identifiers are still subjected to certain privacy
risks.5,7 Therefore, it is necessary to better understand the limits of
existing technical protections and continue to develop novel
solutions to enhance privacy protection in human genomic data
access, sharing, and analysis.12,24 To stimulate these efforts, we
began organizing the annual Critical Assessment of Data Privacy
and Protection (CADPP) competitions in 2014 to evaluate the
state-of-the-art in human genome privacy protection and secure
computation technologies.19,20,25 Here, we will review the first two
CADPP competitions and then focus on the discussion of the
current progress observed in the 3rd CADPP competition.

COMMUNITY EFFORTS FOR PROTECTING HUMAN GENOMIC
DATA PRIVACY
Given the utility of human genome data and their sensitive nature,
it is imperative to develop practical and rigorous privacy
protection methods. Several recent surveys12,24 discussed relevant
techniques. It remains unclear how well existing privacy protec-
tion techniques can be effectively applied to large-scale human
genomic data. This happens because there is often a lack of direct
comparison of different methods in real-world scenarios, which
makes it difficult for researchers to understand their capabilities
and limitations.
We organize competitions with open challenges to tackle

emerging privacy issues that have direct impact on human
genomic research. The organizing committee consults with
human geneticists to carefully select tasks of broad interest.
Members of the committee developed baseline algorithms to
assess the feasibility of these tasks and clearly define the criteria
for performance evaluation. In 2014, we organized the first CADPP
competition19 to call for practical and privacy-preserving solutions
based on the differential privacy26 framework for protecting the
outcome of genomic data analysis. The best solutions showed
encouraging results, with potential use in GWAS while providing
provable privacy guarantees.19,27,28 The 2014 competition, how-
ever, did not address privacy and security issues of storage and
computation, which are among the most critical when utilizing
cloud computing services to conduct human genomic research.
Thus, in 2015, we organized the second CADPP competition to
solicit secure solutions on protecting genomic data analytics in the
cloud.20 Despite the exciting progress demonstrated in that
competition (e.g., certain secure solutions such as homomorphic
encryption have been improved significantly), there remained
many emerging problems (e.g., the emerging re-identification risk
on the Beacon system8) that needed to be addressed, which
motivated the third, and most recent instantiation, of the
competition in 2016.
The third competition extended the scope to tackle three

current genomic data privacy challenges in real world environ-
ments, Track 1 focused on hardening Beacons from detection of
an individual’s presence in a data set. Track 2 focused on how to
support privacy-preserving searches of patient genomic data
across organizations. Track 3 focused on securing data resulting
from genetic testing in a public cloud. We received a total of
17 solutions from 16 teams in 7 countries. A full list of the
participating teams can be found on the 2016 CADPP competition
website.25 A two-member team from Vanderbilt University, a six-
member team from IBM, Cornell University and Bar-Ilan University,
and a seven-member team from Microsoft Research won Tracks 1,
2, and 3, respectively. In addition, more than 50 teams from 13
countries attended the competition workshop.

We believe both competitions and traditional paper publishing
can further the advancement of the science of genomic privacy.
Here, we take a moment to review advantages that competitions
enable in promoting genomic privacy research. First, there are
often gaps among different research communities (e.g., security,
genetics, and bioethics) that focus on the topic of genomic
privacy. For example, papers from the cryptography community
tend to focus on technical contributions (e.g., advanced protection
models) that may be ill-posed for real-world applications or
neglect ethical or regulatory concerns that can be complemented
by researchers from other fields. Without designing specific tasks
in competitions, different published papers may focus on different
use cases with different protection schemes or from different
perspectives. Through the competitions, we can create bench-
marks of the state-of-the-art solutions for researchers, policy
makers and funding agencies. Therefore, one can gain a better
understanding of the capabilities of the current technology
available for protecting large-scale genomic data. Additionally,
tasks involved in competitions are often tailored toward real-world
biomedical applications through coordination with researchers
and practitioners from different fields, which we believe helps in
the prioritization of genome privacy research. Specialized scientific
news outlets such as Nature News29 and GenomeWeb30–32

reported on these events, showing an increasing interest on
genomic privacy protection in the biomedical community at large.
In the rest of this article, we will focus on the discussion of

results and key findings of the competition. Accepted papers that
describe the details of the solutions provided by teams can be
found in a special issue of BMC Genomic Medicine focused on the
competition.33 Since only a subset of the teams submitted papers
to the BMC special issue, we also provide a link on our
competition website25 to recordings of their presentations for
readers who may be interested in the technical details.

TRACK 1: PRACTICAL PROTECTION OF GDS THROUGH BEACON
SERVICES
The international Beacon project was designed as a public web
service to enable institutions to share summary information about
genomic data repositories. Specifically, Beacon allows for users to
query for the the existence of any genomes given the query inputs
as variant, position and chromosome. Currently, there are more
than 200 programs involved that contribute to the Beacon
Network. However, Shringarpure and Bustamante8 (SB) demon-
strated that, under the right circumstances, a malicious user could
identify the presence of an individual behind a beacon through
repeated queries of the individual’s genomic variants.
Given the vulnerability of such beacons, we designed the first

challenge to solicit approaches to mitigate a modified SB model.
For this challenge, we constructed a Beacon database of 500
genomes from the 1000 Genomes project.34 In the modified SB
model, the allele frequencies derived from the 1000 Genomes
project were utilized instead of a presumed distribution of allele
frequencies in the original SB model. The evaluation of Track 1 was
based on both the detection power and the utility of the solutions.
More specifically, with a detection power no greater than 0.6 (in
terms of the likelihood ratio test), we evaluated how much utility
(in terms of the maximum number of correct responses through a
series of random queries) could be preserved by the various
solutions.
In our previous work,35 three different mitigation models were

proposed: (S1) Beacon alteration strategy; (S2) Random flipping
strategy; and (S3) query budget per individual strategy. However,
we only include the results of the S2 models as our baseline
performance for the 0.2 and 0.18 flip probabilities. We consider S2
as a more sophisticated version of S1 by flipping only a portion of
the unique alleles. This results in a more fine-grained control
between utility and privacy. As a consequence, we did not include
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S1 as the baseline during our evaluation. S3 was not chosen as a
baseline in Track 2 because we assumed the beacon service does
not keep track of the queries per individual. The performance of
our baseline35 and performance of the top two teams, the first
from Vanderbilt University36 and the second from the University of
Manitoba,37 are depicted in the Fig. 1. The performance from both
participating teams significantly outperformed our baseline. The
winning solution from Vanderbilt was able to answer 160,000
queries without presenting the malicious user with any detection
power. However, on the utility side, an error rate of 0.115 was
observed over the 160,000 queries. The error rate is defined as (1
− # of correct response)/(# of queries).

TRACK 2: PRIVACY PRESERVING SEARCH OF SIMILAR CANCER
PATIENT ACROSS ORGANIZATIONS
The motivation for Track 2 is to enable two institutions to jointly
perform certain genomic analyses without directly sharing
genomic data. The outcomes of this track demonstrated the
feasibility of applying secure multiparty computation to this
problem. This is important because patients with similar genomic
variants might provide clues to the associated disease. This claim
is justified by a recent Science paper38 that reported on applying
secure multiparty computation to study common phenotypes of
patients who share the same rare variants across two hospitals. In
this track, we asked teams to develop SMC solutions for a scenario
where privacy was required for coordination between two
institutions. Specifically, one institution hosts a private database
of patient genomes, while the other institution has a private
genome from a single patient to compare against the database.
The institutions aim to identify the top k most similar patients
without leaking information other than the final results. Due to
computational complexity concerns (e.g., execution time) based
on our baseline implementation, the ZNF717 gene sequences with
~3470 bps encoding of a BRAB zinc-finger protein were used to
query databases with 500 patients. The selection of such a data set
ensures that most solutions could be evaluated within a few
minutes. This was at the expense of an extensive evaluation
involving longer genomic sequences and a larger number of
records.
In Track 2, similarity was defined as the Levenshtein distance

between two genomes. However, determining the exact distance
is computationally expensive, so we allowed solutions to adopt
any approximation methods to speedup the computation and
preserve as much accuracy as possible. We assessed the solutions
in terms of (1) accuracy (i.e., proportion of returned genomes that
were truly in the top k) and (2) speed in computation and
communication costs. We established a real-world environment
with a private database and private query programs hosted at
Indiana University (with a 4-core Intel(R) Xeon(R) CPU at 3.07 GHz

and 4.03GB memory) and University of California at San Diego
(with the secure configuration), respectively. We selected k equal
to 1, 3, and 5 as benchmarks for the competition because to be in
alignment with the typical risk assessment levels applied by
privacy professionals.39 All results were averaged over 5 runs.
Table 1 summarizes the results of Track 2 from the participating

teams. The solution from the IBM team 1 provided the best
performance with a runtime under 12 s and an accuracy that
implied the top k list was never off by more than one instance.
During the workshop,25 the IBM team also demonstrated that their
solutions were scalable to handle a larger database of 4000
patients. With respect to the privacy/security concern, each team
had to provide a note that explained the underlying algorithms
with at least a 80-bit security guarantee. The algorithms were
peer-reviewed by security experts. In addition, the organizers have
reviewed the submitted implementation. However, the potential
risks due to implementation bugs were not considered during our
evaluation. We rank solutions in the order of accuracy and speed
with the constraint that the execution time should be no longer
than 3600 s.

TRACK 3: TESTING FOR GENETIC DISEASES ON ENCRYPTED
GENOMES USING PUBLIC CLOUDS
Cyber-infrastructure that has been developed for handling
industry applications of big data (e.g., Open Science Grid, Amazon
EC2, Microsoft Azure and Google Cloud) can be leveraged to
manage, process and share large-scale genomic data in a
sustainable manner. The NIH GDS policy23 states that genomic
data downloaded from NIH databases can be processed in public

Fig. 1 Performance of Track 1 in terms of detection power vs. the number of Beacon queries for the top two entries: Vanderbilt University
(center) and University of Manitoba (right), as well as our baseline (left). The error rate is defined as the number of correct responses over the
total number of queries issued by a malicious user

Table 1. Results for competition Track 2 (secure collaboration), where
“Accuracy@k” is defined as the average of all correctly identified top k
results over 5 runs using databases with 500 patients records

Team Run time (s) Accuracy@k

Top 1 Top 3 Top 5 Top 1 Top 3 Top 5

IBM Team 1 11.37 11.41 11.62 1 3 4

Indiana University at
Bloomington45

209.03 273.14 337.79 1 3 4

University of
Manitoba46

22.65 22.99 22.88 0 2 2

Cybernetica AS 80.97 67.47 64.64 1 1 1

University of Maryland 12.93 21 30.4 1 0.67 2.3

RWTH Aachen
University

5700 >6300 >6300 1 3 5

The bold values indicate the best performance among teams
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clouds, but that the researchers and their institutions, as opposed
to the cloud providers or NIH, are responsible for ensuring data
security and privacy in such a cloud.23

The motivation for Track 3 was to develop novel solutions for
securely outsourcing computation and storage of human genomic
data to untrusted cloud environments. The outcomes of this track
demonstrated that certain genomic analysis tasks can be
efficiently evaluated over homomorphically encrypted data with
task-specific optimization (e.g., data batching and hashing
schemes). In Track 3, we allowed the participating teams to
assume a semi-honest threat model, where the untrusted public
cloud follows the protocol, but try to gain more information than
allowed from the protocol. As an exemplary scenario, McLaren
et. al.40 studied a real-world application for privacy-preserving
genomic testing in the clinic, where 4149 variants from 230 HIV
patients in Swiss HIV cohort study were homomorphically
encrypted and outsourced to a storage and processing unit (i.e.,
an untrusted cloud). This study demonstrated the feasibility of
searching on these encrypted data for ancestry inference and risk
test computation.
The challenge in this track was to hide all data, query and access

patterns from the cloud service provider about a genetic test. We
specifically focused on the genetic testing case of Charcot-Marie-
Tooth disease type 2I as it is associated with various single
nucleotide variations according to the ClinVar database.41 We
required participants to adopt homomorphic encryption to
support long-term storage of the data and support a high level
of security (at least 80 bits). The computation needed to be
completed in one round of query and response and should
retrieve less than 20 variants in each search. We instantiated the
system to be a client-server model with an 10Mbps network to
resemble a typical cloud database, where the server has an Intel
Xeon E3-1275v5 CPU at 3.6 GHz with 64GB memory. The
performance of the proposed solutions were evaluated by
computation time, storage space, and communication cost. Here,
we consider the computation time as the primary metric in our
evaluation. We prepared three different evaluation scenarios as
follows: (1) one query with four variants against one VCF file with
10,000 records as a baseline performance for testing all solutions;
(2) one query with four variants against one VCF file with 100,000
records to evaluate the scalability of the number of records for all
solutions. (3) one query with one variant against 50 VCF files with
100,000 records to evaluate the scalability of both the numbers of
patients and records for all solutions. However, due to page limits,
we only report on the results of the second evaluation scenario.
The detailed evaluation results for all scenarios can be found on
our competition website.25 Table 2 summarizes the performance
of Track 3 teams by querying four variants against one VCF file
with 100,000 records on an average of 10 runs. The Microsoft
team’s solution showed the best performance in terms of the
fastest turnaround time for HME computation, results decryption
and data transferring.

DISCUSSION
In the competition, we engaged researchers from the human
genomics and computer security communities to jointly study
genomic privacy problems and provide novel solutions. We
summarize the winning solutions as follows: (1) the winning team
from Vanderbilt University proposed a strategic flipping method36

for Track 1. The key idea is to define the flipping strategy as an
optimization problem that can maximize the utility (i.e., number of
correct answers) and minimize the privacy risk (i.e., power of the
attack). Furthermore, a greedy algorithm was adopted to search
the flipping strategy space for a local optimum. (2) The IBM team
provided a winning solution for Track 2 based on the idea of a
reference-based partition strategy to approximate the Edit
distance between two sequences. More specifically, the sequences
from each institution were first aligned against a common public
reference that was shared by the two institutions. Then, given a
fixed block size of the reference genome, the aligned sequences
were further partitioned. Finally, a secure aggregation over these
block-wise Edit distances was applied to approximate the global
Edit distance between the sequences. (3) The winning solution of
Track 3 from the Microsoft team42 utilized a technique called
permutation-based cuckoo hashing. This method improves the
string-matching performance by shortening the strings that need
to be homomorphically compared. This is accomplished by
packing several queries together so that multiple queries can be
evaluated under the same HME evaluation, and allowing batch-
based SIMD (single instruction, multiple data) operations.
The latest competition demonstrated results with impressive

performance, for example, supporting a secure Beacon service to
answer 160,000 privacy-preserving queries with 88.5% accuracy,
speeding up secure sequence similarity comparison over two
distributed sequences (length > 1 million) to less than 15 s, and
conducting homomorphic genetic testing on 100k records within
4 s. Many results were encouraging in that we observed advances
on the order of several magnitudes in terms of computation
overhead reduction in comparison to the previous year.
In particular, we note that the teams’ solutions were highly

optimized with respect to the competition goals. Although many
optimization techniques designed for the current competition
tracks (e.g., data batching for SIMD computation in HME) can be
extended to support other secure genomic data analysis
applications, it remains infeasible to develop a universal secure
framework that can support arbitrary analysis tasks. For example,
data encrypted by a partial homomorphic encryption scheme can
only support a certain number of accumulated homomorphic
operations as a threshold, which limits their flexibility in reuse by
other applications that may exceed the threshold without
involving a re-encryption process.
For SMC, the competition track only considered a two-party

scenario. Extending a solution to allow for more than two parties
may result in significant computational and communicational
overhead. As mentioned in the recently published Science paper
by Jagadeesh et al.38, the scalability issues of secure two-party

Table 2. A summary of the results for Track 3 (secure outsourcing)

Team Data encryption
time (s)

Encrypted data
size (MB)

Secure computing
time (s)

Result decryption
time (s)

Total time (s) for computing,
result decryption and transfer

Microsoft42 1.86 24.00 3.09 0.02 3.63

RWTH Aachen University47 34.90 255.00 15.28 0.68 16.32

EPFL48 137.60 147.00 6.79 9.28 19.26

Seoul National University49 51.02 10.00 21.10 0.005 25.11

IBM team 2 478.10 1660.00 959.10 200.70 1178.2

Waseda University 109.72 5447.82 8937.51 0.058 8938.81
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computation are considerable. We further identified limitations in
the design of these competition tracks. For example, it is
challenging to securely compute the exact edit (or Levenshtein)
distance over long sequences without approximation. Advanced
secure analysis tasks, like regression model learning, read
mapping, and variant calling over encrypted data have yet to be
considered in our competition. Given such limitations, we aim to
develop a more extendable and flexible foundation for tackling
the emerging privacy challenges in human genomic studies and
close the technology gap in adopting these new technologies in
practice.
We also engaged researchers from ethical and legal commu-

nities in the workshop. The competition produced positive results
that show today’s current technology is capable of protecting the
privacy rights of individuals when operating certain large-scale
genomic data analysis services. As technology advances, research-
ers will be able to share genomic data on a large scale with very
low risk of leaks of potentially identifying data or of breach of
privacy regulations, such the HIPAA. Through this cooperation and
participation in the activities of the Global Alliance for Genomics
and Health (GA4GH), we aim to raise awareness of our technical
solutions and promote their adoption through community
standards such as the GA4GH Privacy and Security Policy and its
Security Infrastructure Framework, which provides standards and
implementation practices for protecting the privacy and security
of shared genomic and clinical data.
Through competitions, privacy-preserving genomic data analy-

sis models have demonstrated potential value with respect to the
safeguarding of potentially sensitive information while supporting
important studies. A recent Science paper38 by Jagadeesh et al.
and a Genetics in Medicine paper40 by McLaren et. al. demon-
strated the feasibility of using state-of-the-art models to derive
genomic diagnosis without revealing patient genomes. Existing
tools38,40 already make an impact on the genomic research
community and our competition is calling for more efficient and
scalable methods to address real world challenges. Over the last 3
years, we have witnessed significant progress and we, along with
other groups around the world, including the Global Alliance for
Health and Genomics, are working to get geneticists involved to
improve such competitions. Specifically, the 2017 workshop is co-
located with the American Society of Human Genetics annual
meeting in Orlando to seek tighter collaborations between the
two communities so we can engage geneticists and improve the
competitions.
In the near future, we will focus on transitioning the outcomes

from the competition into practice. For example, the solutions will
have accessible interfaces (along with installation and user
manuals) that allow integration into existing data-sharing portals
(e.g., secure Beacon services, public cloud, etc.). We will also
design more challenging tasks to tackle more practical problems
in biomedical research, such as performing machine model
learning over encrypted data, and adopting hardware based
solutions22,43,44 to handle genomic data analysis at the whole
genome scale.
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