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Cryopreservation induces sperm cryoinjuries, including physiological and functional

changes. However, the molecular mechanisms of sperm cryoinjury and cryoresistance

are still unknown. Cryoresistance or the freeze tolerance of sperm varies across species,

and boar sperm is more susceptible to cold stress. Contrary to boar sperm, giant

panda sperm appears to be strongly freeze-tolerant and is capable of surviving repeated

cycles of freeze-thawing. In this study, differentially expressed (DE) PIWI-interacting RNAs

(piRNAs) of fresh and frozen-thawed sperm with different freeze tolerance capacity from

giant panda and boar were evaluated. The results showed that 1,160 (22 downregulated

and 1,138 upregulated) and 384 (110 upregulated and 274 downregulated) DE piRNAs

were identified in giant panda and boar sperm, respectively. Gene ontology (GO)

enrichment analysis revealed that the target DEmessenger RNAs (mRNAs) of DE piRNAs

were mainly enriched in biological regulation, cellular, and metabolic processes in giant

panda and boar sperm. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis indicated that the target DE mRNAs of DE piRNAs were only distributed in DNA

replication and the cyclic adenosine monophosphate (cAMP) signaling pathway in giant

panda, but the cAMP, cyclic guanosine monophosphate (cGMP), and mitogen-activated

protein kinase (MAPK) signaling pathways in boar sperm were considered as part of the

olfactory transduction pathway. In conclusion, we speculated that the difference in the

piRNA profiles and the DE piRNAs involved in the cAMP signaling pathway in boar and

giant panda may have contributed to the different freeze tolerance capacities between

giant panda and boar sperm, which helps to elucidate the molecular mechanism behind

sperm cryoinjury and cryoresistance.

Keywords: piRNAs, sperm cryopreservation, freezability, boar, giant panda

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2021.635013
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2021.635013&domain=pdf&date_stamp=2021-04-22
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zengchj@sicau.edu.cn
https://doi.org/10.3389/fvets.2021.635013
https://www.frontiersin.org/articles/10.3389/fvets.2021.635013/full


Wang et al. piRNA Profiles During Sperm Cryopreservation

INTRODUCTION

Sperm cryopreservation is widely used to manage and preserve
male fertility in human and domestic animals (1). Then, artificial
insemination (AI) is extensively employed with frozen-thawed
sperm to enhance the rate of genetic improvement, especially
in cattle (2). However, sperm cryoresistance or freeze tolerance
and the post-thawed sperm quality vary across species. Less
than 1% AI with frozen-thawed boar sperm was carried out
due to the low conception rate and litter size (3, 4). It
is well-known that various factors during cryopreservation,
including rapid temperature transitions, osmotic stress, and ice
crystal formation, affect the post-thaw quality of semen (5).
Furthermore, the transcriptomics, epigenetics, and proteomics
of sperm were also modified during cryopreservation (6–
8). Despite the extensive progress that has been achieved in
optimizing the cryopreservation process through the selection of
friendly cryoprotectants and the design of better freezing and
thawing procedures to ameliorate cryodamage, the underlying
mechanisms of freeze tolerance or freezability involved in
cryopreservation have not been completely elucidated yet.

Compared with other mammals’ sperm, the higher level of
phospholipids and the lower level of cholesterol in the plasma
membrane of boar sperm contribute to the susceptibility to cold
shock or cold stress (9). Cold shock causes the rearrangement of
phospholipids, destruction of acrosomal integrity, and functional
damage to ion transporters and channels in sperm (9, 10).
However, compared with boar sperm, giant panda sperm shows
a higher freeze tolerance capacity and can sustain repeated
freeze–thaw cycles (11). Cryopreservation has no significant
impact on sperm viability and motility, and the acrosome
integrity and functional capacitation of giant panda sperm were
also not affected after repeated freeze–thaw cycles (12). Our
previous studies have shown that the transcriptomic profiles
were significantly different between boar and giant panda
sperm during cryopreservation (13). Furthermore, comparative
analysis of the transcriptomic modifications between boar
and giant panda sperm during cryopreservation indicated
that differentially expressed (DE) messenger RNAs (mRNAs)
were mainly distributed in inflammatory-related pathways, the
cytokine–cytokine receptor interaction pathway, and membrane
signal transduction-related pathways (14). These previous
studies demonstrated that cryopreservation induces different
transcriptomic modifications and may explain why sperm
with different freeze tolerance or cryoresistance capacities are
susceptible to cold stress.

PIWI-interacting RNAs (piRNAs) are small non-coding
RNAs which are germline-specific and are required to protect
genomic integrity from deleterious effects and to preserve
RNA homeostasis during male gametogenesis; they are also
associated with sperm morphology, motility, and fertility (15).
The expression of piRNAs in human sperm was correlated with
the sperm concentration and fertilization rate (16). Moreover,
a panel of piRNAs discovered in seminal plasma can serve as
fertility or infertility markers in males (17). Recently, 79 putative
piRNAs were found to be differentially expressed between low
and high motile bovine sperm after cryopreservation (18).

Therefore, we speculated that piRNAs may be involved in post-
thawed sperm cryoinjury or cryoresistance, motility, and fertility
during cryopreservation. Thus, in this study, we first evaluated
the differences in the piRNA profiles of fresh and frozen-
thawed boar and giant panda sperm, which will help to uncover
the underlying molecular mechanisms of sperm cryoresistance
and freeze tolerance and improve post-thawed sperm quality
and fertility.

MATERIALS AND METHODS

Ethical Statement, Semen Collection, and
Treatment
Fresh ejaculates from five sexually mature giant pandas with
normal physiological parameters were obtained by electrical
stimulation from the Bifengxia Base of China Conservation
and Research Center for the Giant Panda (Yaán, Sichuan,
China) according to a previous protocol (11). Briefly, giant
pandas were anesthetized by an intramuscular injection
of 10 mg/kg ketamine HCl and maintained with 0–5%
isofluorane gas. Electroejaculation was conducted by using an
electroejaculator (Boring, OR, USA); the period of electrical
stimuli (2–8V, repeated three times) was 2 s following an
intermittent break of 2 s. When penile erection occurs during
stimulation, semen was collected into a sterile glass container.
Fresh ejaculates from 11 boars were collected with the glove-
handed technique. All procedures were carried out while
strictly following the Regulations of the Administration
of Affairs Concerning Experimental Animals (Ministry of
Science and Technology, China, revised in June 2004) and
were accredited by the Institutional Animal Care and Use
Committee in the College of Animal Science and Technology,
Sichuan Agricultural University, Sichuan, China (under permit
no. 2019202012).

All ejaculates from giant panda and boar were pooled
separately and two equal groups were generated (fresh sperm
and cryopreserved sperm). Direct RNA extraction was performed
with fresh sperms, and the other group was cryopreserved
according to a previously procedure (19). Briefly, TES–Tris
(TEST) egg yolk buffer was used to dilute the giant panda sperm
(Irvine Scientific, Santa Ana, CA) to obtain 5% concentration
of glycerol. This diluted material was filled into 0.25-ml semen
straws and gradually cooled to 4◦C in 4 h, then kept at 7.5 cm
for 1min over liquid nitrogen (LN) to obtain the cooling rate of
−40◦C/min and then at 2.5 cm for 1min above LN (approximate
cooling rate was −100◦C/min), before plunging in LN until
further processing. Thawing was performed by immersing the
semen straws for 30 s in a water bath with constant temperature
of 37◦C. Semen was diluted with an equal volume of Ham’s F10
(HF10) containing 5% fetal calf serum and 25mM HEPES. Boar
sperm was cryopreserved according to the following procedure;
firstly, the sperm was centrifuged (for 5min at 1,800 rpm
and 17◦C) and then diluted with a lactose–egg yolk (LEY)
extender containing 10ml hen’s egg yolk and 40ml 11% β-lactose.
Secondly, the sperm and the extender mixture were cooled to 4◦C
(at 0.2◦C/min), and further dilution with LEY was performed
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to obtain a final 3% concentration of glycerol. Lastly, the 0.25-
ml semen straws (FHK, Tokyo, Japan) were loaded with this
mixture, sealed, and kept 3 cm above LN for 10min before being
submerged into it until future use.

RNA Extraction, Library Preparation, and
Sequencing
Before RNA extraction, seminal plasma was removed from all
the samples by washing with RNase-free water three times.
Then, 0.5% Triton (X-100) was employed in accordance with
a previous study (16) to minimize the somatic cell count
as they hinder the spermatic RNA extraction process. Then,
the TRIzol LS Reagent kit (Invitrogen, Carlsbad, CA, USA)
was utilized to extract total RNA from all sperm samples
according to the manufacturer’s instructions. The RNA samples
were pooled together equally in their respective groups before
constructing RNA libraries. Furthermore, a Nanodrop (Thermo
Fisher Scientific, Wilmington, DE, USA) equipment was used
to determine the purity and concentration of the RNA and an
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA) was employed to check its integrity. Then, a
NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB,
E7490, Ipswich, MA, USA) was utilized to isolate mRNA. The
small RNA libraries were built by using the NEB Next Ultra RNA
Library Prep Kit for Illumina (NEB, E7530, Ipswich, MA, USA)
and the NEBNext Multiplex Oligos for Illumina (NEB, E7500,
Ipswich, MA, USA) according to the manufacturer’s guidelines.
After confirming the quality using Qubit 2.0 and the Agilent
Bioanalyzer 2100 system (Agilent Technologies), all libraries were
sequenced with the Illumina Hiseq 2500 platform (Illumina, San
Diego, CA, USA).

piRNA Identification and Expression
Analysis
After removal of low-quality, poly-N, and adapter-containing
reads and sequences with <18 or >34 nt, clean reads were
acquired. The sequence alignments of giant panda and pig were
carried out with their reference genomes (ftp://ftp.ncbi.nlm.nih.
gov/genomes/all/GCF/000/004/335/GCF_000004335.2_AilMel_
1.0 and ftp://ftp.ensembl.org/pub/release-75/fasta/sus_scrofa/,
respectively). Furthermore, to compare the clean reads with
the Silva database, Rfam database, Repbase, and the GtRNAdb
database and filtering out non-coding RNAs (ncRNAs) such as
ribosomal RNA (rRNA), transport RNA (tRNA), small nuclear
RNA (snRNA), small nucleolar RNA (snoRNA), and repetitive
sequences, Bowtie analysis was performed (20). Novel and
known piRNAs were sorted out by comparing the obtained
piRNA sequences with miRbase RNA sequences using proTRAC
(21). Differential expression of piRNAs in the fresh and frozen-
thawed groups was determined with the DESeq R package (v.
1.10.1) based on the reads per kilobase million (TPM) and
fragments per kilobase million (FPKM) algorithms (22). The
piRNAs between both sperm groups were analyzed by iDEG
(23), and those with adjusted p < 0.01 and absolute value of
log2 fold change (FC) >1 were classified as DE piRNAs. Then,
hierarchical clustering analysis was performed by R heatmap.2

on the selected DE piRNAs; piRNAs with similar expressions
were clustered based on the log10(TPM+ 1) value.

piRNA Target Prediction, GO, and KEGG
Enrichment Analyses
The prediction of potential piRNA targets was performed by
BLAST with non-redundant (NR) (20), Gene Ontology (GO)
(20), Kyoto Encyclopedia of Genes and Genomes (KEGG)
(24), and EuKaryotic Orthologous Group (KOG) (25) databases
to obtain annotation information of the target genes. KEGG
pathways and GO enriched in predicted DE piRNA target genes
were elucidated using KOBAS software (26) and the GOseqR
package (27), respectively.

Comparison of DE piRNAs in Fresh and
Post-thawed Boar and Giant Panda Sperm
During Cryopreservation
piRBase (http://www.regulatoryrna.org/database/piRNA/) was
used to browse the common piRNAs and annotations. The
homology of piRNAs was predicted between various species
by considering the similarity and conserved sequences of the
piRNAs to determine the piRNAs. The software Python 2.7
was used for comparing the sequence similarities of the DE
piRNAs in giant panda sperm and boar sperm. During sequence
alignment, 1–18 bases were perfectly matched; one mismatch
base was allowed after the 19th base to select the best pairing
sequence (28).

Statistical Analysis
All data were shown as the means ± SEM. SPSS (v. 20.0)
with independent samples t test was used to determine
statistical differences, and p < 0.05 were considered as
statistically significant.

RESULTS

piRNA Profiles of Fresh and Cryopreserved
Boar and Giant Panda Sperm
A total of 16,980,071 and 19,571,331 raw reads were obtained
from fresh and cryopreserved sperm groups of giant pandas,
respectively. Similarly, respective boar sperm groups generated
18,956,444 and 16,507,275 raw reads. After removal of low-
quality reads, ploy-N, adapter, and sequences with<24 or>32 nt,
519,311 and 4,488,163 clean reads were generated in respective
fresh and frozen-thawed giant panda sperm. Similarly, 9,031,512
and 7,188,244 clean reads were generated in fresh and frozen-
thawed boar sperm, respectively (Table 1). The 24-nt (21.76%)
and 31-nt (34.21%) piRNAs were the most abundant in fresh and
frozen-thawed giant panda sperms, respectively. Similarly, the
30-nt (25%) and 32-nt (1.96%) piRNAs showed the highest and
the lowest respective abundances, respectively, in boar sperm.

A total of 88 (containing 116,706 piRNAs) and 133
(containing 21,5835 piRNAs) piRNA clusters were identified
after mapping to the designated reference genomes of giant
panda and boar sperm, respectively. Compared to the 125,435
and 112,708 piRNAs expressed in fresh and frozen-thawed boar
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TABLE 1 | Overview of piRNA sequencing of fresh and frozen-thawed sperm in giant panda and boar.

Species Group Raw reads Clean reads Mapped reads Mapped ratio (%)

Giant panda Fresh sperm 16,980,071 519,311 85,586 16.48

Post-thawed sperm 19,571,331 4,488,163 325,288 7.2

Boar Fresh sperm 18,956,444 9,031,512 2,988,336 15.76

Post-thawed sperm 16,507,275 7,188,244 2,087,711 13.0

sperm, respectively, 49,393 and 87,670 piRNAs were expressed
in fresh and frozen-thawed giant panda sperm, respectively.
Differential analysis depicted the differential expression of 1,160
piRNAs (1,138 upregulated and 22 downregulated) between fresh
and frozen-thawed giant panda sperm (Figure 1A). In contrast
to the giant panda sperm, 384 DE piRNAs (110 upregulated and
274 downregulated) were identified in boar sperm (Figure 1A).
Moreover, hierarchical clustering analysis was performed for the
clustering of all DE piRNAs (Figure 1B).

Combined Analysis of piRNAs and Target
mRNAs in Boar and Giant Panda Sperm
Two hundred fifty-three (seven upregulated and 246
downregulated) and 453 target DE mRNAs (366 upregulated
and 87 downregulated) of the DE piRNAs were obtained
between fresh and post-thawed sperm in giant panda and
boar, respectively (Figure 2A). Twenty-eight DE piRNAs were
identified to be the common piRNAs by joint analysis of the DE
piRNAs of giant panda and boar sperm (Figure 2B). Therefore,
1,132 and 356 DE piRNAs were selected and regarded as the
unique piRNAs in giant panda and boar sperm, respectively
(Data Sheet 1, 2). Based on the similarity and conservation
of the piRNA sequences, 28 DE piRNAs were considered as
the homologous piRNAs between giant panda and boar sperm
according to the piRBase database (Data Sheet 3). However, no
target DE mRNAs were found for these common DE piRNAs.

Comparative GO and KEGG Analysis of DE
piRNAs in Giant Panda and Boar Sperm
GO enrichment analysis showed that 106 and 3,251 target DE
mRNAs of the DE piRNAs were annotated with 41 and 59 GO
terms in giant panda and boar sperm, respectively. Most of the
target mRNAs of the DE piRNAs were seen to be distributed in
cell, cell part, binding and biological regulation, and metabolic
terms in giant panda and boar sperm, which are strictly associated
with the structural and functional modifications of sperm. The
GO term distributions of the target DE mRNAs of DE piRNAs
were significantly different in fresh and frozen-thawed giant
panda and boar sperm (Figure 3A).

Notably, most of the target DE mRNAs of DE piRNAs were
distributed in the cyclic adenosine monophosphate (cAMP)
signaling pathway in giant panda sperm, except for DNA
replication (Figure 3B). However, the target mRNAs of the
DE piRNAs in boar sperm were mainly distributed in the
peroxisome and spliceosome, followed by the membrane-related
pathway, such as the cAMP, cyclic guanosine monophosphate

(cGMP), mitogen-activated protein kinase (MAPK), and PI3K–
Akt signaling pathways. Moreover, the cAMP pathway was found
in both giant panda and boar sperm, but was extremely enriched
in giant panda sperm. Further analysis indicated that DE piRNAs
involved in the cAMP signaling pathway may regulate the
post-thawed sperm function by targeting cyclic nucleotide-gated
(CNG) ion channel-related genes.

DISCUSSION

It is well-known that differences in the size, shape, and the lipid–
protein composition of sperm across various species result in
different sensitivities to freezing (29, 30). Esmaeili and colleagues
have demonstrated that cryotolerance shows a relation to the
ratio of polyunsaturated fatty acids (PUFAs) (omega-3/omega-
6) (30). The plasma membrane of boar sperm contains a higher
concentration of phospholipids and a lower concentration of
cholesterol (9). In addition, the head size of boar sperm is larger
than that of the giant panda and is more sensitive to freezing
(31). Sperm with smaller heads are usually less cryopreservation-
sensitive; thus, the freeze tolerance capacity of giant panda sperm
is higher than that of boar sperm after cryopreservation (14).

Nowadays, electroejaculation is the preferred method to
collect semen from giant panda. Previous studies have reported
that electroejaculation may have an impact on semen parameters,
increasing semen osmolarity, disrupting plasma membrane
integrity, acrosomal damage, and acrosomal exocytosis (32, 33).
However, the sperm morphology remained within acceptable
standards (34). Compared with the quality parameters of fresh
feline ejaculates collected using three different techniques—
urethral catheterization after medetomidine administration,
electroejaculation, and epididymal slicing after orchiectomy—
the highest quality semen parameters were achieved using
electroejaculation (35). Spindler et al. reported that most
sperm of giant panda were morphologically normal using
electroejaculation, and the sperm parameters (seminal volume,
concentration, initial motility, acrosomal integrity, etc.) were
consistent with previous reports (11). Therefore, the fertility of
frozen-thawed giant panda spermwill be similar to that following
the use of fresh sperm (11).

The process of freeze–thawing induces apoptotic-like changes
in sperm, and these changes may affect the plasma membrane
and acrosomal activity (36) and the mitochondrial activity (37)
and also cause abnormal expressions of genes and proteins
associated with cryoinjury (38). Moreover, sperm genomic
epigenetic elements may be altered during cryopreservation.
Previous studies have demonstrated that some genes play
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FIGURE 1 | Volcano plot and clustering analysis of differentially expressed PIWI-interacting RNAs (DE piRNAs) in fresh and frozen-thawed giant panda and boar

sperm. (A) Volcano plot of DE piRNAs in fresh and frozen-thawed giant panda sperm. Blue dots represent normal expressed, green dots represent the

downregulated, and red dots represent the upregulated piRNAs. (B) Heat maps of the cluster analysis of piRNAs. Red indicates high expression while green means

low expression of piRNAs.

critical roles in freezing, such as PRM1, FSHB, ADD1, ARNT,
and SNORD116/PWSAS (39, 40). Some proteins, such as
TPI1, ACRBP, HSP90AA1, and PHGPx, were proven to be

markers of sperm cryoresistance (38, 41, 42). Furthermore,
certain mRNA transcripts encoding related proteins were
affected during cryopreservation; for instance, PRM1 mRNA
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FIGURE 2 | Comparative analysis of differentially expressed PIWI-interacting RNAs (DE piRNAs) in fresh and frozen-thawed giant panda and boar sperm. (A)

Comparison of DE piRNAs and target DE mRNAs. (B) Unique and common DE piRNAs.
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FIGURE 3 | Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed PIWI-interacting RNAs (DE piRNAs) in

giant panda and boar sperm. (A) GO analysis of the target DE messenger RNAs (mRNAs) of DE piRNAs. (B) Top 10 KEGG pathways of the target DE mRNAs of DE

piRNAs.

Frontiers in Veterinary Science | www.frontiersin.org 7 April 2021 | Volume 8 | Article 635013

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Wang et al. piRNA Profiles During Sperm Cryopreservation

transcripts were reduced in boar, cattle, and human sperm
(43–45). Beyond that, some sperm mRNA transcripts associated
with early embryo development were downregulated in
embryos fertilized with frozen horse sperm compared to those
with fresh sperm (46). In fact, some microRNAs (miRNAs)
associated with cryopreservation, or named CryomiRs,
may affect the expressions of the mRNA transcripts during
cryopreservation, which ultimately affects the expressions of
genes and proteins associated with sperm metabolism and
apoptosis (14, 47).

According to our previous study, the DE miRNAs and
target mRNAs of giant panda sperm were mainly enriched in
olfactory transduction pathways, including the cAMP and cGMP
signaling pathways (14). In the present study, we found that
the target DE mRNAs of DE piRNAs in giant panda sperm
were mainly distributed in the cAMP signaling pathway and
partially involved in DNA replication. Similarly, few targets of
the DE piRNAs in boar sperm were also enriched in the cAMP
signaling pathway, but the ratio was much lower than that of
giant panda sperm. Therefore, we speculated that the 1,132
specific piRNAs involved in the cAMP signaling pathway in
giant panda sperm may be closely related to the freeze tolerance
of sperm. Therefore, we speculated that cryopreservation can
affect the expression levels of olfactory transduction pathway-
related genes and is probably involved in the regulation of
capacitation, motility, fertility, and even the freeze tolerance of
post-thawed sperm. However, the regulatory mechanism of the
olfactory transduction signaling pathway on post-thawed sperm
is still unknown.

It is well-known that olfactory receptors or odorant receptors
are associated with sperm motility and chemotaxis. In the
olfactory transduction pathway, after the attachment of odorant
molecules with the G protein-coupled receptor (GPCR) in
sperm, the concentration of cAMP increases, leading to the
opening of CNG ion channels (48). Notably, CNG channels
play an important role in the regulation of the intracellular
Ca2+ level, which causes influx of Ca2+, and then induce sperm
hyperactivity (49). In mature sperm, cAMP binding with a target
protein is essential for those events during sperm capacitation,
including sperm plasma membrane hyperactivation (50, 51),
tyrosine phosphorylation (52), and increasing intracellular Ca2+

and pH (53–55). It was demonstrated that the intracellular
concentrations of cAMP and Ca2+ play a primary role in sperm
capacitation, motility, acrosomal reaction, lipid remodeling,
and hyperpolarization of the plasma membrane (55–58).
Furthermore, cAMP is known to be an important second
messenger for steroid (hormones) biosynthesis, and the specific
role of its downstream protein kinase A (PKA) pathway is
regulating steroid biosynthesis (59). Steroid hormones induce
sperm capacitation and acrosomal response (60). cAMP–PKA
signaling pathways induce steroid biosynthesis in stromal cells
by activating certain transcription factors, such as CREB, CREM,
and GATA4, and regulating the expressions of downstream
target proteins (58, 61). In addition, the synthesis of cAMP
also activates a Ca2+ signal regulated by PKA or protein kinase
C (PKC), which upregulates Nur77 expression, and causes
StAR transcription, promoting steroid hormone biosynthesis

(62). Previous studies indicated that the intracellular Ca2+,
1,2-diacylglycerol (DAG), and cAMP levels in buffalo sperm
were increased significantly after cryopreservation as compared
to fresh ejaculates, and the addition of taurine or trehalose
reduced the extent of capacitation-like changes in buffalo
sperm (56). Likewise, cryopreservation negatively affected the
PKA and AMP-activated protein kinase (AMPK) activity in
Atlantic salmon sperm (63), and when AMPK was inhibited,
the sperm motility decreased accordingly. In this study, the
target mRNAs of the DE piRNAs in giant panda sperm are
mainly enriched in the cAMP pathway, which indicates that
cAMP and calcium may be associated with frozen-thawed sperm
quality of giant panda. Differences in the cAMP pathway-related
piRNAs and mRNAs between the giant panda and boar sperm
may have contributed to sperm cryotolerance. Therefore, our
study first revealed that piRNAs might be regulating the cAMP
signaling pathway to regulate post-thawed sperm quality, which
provides new insights into the cryoinjury, cryoresistance, or the
freeze tolerance mechanisms of sperm varying across species.
Future exploration should focus on the biological roles of these
DE piRNAs in sperm freeze tolerance or cryoresistance and
their association with post-thawed sperm quality, which may
provide some insights regarding the molecular mechanisms
of cryoinjury.

CONCLUSION

In this study, we first conducted a comparative analysis of the
piRNAs and target mRNAs between giant panda sperm and
boar sperm during cryopreservation. The differentially expressed
piRNAs and their target DE mRNAs are mainly involved in the
cAMP signaling pathway and DNA replication, which indicated
that these piRNAs play a critical role in sperm cryoresistance
and cryoinjury during cryopreservation. Our study provides new
insights into the cryoinjury, cryoresistance, or freeze tolerance
mechanisms of sperm varying across species.
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