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Bone loss occuring with unloading is associated with decreased osteoblastogenesis and increased bone marrow adipogenesis, re-
sulting in bone loss and decreased bone formation. Here, we review the present knowledge on the role of PPARγ in the control of
osteoblastogenesis and bone mass in skeletal unloading. We showed that PPARγ positively promotes adipogenesis and negatively
regulates osteoblast differentiation of bone marrow stromal cells in unloading, resulting in bone loss. Manipulation of PPARγ2
expression by exogenous TGF-β2 inhibits the exaggerated adipogenesis and corrects the balance between osteoblastogenesis and
adipogenesis induced by unloading, leading to prevention of bone loss. This shows that PPARγ plays an important role in the
control of bone mass in unloaded bone. Moreover, this opens the possibility that manipulation of PPARγ may correct the balance
between osteoblastogenesis and adipogenesis and prevent bone loss, which may have potential implications in the treatment of
bone loss in clinical conditions.

Copyright © 2006 P. J. Marie and K. Kaabeche. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

The maintainance of both bone mass and bone microarchi-
tecture is controlled by the balance between bone resorption
and formation. At the cellular level, this balance is largely de-
pendent on the number and activity of bone forming and
resorbing cells. Any alteration in the number or activity of
bone cells will result in an imbalance between resorption and
formation, resulting in microarchitecture deterioration and
altered bone mass and strength.

The control of bone forming cells is largely influenced
by weight bearing and exercise that induce mechanical forces
on the skeleton. Mechanical forces induce anabolic effects
by promoting bone formation at multiple levels [1–3]. Bone
formation is a complex process that is dependent on the re-
cruitment, differentiation, and function of osteoblasts. The
osteogenic process starts by the commitment of osteoprogen-
itor cells into osteoblasts under the control of transcription
factors, followed by their progressive differentiation into ma-
ture osteoblasts [4, 5]. In the recent years, the development of
cellular, molecular, and genetic studies has led to the identi-
fication of a number of important transcription factors that
are essential in the control of bone formation. Specifically,
several studies have provided evidence for a role of PPARγ in
the control of bone formation and bone mass through mod-

ulation of bone marrow stromal cell differentiation. In this
brief review, we summarize the present knowledge on the
role of PPARγ in the control of osteoblastogenesis and bone
mass, with a particular reference to skeletal unloading.

Reciprocal relationship between osteoblastogenesis
and adipogenesis in the bone marrow

Several conditions associated with bone loss such as aging
[6], glucocorticoid treatment [7], estrogen deficiency [8], or
immobilization [9] are characterized by decreased osteoblas-
togenesis associated with increased adipogenesis in the bone
marrow. This supports the concept that there is a recipro-
cal relationship between adipocyte and osteoblast differen-
tiation [10]. Early studies showed that bone marrow stro-
mal cells can be differentiated into several lineages in vitro
[11–13], and that differentiation towards one lineage is de-
pendent on local or hormonal factors [14]. Further stud-
ies showed that clonal marrow stromal cells can be differ-
entiated into adipocytes, osteoblasts, or chondrocytes in dif-
ferent species including humans [15–17]. Notably, a single
marrow stromal cell may have multipotential competence in
vitro and differentiation towards one pathway restricts ex-
pression of other lineage-specific genes [18]. This provides
evidence that adipocytes and osteoblasts are derived from a
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Figure 1: The in vivo differentiation of bone marrow stromal cells
towards adipocytes and osteoblasts is governed by the balance be-
tween PPARγ2 and Runx2 expression. In unloaded bone, decreased
Runx2 and increased PPARγ2 expression result in decreased os-
teoblastogenesis, increased adipogenesis, and bone loss.

common mesenchymal stromal cell and that a reciprocal re-
lationship exists between osteoblastogenesis and adipogene-
sis in the bone marrow [10].

PPARγ2 is a positive promoter of adipogenesis
and a negative regulator of osteoblastogenesis

The mechanisms involved in adipogenesis have been stud-
ied extensively in adipose tissue. The differentiation of
preadipocytes into mature adipocytes is primarily controlled
by peroxisome proliferator-activated receptor γ (PPARγ)
which is a key transcription factor involved in adipocyte dif-
ferentiation [19]. PPARγ exists in two isoforms PPARγ1 and
PPARγ2 as a result of alternative splicing. PPARγ2 is ex-
pressed at high levels in fat tissue and is essential for adipo-
genesis in vitro and in vivo. CCAAT/enhancer binding pro-
teins (C/EBP) are other important transcription factors that
control the expression of adipocyte genes by acting syner-
gistically with PPARγ to activate adipocyte gene expression
[20]. In vitro, C/EBPs activate the expression of PPARγ and
C/EBPα and promote PPARγ2 activity in preadipocyte cul-
tures, which contributes to the expression of genes that char-
acterize the adipocyte phenotype [21].

In bone, recent advances have been made in the role
of PPARγ in the interconversion of marrow stromal cells
into osteoblasts or adipocytes in vitro (Figure 1). In cultured
murine and human cells, PPARγ agonists and overexpression
of PPARγ2 induce the differentiation of bone marrow stro-
mal cells into the adipocyte lineage and negatively regulate
osteoblast differentiation by repressing the osteoblast specific
transcription factor Runx2 [22–24]. There is also evidence
that PPARγ negatively regulates osteoblast differentiation.
For example, activation of PPARγ with a thiazolidinediones
with high affinity for PPARγ increases adipogenesis and
decreases osteoblastogenesis in vitro [25–27]. Additionally,
activation of PPARγ with rosiglitazone in mice or ovariec-

tomized rats decreases Runx2 expression and bone forma-
tion, and increases adipogenesis in the bone marrow, result-
ing in decreased bone mass [28, 29]. Consistently, PPARγ
haploinsufficiency in mice was shown to decrease adipogene-
sis and to increase Runx2 expression and bone formation, re-
sulting in increased bone mass [30]. These findings indicate
that PPARγ positively promotes adipogenesis and negatively
regulates osteoblast differentiation of bone marrow stromal
cells in vivo, suggesting that PPARγ is a negative regulator of
bone mass.

Skeletal unloading decreases osteoblast differentiation
and induces bone loss

A representative model of bone loss resulting from alter-
ations in osteoblasts is skeletal unloading [31]. Skeletal un-
loading induced by hind limb suspension rapidly causes a
marked trabecular bone loss in the long bone metaphysis, re-
sulting mainly from reduced trabecular thickness and num-
ber associated with inhibition of endosteal bone formation
[32]. Although both the number and activity of osteoblasts
are decreased in the unloaded metaphyseal bone [32, 33],
the number of osteoblasts is more affected than their activ-
ity [34]. Although the mechanisms underlying bone loss in-
duced by unloading in rats are not fully understood, bone
loss does not appear to result from changes in serum cor-
ticosteroid, 25-hydroxyvitamin D or PTH levels [31]. How-
ever, there is some evidence that skeletal unloading may re-
sult in part from to decreased expression [34] or response
[35] to local growth factors.

The cellular mechanisms underlying the alterations of
bone formation induced by skeletal unloading in rats have
been partly identified [36]. We initially showed that the de-
creased bone formation in unloaded rat bone results from
an impaired recruitment of osteoblast precursor cells in the
bone marrow stroma and in the metaphysis [33]. In addition
to affect osteoblast recruitment, skeletal unloading in this
model alters the function of differentiated osteoblasts. This is
reflected by the decreased expression of bone matrix type-1
collagen and osteocalcin and osteopontin mRNA levels [37–
40], which correlates well with the decreased bone matrix
synthesis measured at the tissue level [32, 33]. These findings
indicate that removal of mechanical forces on the skeleton
rapidly alters both the recruitment of osteoblast progenitor
cell and the function of differentiated osteoblasts, resulting
in a marked reduction of bone formation. Such alterations
are consistent with the effects of unloading in other rat mod-
els in which there is a reduction of the osteogenic capacity of
bone marrow osteoblast precursor cells and a decreased ex-
pression of bone matrix proteins in rat long bones [41, 42].

PPARγ controls the osteoblast/adipocyte relationship
in unloaded bone

The altered bone metabolism induced by skeletal unload-
ing is asociated with alterations in transcription factor ex-
pression. Specifically, the decreased osteoblastogenesis and
bone formation induced by skeletal unloading in rats are
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Figure 2: Skeletal unloading decreases TGF-β expression and ac-
tivates the expression of C/EBPα, C/EBPβ, and PPARγ2, result-
ing in activation of adipocyte gene expression such as adipocytic
differentiation-related genes adipocyte binding protein (aP2) and
lipoprotein lipase (LPL) in bone marrow stromal cells. Exogenous
TGF-β2 (dotted lines) reduces C/EBPα, C/EBPβ, and PPARγ ex-
pressions, induces PPARγ phosphorylation (p-PPARγ), and in-
creases Runx2 expression, resulting in decreased adipogenesis, in-
creased osteoblast function, and prevention of bone loss.

associated with reduced Runx2 expression [34]. Addition-
ally, we showed that skeletal unloading is associated with in-
creased adipocyte differentiation in the bone marrow stroma
[43], suggesting that unloading not only impairs osteopro-
genitor cell differentiation into osteoblasts but also promotes
adipocyte differentiation. The exagerated reciprocal relation-
ship between osteoblastogenesis and adipogenesis may ac-
count for the decreased bone formation associated with
the increased bone marrow adipogenesis in unloaded rats
(Figure 1).

Interestingly, the adipogenic differentiation of bone mar-
row stromal cells in unloaded bone is consistent with the
temporal gene expression observed during adipocyte dif-
ferentiation in vitro. Specifically, skeletal unloading in rats
increases C/EBPα and C/EBPβ expression followed by in-
creased expression of PPARγ, resulting in activation of
adipocyte gene expression such as adipocytic differentiation-
related genes adipocyte binding protein (aP2) and lipopro-
tein lipase (LPL) in bone marrow stromal cells [44]
(Figure 2). Thus, PPARγ with other transcription factors are
involved in adipogenic conversion of bone marrow stromal
cells in vivo, indicating that PPARγ is a negative regulator of
bone mass in unloaded rats.

The mechanisms underlying the expression of Runx2
and PPARγ in unloaded bone may involve decreased sig-
naling pathways that are normally transmitted by loading.
Mechanical forces are believed to transduce signals through
cell-matrix interactions [45–48]. Part of the communication

between the matrix and cells is ensured by integrins which
interact with bone matrix proteins [49]. In bone, integrin-
matrix interactions are important modulators of osteoblast
differentiation in vitro [50, 51]. It is thus possible that
the lack of mechanical strain is induced by unloading re-
sults in decreased integrin-matrix interactions and signaling,
and consequently decreased osteoblast differentiation. This
is supported by the finding that mechanical forces increase
Runx2 expression in cultured preosteoblastic cells [52]. One
recent study indicates that stretching induces downregu-
lation of PPARγ2 and adipocyte differentiation in mouse
preadipocytes [53], suggesting that mechanical forces may
play a dual role in the control of Runx2 and PPARγ expres-
sion in preosteoblasts.

How mechanical signals may modulate PPARγ expres-
sion or activity and thereby induce adipogenesis rather
than osteoblastogenesis in bone marrow stromal cells is not
fully understood. One interesting hypothesis is that specific
pathways controlling osteoblastogenesis/adipogenesis may
be sensitive to biomechanical forces. For example, changes in
cell shape or modulation of the cytoskeletal-related GTPase
RhoA were recently found to induce stem cell adipogenic or
osteoblast differentiation [54]. Additionally, multiple signal
pathways, including ERK and Wnt signaling, may control the
balance between adipogenesis and osteoblastogenesis in vitro
[53, 55]. It remains however to determine which pathway
may be involved in the altered balance between osteoblasto-
genesis and adipogenesis in vivo.

TGF beta is a negative regulator of PPARγ
and adipogenesis in unloaded rats

Transforming growth factor beta (TGF-β) is an important
regulator of bone formation by modulating osteoblastic cell
proliferation and differentiation [56]. Additionally, TGF-β is
also an important modulator of adipocyte differentiation.
TGF-β inhibits adipogenesis in preadipocyte cell lines and
reduces adipocyte differentiation in vitro [57, 58]. In vivo,
we found that skeletal unloading results in a rapid reduc-
tion in TGF-β1 and TGF-β receptor II mRNA expression
in bone marrow stromal cells [34]. Others found reduced
TGF-β2 mRNA levels in bone marrow stromal cells in this
model [37], suggesting that TGF-β signaling may mediate
part of the altered bone formation induced by unloading. Al-
though diminished, TGF-β receptors can still be activated by
TGF-β since we showed that exogenous TGF-β2 in unloaded
rats increased Runx2 expression and osteoblastogenesis, re-
sulting in prevention of trabecular bone loss [59]. Beside
this positive effect on osteoblastogenesis, TGF-β2 adminis-
tration downregulated the expression of C/EBPα, C/EBPβ,
and PPARγ in bone marrow stromal cells, and reduced the
expression of adipocyte genes such as aP2 and LPL in bone
marrow stromal cells, thus preventing the adipocyte con-
version of bone marrow stromal cells induced by unloading
[43, 44]. This indicates that TGF-β is a negative regulator of
PPARγ and adipogenesis in unloaded rats (Figure 2).

One mechanism by which TGF-β may negatively regulate
adipogenesis in unloaded rats is through MAPK activation.
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TGF-β is known to induce phosphorylation of PPARγ in
adipocyte cells, and MAPK-dependent PPARγ phosphory-
lation results in the reduction of PPARγ transcriptional ac-
tivity and repression of adipocyte differentiation [60–62]. In
vitro, ERK activation was found to induce osteogenic dif-
ferentiation of human mesenchymal stem cells, whereas its
inhibition induces adipogenic differentiation [63]. In un-
loaded bone, we showed that TGF-β2 increased PPARγ phos-
phorylation and inhibited adipocyte differentiation of bone
marrow stromal cells through MAPK phosphorylation [44].
Thus, exogenous TGF-β can inhibit the excessive adipogenic
differentiation induced by skeletal unloading by reducing
PPARγ2 expression, resulting in the inhibition of adipoge-
nesis. This effect, combined with the upregulation of Runx2
expression and osteoblast differentiation induced by exoge-
nous TGF-β on bone marrow stromal cells, leads to correct-
ing the imbalance between osteoblastogenesis and adipogen-
esis and results in a positive effect on bone mass (Figure 2).
This demonstrates that appropriate manipulation of PPARγ2
expression in vivo can lead to prevent bone loss in unloaded
bone.

CONCLUSION

There is now clear evidence that PPARγ plays an impor-
tant role in the control of marrow stromal cell differentia-
tion to osteoblasts or adipocytes in unloaded bone. In this
model, PPARγ positively promotes adipogenesis and neg-
atively regulates osteoblast differentiation of bone marrow
stromal cells, indicating that PPARγ is a negative regulator of
bone mass. This concept provides a possible target for thera-
peutic intervention in osteopenic disorders characterized by
altered osteoblast and adipocyte differentiation of bone mar-
row stromal cells [64]. As an example, we showed that exoge-
nous manipulation of PPARγ expression by TGF-β can in-
hibit adipogenesis induced by skeletal unloading and correct
the balance between osteoblastogenesis and adipogenesis, re-
sulting in prevention of bone loss. This opens the possibility
that manipulation of PPARγ may have potential implications
in the treatment of bone loss associated with immobilization
[65].
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