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A prefrontal control system that is less mature than the limbic reward system in
adolescence is thought to impede self-regulatory abilities, which could contribute to
poor dietary choices and obesity. We, therefore, aimed to examine whether structural
morphology of the prefrontal cortex (PFC; involved in cognitive control) and the amygdala
(a key brain region for reward-related processing) are associated with dietary decisions
and obesity in children and adolescents. Seventy-one individuals between the ages
of 8–22 years (17.35 ± 4.76 years, 51% female, 56% were overweight or obese)
participated in this study; each participant completed a computer-based food choice
task and a T1- and T2-weighted structural brain scans. Two indices of obesity were
assessed, including age- and sex-specific body mass index (BMIz) and waist-to-
height ratio (WHtR). The behavioral task included rating 60 food stimuli for tastiness,
healthiness, and liking. Based on each participant’s self-ratings, 100 binary food choices
were then made utilizing a computer mouse. Dietary “self-control” was calculated as
the proportion of trials where the individual chose the healthier food item (vs. the tastier
food item) over the total number of trials. Cortical thickness and amygdala subnuclei
volumes were quantified using FreeSurfer 6.0 and CIT168 atlas, respectively. We found
that WHtR was negatively associated with the thickness of bilateral superior frontal, left
superior temporal, right insula, and right inferior temporal regions (p< 0.05, corrected for
multiple comparisons). We also found WHtR to be positively associated with the volume
of the central nucleus (CEN) region of the amygdala (p = 0.006), after adjusting for the
hemisphere, age, sex, and intracranial volumes. A similar data pattern was observed
when BMIz was used. Moreover, we found that across all participants, thinner right
superior frontal cortex and larger left CEN volumes predicted lower dietary self-control.
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These results suggest that differential development of the PFC and amygdala relate to
obesity and dietary self-control. Further longitudinal studies are merited to determine
causal relationships among altered PFC to amygdala neural circuitry, dietary self-control,
and obesity.

Keywords: obesity, adolescence, dietary control, prefrontal cortex, amygdala

INTRODUCTION

Obesity is a common and serious public health problem, with
a prevalence of 18.5% in youth between 2 and 19 years old
in the United States (Ogden et al., 2010). Obesity affects
13.7 million children and likely persists into adulthood as a risk
factor for cardiovascular disease and type 2 diabetes (Pi-Sunyer,
1991; Singh et al., 2008; Biro and Wien, 2010). Even though
obesity occurs in a state of chronic positive energy balance
(i.e., energy intake greater than energy expenditure), the origins
are multifactorial and include environmental and genetic factors
that could impact the central regulation of food intake and
energy homeostasis (Timper and Brüning, 2017). Many genes
associated with obesity are preferentially expressed in the central
nervous system (Locke et al., 2015), suggesting that the brain
plays an important role in the regulation of energy intake and
expenditure. Functional neuroimaging studies in children and
adolescents indicate that obesity may involve dysregulation of
two key neural systems: (1) hypo-functioning of the prefrontal
cortex (PFC) involved in inhibitory control of appetitive food
rewards (Batterink et al., 2010; Bruce et al., 2013; Carnell et al.,
2017; Jensen et al., 2017; Luo et al., 2019); and (2) hyper-reactivity
of the limbic system involved in reward and emotion processing
of external food cues (Boutelle et al., 2015; Rapuano et al., 2016).

The PFC plays an important role in cognitive control,
including top-down regulation of appetite. A recent
meta-analysis on functional neuroimaging studies involving
tasks that probe different aspects of dietary self-control
reported that the inferior frontal gyrus (IFG) and middle
frontal gyrus (MFG) were among the regions that showed
reduced activation during self-control as a function of body
mass index (BMI) in healthy adults (Han et al., 2018). Similar
negative relationships have been observed in studies of healthy
children and adolescents (Batterink et al., 2010; Bruce et al.,
2013; Carnell et al., 2017; Jensen et al., 2017; Luo et al., 2019).
There have been inconsistent findings regarding relationships
between PFC cortical thickness and BMI in children, although
recent large-scale studies have shown an inverse correlation
between BMI and cortical thickness, with the greatest correlation
observed in the PFC (Laurent et al., 2020; Ronan et al., 2020).
Waist circumference [i.e., waist-to-height ratio (WHtR), or
waist-to-hip ratio] has also been studied concerning the
brain (Ross et al., 2015; Hamer and Batty, 2019; Ronan et al.,
2020), as an index of central obesity that is associated with
cardiovascular risk factors (Katzmarzyk et al., 2012). A recent
study in children reported additional brain clusters were
observed when WHtR was used instead of BMI, suggesting
central obesity markers may have better sensitivity in detecting

obesity-linked morphology (Ronan et al., 2020). Thus, findings
from previous studies indicate that more research is needed on
the relationships between PFC activity and different markers of
body composition in youth, whose ‘‘top-down’’ processes are
rapidly developing.

The limbic system includes regions that are important in the
central regulation of feeding behavior in humans. The amygdala
is located in the anterior temporal lobe, with early studies
showing that bilateral damage to the temporal lobe leads to
hyperphagia and obesity in human and animal models (Sawa
et al., 1954; Weiskrantz, 1956; Green et al., 1957; Koikegami
et al., 1958; Wood, 1958; Wilkinson and Peele, 1962; Kling and
Dunne, 1976). Thus, it was suggested that the amygdala may
be essential in regulating feeding behavior (Berthoud, 2012).
Functional magnetic resonance imaging (fMRI) studies have
shown that children with obesity exhibit hyper-responsivity
to food rewards in the amygdala compared to lean children
(Boutelle et al., 2015), and the basolateral amygdala response
to food cues in young adults is associated with future weight
gain (Sun et al., 2015). Structural studies have primarily
focused on the whole amygdala, but further study is merited
of its heterogeneous nuclei in the amygdala that have distinct
cytoarchitecture, connectivity, and function that are involved in
a range of behaviors including emotion, arousal, and stimulus
reward learning. Four specific nuclei implicated in feeding
behavior have been identified, including the lateral nucleus
(LA), dorsal and intermediate basolateral (BLDI), central nucleus
(CEN), and cortical and medial nuclei (CMN). The LA is
anatomically connected to the lateral hypothalamus, receiving
input via a pathway critical for ‘‘cue-initiated’’ feeding (Petrovich
and Gallagher, 2003). Notably, the basolateral complex of
the amygdala (which includes both the BLDI and LA) is
important for reward learning (e.g., linking objects such as
food, with reward value; Wassum and Izquierdo, 2015). The
hypothalamus, also a part of the limbic system, is one of the
most important regions involved in the central regulation of
metabolism, and these interactions between the hypothalamus
and amygdala help regulate food intake. As well, there is
emerging overlap of metabolic and emotional pathways, with
the nuclei of the hypothalamus and amygdala activated by
hunger and fear (Comeras et al., 2019). Lesions of the CEN
lead to the disruption of inhibitory control of eating in the
presence of an aversive cue (Petrovich et al., 2009; Prévost
et al., 2012) and stress-induced obesity may induce insulin
resistance in the central amygdala, involving neuropeptide Y
neurons (Ip et al., 2019). There are also bidirectional projections
between the medial amygdala and medial hypothalamus via
the stria terminalis, and disruption of this pathway has been
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shown to lead to hyperphagia and obesity (King et al., 2003).
These findings suggest that specific amygdala nuclei may be
important in regulating feeding behavior. Yet, their potential
roles in food decision-making and obesity in humans remain
largely unexplored.

Therefore, alterations in these PFC and amygdala circuits may
provide a neurobiological link to obesity and/or impaired dietary
self-control. Yet, it is unknown whether these impairments
may begin to present themselves during child and adolescent
development. Patterns of neurodevelopment have helped to
create a newly evolving definition of adolescence from 10 to
24 years of age (Sawyer et al., 2018), a period that includes
rapid maturation of the PFC and amygdala, yet with a protracted
development of the PFC relative to limbic regions (Casey et al.,
2008). Thus, the relative timing of neurodevelopmental processes
may especially render adolescents vulnerable to poor dietary
choices with potentially lifelong effects. Adolescents commonly
make poor dietary decisions, such as consuming more fast food
and refined sugars than any other age group (Nielsen et al., 2002;
Bremer and Lustig, 2012). As such, the differential development
of PFC and limbic circuitry could make adolescents particularly
susceptible to sub-optimal dietary decision-making, and thereby
contribute to the development or sustainment of obesity.

The goal of the current study was to examine whether brain
morphology of the PFC, as characterized by cortical thickness,
and volume of the amygdala related to obesity and dietary
choice in a typical cross-sectional sample of youth with ages
spanning late childhood to early adulthood to assess the entire
developmental period of adolescence. We hypothesized that
larger amygdala and thinner PFC would be linked to both obesity
and poorer dietary self-control.

MATERIALS AND METHODS

Study Participants
We studied 71 children and adolescents between the ages
of 8–22 years (17.35 ± 4.76 years, 51% female, 56% were
overweight or obese; Table 1). Participants were recruited at
Children’s Hospital Los Angeles (CHLA), through previous
participation in another University of Southern California
(USC) research study, via flyers posted around the greater Los
Angeles metro area, as well as, at community outreach events.
Inclusion criteria included: being 8–22 years old, English as
their primary language, and being otherwise healthy. Exclusion
criteria included: a history of traumatic brain injury; a history
of a neurological disorder; current or persistent psychiatric
condition; a history of and persistent severe learning disorder,
mental retardation, pervasive developmental disorder, or other
condition requiring repeat or persistent specialized education;
non-correctable vision or hearing, or sensorimotor impairments;
and/or MRI contraindications. Participants 18 or older were also
excluded if they reported a high level of lifetime exposure to drugs
and alcohol based on NIAAA criteria (National Institute on
Alcohol Abuse and Alcoholism (NIAAA)., 2011). This study was
approved by the IRB Human Subjects Protection Office of USC
and CHLA (CHLA-14-00191 and HS-16-00978). Parents and

TABLE 1 | Study population characteristics.

Characteristic Overall (N = 71)

Age, Mean (SD) 17.35 ± 4.76
Male, % 49
Right Handedness, % 89
BMI Z-Score, Mean (SD) 0.89 ± 0.88
BMI Percentile, Mean (SD) 75.02 ± 23.98
Waist-to-height ratio, Mean (SD) 0.51 ± 0.07
Maternal Education, %
≤ High School 27
College/Associates 23
Bachelor 30
Master/Doctorate 19
Not Reported 1

Race, %
Caucasian 49
African American 7
Other 44

Ethnicity, %
Hispanic or Latino 46

participants gave written informed consent and age-appropriate
assent following the World Medical Association Declaration
of Helsinki.

Anthropometric Measurements
Participant height (cm) and weight (kg) were measured using
a stadiometer and calibrated digital scale respectively. BMI
was calculated (kg/m2), and BMI percentile and BMI z-score
for youth were determined based on the U.S. Center for
Disease Control normative data (Kuczmarski, 2002). Waist
circumference was measured at the midpoint between the iliac
crest and lower costal margin in the midaxillary line, and WHtR
was calculated.

Neuroimaging
Magnetic Resonance Imaging Acquisition
All whole-brain T1- and T2-weighted MRI scans were collected
on a Siemens Magnetom Prisma 3 Tesla MRI scanner using a
32-channel head coil at the University of Southern California’s
Center for Image Acquisition. The 3D T1 and T2 weighted
structural images were acquired using sagittal whole-brain
MPRAGE sequences (T1: TR = 2,400 ms, TE = 2.22 ms, flip
angle = 8◦, BW = 220 Hz/Px, FoV = 256 mm, 208 slices,
and 0.8 mm isotropic voxels, with a GRAPPA phase-encoding
acceleration factor of 2; T2: TR = 3,200 ms, TE = 563 ms,
BW = 744 Hz/Px, FoV = 256 mm, 208 slices, 0.8 mm
isotropic voxels, and 3.52 ms echo spacing, with a GRAPPA
phase-encoding acceleration factor of 2). The T1 sequence
lasted 6 min and 38 s, and the T2 sequence lasted 5 min
and 57 s. All scans were reviewed by a radiologist for
incidental findings of abnormalities and all images underwent
visual quality control to assess for motion and were rated
on a 3-point scale of Pass, Check, Fail (Backhausen et al.,
2016). All 71 included participants were rated as Pass
or Check before preprocessing; four participants that were
originally collected for this study, did not have usable data
and were excluded from this analysis (i.e., Fail and were
not included).
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Whole Brain Segmentation
Cortical parcellation was performed using each subject’s
T1- and T2-weighted images using FreeSurfer1 v6.0 (Fischl et al.,
2002; Reuter et al., 2012). The surface-based pipeline was used
to estimate cortical thickness, as follows (Dale et al., 1999;
Fischl and Dale, 2000; Fischl et al., 2002). Each subject’s T1-
and T2-weighted images were registered to MNI305 and skull-
stripped. White matter was segmented by classifying voxels as
white matter or other based on the intensity at each voxel. For
each hemisphere, a white surface (the boundary between white
and gray matter) and pial surface (the boundary between gray
matter and CSF) was defined, and the distance between the two
computed whole-brain cortical thickness. After segmentation,
all images were inspected by a trained operator to assess the
accuracy of segmentation for each participant (AA). No manual
intervention was performed. In addition to the surface-based
stream, the intracranial volume (ICV) from the volume-based
pipeline was extracted as a covariate in models examining
amygdala volumes.

Amygdala Segmentation
The amygdala was segmented into subregions using the
CIT168 atlas (Tyszka and Pauli, 2016); previously published
manuscripts describe the creation, validation, and estimation
of individual differences, and also compare the CIT168 with
previous atlas (Tyszka and Pauli, 2016; Pauli et al., 2018). In
the creation and validation of the CIT168 atlas, Tyszka and
Pauli (2016) established that a Contrast to Noise (CNR) ≥1 is
necessary for robust volume estimation of the ground truth
volume. Thus, the intensity contrast within each hemisphere
of the amygdala was estimated from the interquartile range
(IQR) of intensities within the entire amygdala from each
subject’s T1-weighted image. The standard deviation (SD) of
the noise was estimated from the residual signal obtained
from the subtracted T1-weighted atlas template image from
each subject’s T1-weighted image. The IQR was then divided
by the mean residual noise SD to generate the CNR. For
our amygdala data, the average amygdala CNR was 1.12 in
our T1w and 1.04 in T2w data. Amygdala subregions were
estimated at the individual level for each participant as previously
published (Herting et al., 2020). Each participant’s T1w and
T2w images were first registered to one another, then a single
B-spline bivariate symmetric normalization (SyN) diffeomorphic
registration algorithm from ANTs (Avants et al., 2007) was
used to map to the CIT168 atlas using a joint cross-correlation
similarity metric with equal weighting of the T1w and T2w
image of the subject. We then used the inverse diffeomorphism
to produce a probabilistic segmentation of each participant’s
left and right entire amygdala, as well as each of the nine
bilateral subfield regions of interest (ROI). Based on the existing
literature, we focused our analysis on four a priori ROIs that
have been implicated in appetite regulation, including the LA,
BLDI, CEN, and CMN. The volume of the total amygdala
and each subnuclei ROI for both hemispheres were extracted
for analyses.

1http://surfer.nmr.mgh.harvard.edu

Behavioral Food Choice Task
All participants completed a behavioral food choice task in a
fasted state (at least 4 h, but the majority fasted overnight). The
task was modified for youth from a food choice task previously
employed in adults (Sullivan et al., 2015). The computer task
was coded in MATLAB (version 2014a, Natick, MA, USA), and
displayed with Psychophysics Toolbox2 (version 3). Instructions
were designed to be at a 3rd-grade reading level, with visual
cartoons and shorter phrases, and were read aloud to participants
who were younger than 18 years old to standardize for literacy.
During the task, participants were instructed to raise their hands
with questions.

Thirty high-calorie and 30 low-calorie food cues were selected
from two databases (Page et al., 2011; Blechert et al., 2014)
and matched overall between calorie groups for red/green/blue
color proportion, size, brightness, contrast, complexity, and
normalized complexity. The high- and low-calorie food stimuli
only differed by their caloric density (kcal/100 g). Food cues
were selected to be foods familiar and appealing to a pilot group
of youth.

Food Rating Task
Participants rated each of the 60 food cues for tastiness,
healthiness, and overall desire (liking) to eat the food. Block and
stimulus orders were randomized across participants. Ratings
were made on the computer keyboard, using a 5-point scale with
emoticons and words. Response time (RT) in this task is defined
as the time between the initial presentation of a food cue and the
subject’s keyboard response.

Food Choices Task
One hundred binary choices were presented based on the
participant’s individual ratings for taste and health from the Food
Ratings Task. Among the one hundred choice pairs, 75 were
‘‘challenge trials,’’ where one food had a higher tastiness rating
yet lower healthfulness rating than the other food item (which
thus had a higher healthfulness rating and lower tastiness rating).
These challenge trials were deemed to present a self-control
challenge to the participant.

Participants were counseled to keep the health of foods in
mind, with the instructions for the task including a reminder
slide to ‘‘try to keep it healthy,’’ to increase the frequency at
which they exhibited dietary self-control in the task (Hare et al.,
2011; Sullivan et al., 2015). They were also informed that one of
their choices would be rewarded to them at the end of the task,
incentivizing careful decision-making. In each trial of the task,
participants chose the item they would like to eat using the
cursor. Before starting the task, participants completed several
practice trials.

Each trial was presented as follows: (1) a display box labeled
‘‘START’’ appeared at the bottom center of a black screen;
(2) participants were required to click this box to begin the
trial; (3) a blank screen of variable duration (200–500 ms;
mean = 350 ms) then appeared; (4) the cursor would reappear
in the bottom center of the screen and two food pictures were
pseudo-randomized to appear with one at the left and one

2http://www.psychtoolbox.org
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at the right upper corner; and (5) participants selected the
food they preferred by moving the cursor continuously to the
box that contained their preferred food. A participant’s RT
was recorded as the time between food cue presentation and
choice. Fluid cursor movements were promoted by the food cues
not being displayed until the mouse movement was detected.
To further encourage smooth and direct mouse movements,
if the participant took longer than 4 s to make a choice, a
message prompting faster decisions was displayed. Trials were
separated by a fixation cross of random duration (400–700 ms;
mean = 550ms). During choice, the x, y coordinates of the mouse
cursor were recorded at a temporal resolution equal to the screen
refresh rate (67 Hz).

At the end of the task, a computer algorithm selected a food
item (out of six different items in stock) that corresponded to
one of the food items selected by the participant during the
Food Choices task. The chosen food item was displayed on the
screen and then offered to the participant at the end of the
computer task.

Dietary self-control was considered successful when the
healthier food cue in the challenge trial was chosen. An individual
measure of overall dietary self-control, the ‘‘self-control success
ratio (SCSR)’’ was computed as the proportion of challenge trials
per participant in which dietary self-control was successful.

Statistical Analysis
Whole-brain vertex-wise cortical analyses were performed using
Freesurfer’s Query, Design, Estimate, Contrast (Qdec) interface
including the main predictor of WHtR while also accounting for
age and sex, and results were corrected for multiple comparisons
by the method of Monte Carlo simulation with p < 0.05 (Hagler
et al., 2006). For each identified significant cluster, the mean
thickness was extracted for each participant to perform follow-up
analyses in association with behavior. All behavioral statistical
evaluations of the data were performed in R (version 3.6; r-
project.org, Vienna, Austria). Linear regression, as well as the
linear mixed-effects model (LME) analyses, were conducted
using the R package ‘‘nlme.’’

In all analyses, a model reduction strategy was applied to first
examine a potential WHtR by age interaction. However, in all
analyses, the interaction term was found not to be significant.
Thus, the interaction was removed, and the final model included
the main effects of WHtR while adjusting for age.

For the behavioral task, LME analyses included examining
how WHtR related to ratings of the food stimuli and RT
during food choices with the repeated measures including food
attributes (tastiness, healthiness) and calorie content of the food
(high-calorie, low-calorie), with subject as a random factor. A
separate model was performed to examine how WHtR and age
related to liking ratings.

For amygdala volumes, separate LME analyses examined how
WHtR related to volumes of the total amygdala or a priori
subregions of interest (LA, BLDI, CMN, CEN), while including
age, sex, hemisphere (left, right), and ICV as covariates, and
subject as a random factor. Post hoc tests were completed
using the package ‘‘reghelper’’ to calculate the simple slopes of
interaction at the mean level of any continuous covariates.

Following a priori analyses, we aimed to also examine the
link between obesity-related brain correlates with behavior, we
examined if identified cortical and amygdala correlates and their
potential interactions predicted SCSR on the food task while
adjusting for WHtR, age, sex, and ICV. Last, we implemented a
stepwise regression using both forward and backward selection to
examine the best brain predictors in a single model to determine
the best predictors of the SCSR on the food choice task. For
completeness, we also explored models using BMIz in place of
WHtR (Supplementary Figure 2, Supplementary Tables 3–5).

RESULTS

Relationships Between WHtR, Cortical
Thickness, and Amygdala Volumes
Negative associations were seen between cortical thickness and
WHtR, controlling for age and sex, including significant clusters
in the bilateral superior frontal, left superior temporal, right
insula, and right inferior temporal regions (Figure 1, Table 2).
There was a trend association between WHtR and overall
amygdala volume after adjusting for the hemisphere, age, sex,
and ICV (Table 3). In subregion analyses, we found a main effect
ofWHtR on the volume of the CEN (Figure 2), but not the CMN,
BLDI, or LA of the amygdala, after adjusting for the hemisphere,
age, sex, and ICV (Table 3).

Behavioral Results of Food Choice Task
Descriptive data for ratings and RT are included in
Supplementary Figure 1. The marginal effects from the
LME model for ratings showed a significant interaction of food

FIGURE 1 | Associations between waist-to-height ratio and cortical
thickness, controlling for age and sex and corrected for multiple comparisons
at p < 0.05.
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TABLE 2 | Main effect of waist-to-height ratio on cortical thickness (N = 71).

Cluster location Hemisphere Cluster size (mm2) MNI coordinates T Max

X Y Z

Superior Frontal Cortex L 8,260 −20.1 25.2 39.4 −3.794
Superior Temporal Cortex L 2,691.45 −49.7 8 −14.8 −3.398
Insula Cortex R 2,422.01 35.2 −24.8 5.4 −3.802
Superior Frontal Cortex R 2,306.41 14 36.5 11.3 −3.394
Inferior Temporal Cortex R 1,785.23 43.6 −23.9 −17 −3.302

Controlled for age and sex and corrected for multiple comparisons (p < 0.05). Abbreviations: L, left; R, right.

TABLE 3 | Associations between waist-to-height ratio and amygdala volumes
(N = 71).

Volumes (mm3) Beta estimates 95% CI p

Total Amygdala 483.87 −65.07 to 1,032.82 0.083
BLDI 54.58 −12.41 to 121.57 0.11
CEN 24.88 7.42 to 42.33 0.006
CMN 29.39 −30.09 to 88.87 0.328
LA 53.09 −82.39 to 188.57 0.437

Abbreviations: BLDI, dorsal and intermediate basolateral; CEN, central nucleus; CMN,
cortical and medial nuclei; LA, lateral nucleus; CI, Confidence Interval. p< 0.05 significant
values highlighted in bold.

attributes (health, taste) and image calorie type (high calorie, low
calorie; F(2,207) = 435.51, p< 0.001; Supplementary Table 1). No
associations were seen between WHtR (F(1,67) = 1.20, p = 0.27)
or age (F(1,67) = 1.55, p = 0.22) and rating outcomes. Post
hoc comparisons showed participants rated high-calorie food
stimuli less healthy than low-calorie food stimuli (p < 0.001).
However, participants rated the high and low-calorie food
stimuli similar for tastiness (p = 0.83). The marginal effects
of the LME models for RT showed trend level associations
with WHtR (F(1,67) = 3.90, p = 0.05), and age (F(1,67) = 3.67,
p = 0.06), with faster RTs seen for both higher WHtR and
age. Also, the marginal effect of food attribute was significant
(F(1,207) = 24.20, p < 0.001) with faster RT seen for the taste
vs. health conditions. In terms of rating how much they would

like to eat each food item, no association was found between
WHtR or age (p-values > 0.80) and ratings, but significantly
faster RT was seen with age (F(1,67) = 4.68, p < 0.034) as
well as a significant interaction was seen between WHtR
and image calorie type for RT (F(1,69) = 4.61, p < 0.035).
Post hoc analyses showed that those at 1 SD below the mean
in WHtR had significantly faster RTs for rating how much
they would like to eat the low-calorie vs. high-calorie items
(p = 0.01), whereas those with a higher WHtR did not show
differences in RT between high- and low-calorie food items
when rating them on how much they would like to eat each
item (p-values > 0.15). SCSR had an average of 0.32 and ranged
from 0.01 to 0.97. In terms of the decision-making portion
of the task, no association was seen between SCSR and age
(β =−0.0004, SE = 0.009, p = 0.96) or SCSR andWHtR (β = 1.46,
SE = 2.37, p = 0.98).

Relationships Between WHtR Identified
Brain Phenotypes and SCSR
Linear regression models examining WHtR related brain
structures of cortical thickness, CEN amygdala volumes,
and/or their interactions on SCSR showed a significant left
CEN amygdala-by-right superior frontal thickness interaction
(Table 4, Figure 3A). A larger left CEN was only associated
with poorer SCSR in conjunction with a thinner superior frontal

FIGURE 2 | (A) Visual display of four a priori subregions of amygdala: lateral nucleus (LA) in orange, cortical, medial nuclei (CMN) in blue, central nucleus (CEN) in
green, and dorsal and intermediate basolateral (BLDI) in dark pink. (B) Waist-to-height ratio is associated with larger left (denoted by pink solid circles) and right
(denoted by blue solid circles) CEN amygdala volumes.
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TABLE 4 | Significant interactions in predicting self-control success ratio.

Interaction terms Estimates 95% CI p R2

Left CEN-by-Left Superior Frontal thickness 0.05555 −0.00492–0.11602 0.071 0.08
Left CEN-by-Left Superior Temporal thickness 0.02172 −0.03400–0.07744 0.439 0.051
Left CEN-by-Right Insula thickness 0.02842 −0.02374–0.08058 0.28 0.059
Left CEN-by-Right Superior Frontal thickness 0.05365 0.00310–0.10421 0.038 0.1
Left CEN-by-Right Inferior Temporal thickness 0.04058 −0.00447–0.08564 0.077 0.103

Abbreviations: CEN, central nucleus; CI, confidence interval. p < 0.05 significant values highlighted in bold.

FIGURE 3 | (A) Scatterplot of the interaction of right superior frontal (SF) cortical thickness and left central nucleus (CEN) amygdala volume on the prediction of
self-control success ratio (SCSR). (B) Larger amygdala volume together with thinner SF thickness predicts lower SCSR. Values plotted at the first and third quartiles
for both CEN volumes and SF thickness.

cortex (Figure 3B). Trend level interactions were also seen for
the left CEN amygdala-by-right superior frontal thickness and
the left CEN-by-right inferior temporal thickness (Table 4).
Last, stepwise regression including each cortical region left CEN
amygdala volume, as well as age, sex, WHtR, and ICV as
covariates, revealed the best predictors of SCSR included a larger
left CEN amygdala volume, reduced cortical thickness of the right
insula, and superior frontal thickness, as well as the significant
left CEN amygdala by right superior frontal thickness (Table 5);
albeit the model only accounted for ∼11% of the variance in
behavior on the task (R2 = 11.30, Model p = 0.09).

Results Using BMIz
BMIz and WHtR was highly correlated (r = 0.71, p < 0.0001).
Brain and behavior analyses utilizing BMIz were found to
be relatively similar, yet less robust as compared to WHtR.
Specifically, we found that BMIz was negatively associated with
thickness in the superior frontal left PFC while controlling
for age and sex (Supplementary Figures 2, 3). No association
was seen between BMIz and overall amygdala volume after
adjusting for the hemisphere, age, sex, and ICV. In subregion
analyses, we found a BMIz-by-age interaction on the volume
of the CEN, but not the CMN or LA of the amygdala, after
adjusting for the hemisphere, age, sex, and ICV (Supplementary
Table 4). Linear regressions found no association between SCSR

TABLE 5 | Stepwise regression identified best predictors of self-control success
ratio.

Predictors Estimates 95% CI p

Left CEN Amygdala −0.16167 −0.31680–-0.00655 0.041
Right Superior Frontal Thickness −2.14616 −4.65587–0.36356 0.092
Right Insula Thickness −0.4481 −0.96347–0.06727 0.087
Left CEN-by-Right Superior
Frontal Thickness 0.05175 0.00337–0.10013 0.036

CEN, central nucleus; CI, Confidence Interval. p < 0.05 significant values highlighted in
bold.

and age (β = −0.01, SE = 0.13, p = 0.94), BMIz (β = 0.001,
SE = 0.01, p = 0.95), or an age-by-BMIz interaction (β =−0.0003,
SE = 0.01, p = 0.97). However, a significant interaction of
left superior frontal PFC thickness and CEN amygdala volume
was found across all participants in predicting dietary self-
control, controlling for BMIz, hemisphere, age, sex, and ICV
(Supplementary Table 5).

DISCUSSION

We studied children and adolescents of varying weight categories
who each completed a dietary decision-making task and brain
structural scans. We aimed to investigate brain structural
correlates of obesity and dietary self-control across adolescence.
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We found that the WHtR was negatively associated with the
cortical thickness of the bilateral superior frontal, left superior
temporal, right insula, and right inferior temporal regions, and
positively correlated with the volume of CEN of the amygdala.
Furthermore, thinner cortical thickness of right superior frontal
and larger left CEN volume predicted lower dietary self-control.
These results suggested that weight status is related to the
structural morphology of the PFC and central nucleus of
the amygdala, which together predicted dietary self-control in
children and adolescents.

We and others have observed a negative correlation between
BMIz and PFC cortical thickness in youth (Laurent et al., 2020;
Ronan et al., 2020). Interestingly, whenWHtR was examined, we
observed additional clusters exhibiting this negative relationship
with PFC thickness, including left superior temporal, right
insula, right inferior temporal regions. Additional clusters with
WHtR (vs. BMIz) have also been noted by others in brain-
obesity relationships (Ronan et al., 2020). WHtR is a surrogate
marker of central obesity and is more directly associated
with cardio-metabolic risk factors than BMI, thereby perhaps
capturing increased variance of cortical thickness as it relates to
obesity. Also, WHtR is closely associated with insulin resistance,
which is related to a thinner PFC (Ross et al., 2015), and
inflammation which can directly impact brain morphometry
(Adelantado-Renau et al., 2019). Similarly, visceral abdominal
fat, but not BMI, is related to cortical thickness, suggesting
that the central allocation of fat matters in these relationships
as well (Saute et al., 2018). Limited by sample size and tight
correlations between BMIz and WHtR, we were not able to
test the independent or joint effect of BMI and WHtR on
cortical thickness and brain volumes as others have done
(Hamer and Batty, 2019). The biological meaning of reduced
cortical thickness is not yet fully understood, however, there
is suggestive evidence showing that reduced cortical thickness
may be partially associated with increases in cortical myelination
(Croteau-Chonka et al., 2016). Future studies are merited to
establish a link between obesity and cortical myelination by
directly assessing myelination.

Additionally, we found a significant positive relationship
between WHtR and volume of CEN of the amygdala, controlling
for covariates such as age, sex, hemisphere, and ICV. There are
mixed results in previous studies, with some showing positive
relationships between obesity and amygdala volume (Perlaki
et al., 2018), others showing the opposite pattern (Nouwen
et al., 2017). Controversial findings could be due to differences
in study populations, false-positive results due to small sample
sizes, and differential contributions from subregions of the
amygdala. Given the distinct structure and function of amygdala
subregions, we examined relationships between obesity and the
volume of four a priori subregions of the amygdala and found
that only the volume of CEN was significantly positively related
to WHtR. The CEN is anatomically and functionally connected
to the hypothalamus (Swanson and Petrovich, 1998) and bed
nuclei of stria terminalis (Dong et al., 2001), suggesting that its
role in feeding could be via metabolic and/or reward regulation
mechanisms. Animal work has shown that the CEN is critical for
controlling feeding in the presence of an aversive cue (Petrovich

et al., 2009; Prévost et al., 2012), and can modulate dopamine
activity in the nucleus accumbens and medial PFC (Ahn and
Phillips, 2002), suggesting that it may integrate motivation
signals in cue-triggered feeding. Our study results highlight
the importance of examining the subregions of the amygdala
concerning obesity.

To further understand the functional significance of
obesity-related brain structures reported above, we examined
relationships between those brain structures and dietary
self-control on an objective task. Dietary self-control is the
ability to forgo tastier food items for healthier food options
(Ha et al., 2016). Prior functional imaging studies in adults and
youth have shown that the dorsolateral PFC was activated when
healthy food choices were made; it modulates the ventromedial
PFC activity when self-control was engaged (Hare et al., 2009;
Lim et al., 2016). Decreased PFC activation could reduce the
modulatory control of the PFC over reward regions, including
the orbitofrontal cortex and striatum as well, thereby further
reducing dietary self-regulation (Lowe et al., 2019). Furthermore,
a meta-analysis reported a negative relationship between brain
activity in the PFC cortex such as IFG and MFG during dietary
self-control tasks and BMI (Han et al., 2018), suggesting that
obesity may be related to impairments in dietary self-control
implemented by the various parts of the PFC.

The amygdala may also play a critical role in dietary self-
control. The role of the amygdala on dietary decisions is largely
unexplored, although both animal and human studies suggest
that the amygdala is crucial in regulating food intake (Sawa
et al., 1954; Weiskrantz, 1956; Green et al., 1957; Koikegami
et al., 1958; Wood, 1958; Wilkinson and Peele, 1962; Kling and
Dunne, 1976). The amygdala is thought to integrate sensory,
metabolic, and higher-order control signals in cue-triggered
feeding behavior given its connection with regions implicated
in sensory processing, homeostatic regulation, and cognitive
control (Price, 2003). We speculate that the amygdala may
be implicated in tracking the rewarding value of food stimuli
using various input from sensory, metabolic, and top-down
control signals. Prior functional imaging studies have shown that
the amygdala is responsive to appetitive food cues in children
(Holsen et al., 2005) and that children with obesity showed
greater amygdala responses to food reward than lean healthy
children (Boutelle et al., 2015). Moreover, greater amygdala
volume in newborns was predictive of lower impulse control
at 2 years of age (Graham et al., 2018), suggesting a link
between amygdala volume and impulse control. Consistent with
observations from both functional and structural brain studies,
we found that a thinner right superior PFC together with a larger
left CEN volume was associated with poorer dietary self-control.
Our findings demonstrate that the interaction between the PFC
and the amygdala is an important aspect of the regulation of
food intake.

Unexpectedly, we did not observe significant relationships
between dietary self-control and BMIz or WHtR. Similarly, a
recent study reported no significant relationship between dietary
self-control and BMI percentile in children age between 7 and
11 years old (Pearce et al., 2020). However, we did observe that
participants with a WHtR that was 1 SD below the mean had
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significantly faster RTs for ratings of ‘‘how much they would like
to eat’’ the high-calorie vs. low-calorie food items, whereas those
with a higher WHtR did not show differences in RT between
high- and low-calorie food items in this regard. These results
suggest that individuals of a healthy weight may experience a
greater conflict between rating ‘‘liking’’ of high- vs. low-calorie
foods due to prioritizing the health attribute of food. We also
speculate that the effect size of the association between dietary
self-control and obesity may be small, thereby we would not
have the power to detect significant relationships between dietary
self-control and BMIz or WHtR. It is also possible that obese
and lean people may make similar food choices in a fasted state.
As well, dietary self-control and obesity may not be related, and
changes in the brain structure of the PFC and amygdala may
relate independently to these factors.

Our study has several limitations. First, the cross-sectional
design limits our ability to test causal relationships between brain
regions, obesity, and dietary self-control. A longitudinal study
could help address these questions. Second, although WHtR is a
common index of central obesity, it is not a direct quantification
of visceral fat measured by MRI. Third, our study sample is
relatively small, yet is composed of individuals spanning a wide
age-range (8–22 years). Although we did not find significant BMI
or WHtR-by-age interaction on brain structures and dietary self-
control, larger studies with additional participants per age group
(children, adolescents, adults) are needed to more fully examine
interactions of obesity and age on brain structure and dietary self-
control. There might also be other important regions relevant to
dietary decisions and obesity, such as the ventral striatum, which
we did not investigate here. Last, given the prominent role of the
amygdala in emotion processing, it is possible that the amygdala
may be important for the emotional aspects of eating behaviors,
which we did not have measures to probe here. Future studies
are merited to study the relationships between the amygdala
morphology and emotional eating.

In conclusion, the differential development of the PFC
and amygdala relate to both obesity and dietary self-control.
Adolescents have the largest differential development of PFC
and limbic regions. As such, this age group may be particularly
susceptible tomaking poor dietary choices, as seen by studies that
report adolescents eat more fast food and refined sugars than any
other age group (Nielsen et al., 2002; Bremer and Lustig, 2012).
Further longitudinal studies are merited to determine if altered
PFC to amygdala neural circuitry is a cause or a consequence of
dietary self-control in youth, in addition to being a risk factor
for obesity.
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