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Abstract

Colorectal cancer (CRC) patients develop recurrence after chemotherapy owing to the survival of stem cell-like cells
referred to as cancer stem-like cells (CSCs). The origin of CSCs is linked to the epithelial-mesenchymal transition (EMT)
process. Currently, it remains poorly understood how EMT programmes enable CSCs residing in the tumour
microenvironment to escape the effects of chemotherapy. This study identifies a key molecular pathway that is
responsible for the formation of drug-resistant CSC populations. Using a modified yeast-2-hybrid system and 2D gel-
based proteomics methods, we show that the E3-ubiquitin ligase FBXW?7 directly binds and degrades the EMT-
inducing transcription factor ZEB2 in a phosphorylation-dependent manner. Loss of FBXW?7 induces an EMT that can
be effectively reversed by knockdown of ZEB2. The FBXW7-ZEB2 axis regulates such important cancer cell features, as
stemness/dedifferentiation, chemoresistance and cell migration in vitro, ex vivo and in animal models of metastasis.
High expression of ZEB2 in cancer tissues defines the reduced ZEB2 expression in the cancer-associated stroma in
patients and in murine intestinal organoids, demonstrating a tumour-stromal crosstalk that modulates a niche and
EMT activation. Our study thus uncovers a new molecular mechanism, by which the CRC cells display differences in
resistance to chemotherapy and metastatic potential.

Introduction

About 40-50% of patients with stage II and stage III
colorectal cancer (CRC) exhibit resistance to therapy and
develop recurrent cancer over the course of treatment.
CRC cells respond to transcriptional and epigenetic changes
and undergo epithelial-mesenchymal transition (EMT). In
cancer, the EMT is associated with the cell capacity to self-
renew (termed cancer stem-like cells (CSCs)), generating
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different lineages of cells (tumour heterogeneity) and
resistance to therapies and metastasis®>. Environmental fac-
tors control the CSC properties. However, few studies exist
to provide a clear mechanistic understanding of how the
development of migrating CRC-CSCs (CR-CSCs) and drug
resistance are related to the tumour microenvironment.
E3-ubiquitin ligases (E3s) form a talented class of reg-
ulators. The specificity of proteolysis is determined by the
association of a specific E3-receptor subunit with the
substrate. FBXW7 (also called hCDC4, Fbw7) functions as
a receptor subunit for the Skpl/Cullin/F-box (SCF)-E3
(SCF*B*¥7) and targets several proteins with critical roles
in the hallmarks of cancer®. Thus, elucidating the
FBXW7 mechanism(s) of action can add valuable infor-
mation for identifying therapeutic targets and strategies to
block CRC growth and metastasis. We and others have
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previously engineered mice in which the Fbxw7 gene is
conditionally knocked out in the intestine (fhxw7°%),
resulting in accelerated tumorigenesis in Apc™™-mutant
mice as early as 2-5 weeks after birth®®. These studies
highlight a possibility that FBXW7 was associated with
the intestinal/colon stem cells (ISCs). However, because
of the early lethality of Apc™™baw7°C mice, little is
known about the role of FBXW?7 in CR-CSC growth and
metastasis.

ISC-associated signalling pathways are often affected in
CRC-SCs”®. As in ISCs, the self-renewal and survival
signals dominate over the differentiation signals in CRC-
SCs. Hence, we hypothesised that FBXW7 may exert its
function by degrading proteins expressed in ISCs and that
the loss of FBXW7 may endow them with the functional
hallmarks of CR-CSCs. To explore this further, we iden-
tified Fbxw7-associated proteins (FAPs) that were
expressed in crypt/ISC-isolation followed by 2D-MALDI-
MS, which were also phosphorylation-dependent targets
of FBXW?7 using the yeast-based, cytoplasmic two-hybrid
Ras-Recruitment-System (RRS) assays’. Here, we focus on
a master regulator of EMT, the Zinc-finger E-box-binding
homeobox-2(ZEB2) transcription factor protein (also
known as SIP1 and Zfhx1b)'>'" as a new GSK-3pB
phosphorylation-dependent target of FBXW7.

ZEB2 has previously been implicated in EMT, cell-cycle
progression, apoptosis and senescence'*'*7'°, ZEB2 was
overexpressed in bladder, ovarian, stomach, pancreatic
and squamous cell carcinoma, in the intestinal subtype of
stomach cancers, and at the invasive front of CRC where
EMT is most prominent'’ =%, ZEB2 also mediates cell-fate
decision in neuronal, T cells and hematopoietic stem
cells* 7%, In this study, we addressed how the FBXW7-
ZEB2 axis mediates an interplay between EMT, cancer-
associated fibroblasts (CAFs) and CR-CSCs and regulates
CRC metastasis and chemoresistance.

Results
ZEB2 degradation via its physical interaction with FBXW7
To investigate the Fbxw?7 function in ISCs, we isolated
the control “floxed” fhbxw7 (fbaw7"™) and mutant
fbxw7"C intestinal crypts®®. Proteins, either absent in
control fbxw7"" or upregulated in homozygous fhaw7"
and heterozygous fhaw7°'*, were initially identified by
2D/MALDI-TOF mass spectrometry (Fig. 1la, left, and
Table S1, significance threshold p < 0.05). Because the
SCF™®*Y7 targets multiple substrates, it may indirectly
affect the abundance and phosphorylation status of dif-
ferent proteins on the 2D gel. Thus, we established a
yeast two-hybrid reverse Ras-recruitment system (RRS)’
(Fig. 1b). Proteins detected in both RRS and 2D-MALDI-
MS assays, and with no previously known links with
FBXW?7, including ZEB2 (Table S1), were further
investigated.
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Upon the RRS analyses, 12 out of 219 plasmids rescued
in the absence of methionine, encoded various fragments
of the ZEB2 C-terminus (between 515 and 1100aa). Also,
increased expression of the ZEB2 protein (>3 times) but
not the corresponding mRNA was detected in fhaw7°C
versus fhaw7"" crypts (Fig. 1a, right). Hence, we per-
formed further experiments to test if GSK-33/FBXW7
negatively regulates ZEB2 in vitro. When GFP-ZEB2 was
overexpressed in different cell lines, we found different
patterns of GFP-ZEB2 expression in response to GSK-3
activation (Fig. 1c, left). Reciprocally, treatment with
either TWS119 or LiCl (potent GSK-3f inhibitors),
MG@G132 (an inhibitor of the 26 S proteasome) (Fig. 1c,
middle) or GSK-3p knockdown (Fig. 1c, right), upregu-
lated ZEB2 expression. Furthermore, since there is no
anti-phospho-site-specific antibody to detect phosphory-
lated ZEB2, we examined GSK-kinase activity-mediated
ZEB2 phosphorylation by using the endogenous ZEB2
immunoprecipitates when LiCl and BIO inhibit GSK-3
activity in FBXW7-deficient cells. These data suggest that
GSK-inhibitor treatment results in significant inhibition
of S/T-phosphorylated ZEB2 (Figures S1C and S2A).

We next examined whether ZEB2 is a direct target of
SCF™*Y7  As FBXW7 isoform-specific antibodies are
unavailable that work for endogenous immunoprecipita-
tion (IP) and western blotting (WB) assays, and FBXW7«
is the most abundant isoform expressed in the intestine,
we used this isoform for follow-up studies. Co-IP
experiments revealed that exogenous and endogenous
FBXW?7 and ZEB2 proteins bind with each other in cells
(Fig. 1d, e left, and S2B and S2C). IP of TNT-coupled
reticulocyte lysate of FLAG-Fbxw?7 also showed a direct
interaction with ZEB2 (Fig. 1d, middle). We assessed
ZEB2 ubiquitination in HEK293 and CRC cells and a
typical high-molecular-mass smear of exogenous and
endogenous ubiquitinated ZEB2 precipitated in the pre-
sence of FBXW7 (Fig. 1d, right and S1A). Also, the
cycloheximide pulse-chase experiment revealed a total
absence of endogenous and exogenous ZEB2 protein
degradation in the absence of FBXW?7 (Fig. 1f and S1B).
These data demonstrate that the ZEB2 phosphorylation
could be crucial for SCF™®*¥7_mediated ZEB2
destabilisation.

Mechanism of ZEB2 degradation by FBXW7

The protein sequence of ZEB2 (NCBI: CCDS2186.1)
contains four potential conserved CPDs [the FBXW7/
(Cdc4)-phosphodegron sequence (T/S)P/L-X-X-(S/T/D/
E)]* among vertebrates and five putative GSK-3B phos-
phorylation sites (Figures S1D and S1E). To interrogate
the ZEB2-specific domains in FBXW7-mediated degra-
dation, we initially constructed eight GFP-ZEB2 deletion
mutants (D1-D8) (Fig. 2a) and measured their expression
levels in the presence or absence of FBXW7. In WB



Li et al. Oncogenesis (2019)8:13

Page 3 of 17 13

A foxw7%? foxw745 Int crypt
TR foxw7: il AG filfl AG
Zenzg
wB
|
g-actin
O
o
Ras OR Ras
GoP
No Growth
Mela-prommer—- PA Replica plating
- o = oni +  + p-catenin-FLAG
‘_ ‘ + - Methionine
- - [E=]GSK3-p
R R [=&7] p-catenin (FLAG)
W sogs W GD:S p-p-catenin
=== Fbxw7AF-RasV12
— Methionine + Methionine
Ras OR I’?as
GOP GoP.
Growth
WS - o+ - - -
o LiCl - - + - +
& MG132 - - - o+ o+ SIRNA
& == =2 A (GSK-3p)
w ZEB2 [ ZEB2
S a
p-catenin { ] GSK-3p
= - !
g-actin
p-actin
ZEB2-GFP + GSK3-B(CA)
D Input IP: FLAG IP: GFP FLAG-FBXW7 + - +
e GFP-ZEB2 - + +
GFP-FLAG-FBXW? - + - + - + - FLAG-FBXWT  + + - HA-Ub + o+
GFP-ZEB2 - - + + - - + <+  GFPZEB2 -+ +
ZEB2 = - = ZEB2
a
&
& IP: GFP
FBXW7 = - = bt 1B: HA
FBXWT ©
s 2 3
[s:] o
(— = o~
o]
w
| &
= P ’ GFP
y (ZEB2) s
2
LT : £
' (FBXWT)
8 cre oFp zesz) [ ]
E
E Input IP: ZEB2 FLAG (Faxu7) [ W] | 2
FLAGFBXW? - + = + B-actin [A—
IB: 7682 - HA (Ub)
&FLAG -
«— FBXWT
FBXW7 ++ -t
CHX (hr) 0 05 1 15 2 0 05 1 15 2
IP: ZEB2
s P—.-...—.‘mpm
Fig. 1 (See legend on next page.)

Oncogenesis




Li et al. Oncogenesis (2019)8:13 Page 4 of 17 13

(see figure on previous page)

Fig. 1 SCF™®"7 interacts and targets ZEB2 for degradation in a GSK-3B phosphorylation-dependent manner. a Left, 2DE and MALDI-MS-
based identification of novel Fbxw?7-associated proteins using crypts (upper panel) isolated from 3-week foxw7™™ and foxw7C mice. Yellow circles in
the lower panel denote potential Fbxw?7-associated proteins. a Right, WB analysis (upper panels), and RT-PCR analysis (lower panels) of w7 s,
foxw7C derived crypts and intestinal proteins and mRNA expression for ZEB2 and B-actin control. Experiments were performed on at least three
independent occasions. b Left, schematic representation of the modified yeast two-hybrid reverse Ras Recruitment Screening (rRRS) system
identifying proteins interacting with Fbxw?7 in a GSK-3 phosphorylation-dependent manner. GSK-33 under the control of the methionine-regulated
MET3 promoter induces phosphorylation of encoded myristoylated proteins through a cDNA library plus positive control expressing FLAG-3-catenin
(B—Middle) which only rescued the growth of cdc25-2 mutant yeast by Fbxw?7-associated protein(s), if they interact with RasV12-FBXW7AF (i.e.
human FBXW7a isoform mutant lacking F-box domain; therefore, interaction with Skp1 is lost and degradation of SCF™®*/ substrates will not occur
in yeast) used as a bait at the restrictive temperature 37 °C, in a methionine-dependent manner. In the FBXW7AF mutant, both the N-terminal F-box
and Dim-domains are deleted to avoid any interactions with SKP1 and other FBXW?7 isoform-associated proteins. Thus, cdc25-2 mutant yeasts can
grow only at 37 °C, when a phosphorylation-dependent interaction between a protein target and RasV12-FBXW7AF takes place. The FBXW7AF(bait)-
dependent growth of these clones was further analysed on galactose-containing medium at 37 °C (B—Right). Red circles show the GSK-3(3-
phosphorylation-dependent interactor, including the Zeb2-clone, green circles show the phosphorylation/non-phosphorylation-dependent
interactor and blue circles show the revertant clones (B—Right). c Left, subcellular localisation of GFP-fused human ZEB2 in the absence (top; nuclear)
and presence (bottom; nuclear spots indicative of protein degradation) of GSK-3@ in HCT116 CRC cells. (c—Middle and c—Right) WB analysis of total
ZEB2 protein level following the inhibition of GSK-33 (e.g. WS119 or LiCl treatment, and siRNA against GSK-3(3) and of UPS pathways (MG132) in
SW620 CRC cells. d Direct binding and ubiquitin-dependent degradation of ZEB2 by FBXW?7. Co-immunoprecipitation (IP) of ZEB2 upon pull-down of
FBXW7 in HEK-293T cells (Left); co-IP of FBXW7 upon pull-down of ZEB2 using the TNT-coupled reticulocyte lysate (Middle), and ubiquitination assays
with HA-tagged ubiquitin- (HA-Ub) expressing construct in HEK-293T cells (Right). The asterisk indicates a nonspecific band(s). e Co-IP of endogenous
ZEB2 upon pull-down of FBXW?7 in HCT116 cells with FBXW7 deletion. f ZEB2 pulse-chase stability assays with 15 ug/ml cycloheximide (CHX) in

\_HCT116 cells with or without FBXW7 deletion

analysis, the ZEB2-D2, ZEB2-D4, ZEB2-D6 and ZEB2-D7
mutants were not, or only slightly affected by FBXW?7, as
compared with the ZEB2-D1, ZEB2-D3, ZEB2-D5 and
ZEB2-D8 proteins (Figures S1F, S1G and 2B, 1st blot).
Intriguingly, amino-acid sequence comparison revealed
that the D1, D3, and D8 mutants contained adjacent
CPDs and putative GSK-3p phosphorylation sites within
the area between S705 and T802, which increased protein
instability (Fig. 2a, b, 1st blot). In comparison with D1, D3,
and D8 mutants, the D5 mutant lacks the potential
phosphorylation of threonine 802 that may correlate with
a slightly enhanced ZEB2-D5 stability affected by FBXW7
(Figs. S1F and 2a, b, 1st blot). Also, co-IP showed that
ZEB2-D8 interacted with FBXW?7 (Fig. 2b, 4th blot, red
arrowhead) and heavily ubiquitinated (Fig. 2b, 5th blot
and S3A). These data indicate that CPDs and phospho-
motifs within the homeobox-C-terminal region and
adjacent to the CtBP-binding motif'® are required for
ZEB2 degradation. However, we encountered difficulties
when trying to generate the full-length ZEB2 mutants of
each phosphorylation site, due to lack of proper restric-
tion enzyme(s). To overcome this, we used the combined
overlap extension PCR and eventually obtained a full-
length ZEB2 lacking the aa705-870 (ZEB2-ADS) (Figure
S3B). Next, to determine if the -AD8 mutant stabilises the
protein, we performed CHX chases, and this further
confirmed that aa705-870 residues contribute to desta-
bilisation of the ZEB2 protein (Figure S3C).

Next, we constructed a ZEB2-D9 expression, containing
the CPDs and phospho-motifs (700—804aa) (Fig. 2a).
Consistently, the stability of the ectopic expression of the
ZEB2-D9 protein was restored in HCT116"2XW7(-/7) cells
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(Fig. 2c and S1H). Moreover, TNT-coupled reticulocyte
lysate of ZEB2-D9 showed that phosphorylation occurred
at the ZEB2 C-terminus domain, displaying altered elec-
trophoretic mobility, while treatment with A-phosphatase
resulted in a non-phosphorylated, faster-migrating form
(Fig. 2d). To investigate the significance of each phos-
phorylation site, we constructed phospho-incompetent
GFP-ZEB2-D9 mutants by converting each Serine and/or
Threonine to an Alanine (Fig. 2a). The ZEB2-D9 with S/
T — A mutations, particularly at the residues S779, S797
(AA4 mutant), S784 and T802 (AA5 mutant), effectively
stabilised the proteins both in the presence of GSK-3p or
proteasome inhibitors (Fig. 2e, f and S1H). Quantifying
western blot data normalised to B-actin, we demonstrated
statistically significant differences in phospho-mutants
versus wild-type D9 constructs (Figure S1H). Further-
more, we showed that GSK-3p kinase directly phosphor-
ylates ZEB2 (Fig. 2g). Thus, the S/T-rich domain is a core
regulatory region responsible not only for the ZEB2/
FBXW?7 interaction but also for FBXW7-mediated GSK-
3B-dependent ZEB2 degradation.

ZEB2 promotes EMT and cell invasion in colorectal cancer
cells

We initially analysed the level of several proteins known
as FBXW7 targets. WB assays showed that the level of c-
Myc and P100 was unchanged, but HIF-1a, MCL-1 and
KLF5 increased in murine fbxw7“® mutant crypts, while
the level of KLF5 and c-Myc increased in CRC cells
(Figure S4A). Also, previous reports showed no significant
accumulation of phosphorylated c-Myc, cyclin-E and/or
B-catenin at 5-6 weeks of age in fhaw7"® mice>®?. Given
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Fig. 2 GSK-3-mediated phosphorylation-dependent degradation of ZEB2 by FBXW7a. a Schematic mapping and identifying FBXW?7
phosphodegrons on ZEB2 protein. Constructs of D1-D9 represent the structure of the GFP-fused ZEB2 deletions. Serine and threonine residues
within the potential GSK-3f3 phosphorylation sites (i.e. degron sequences) are shown in red and green, and proline residues are in blue in wild-type
ZEB2-D9; whilst the small letter “a” indicates S/T residues replaced by alanine in the mutant ZEB2-D9 (AA1 to AA7, where AAT 4+ AA2 + AA3 = AA6,
and AA4 + AAS + AA6 = AA7). b ZEB2-D8 directly binds to FBXW?7 for ubiquitin and GSK-3B3-mediated degradation. HEK-293T cells transfected with
the indicated constructs (D6-D8) together with FLAG-GSK-33 plasmid and HA-tagged ubiquitin (HA-Ub) followed by IP and IB. The red arrowhead
(fourth panel) denotes the co-IP of the ZEB2-D8 mutant in the FBXW?7 precipitates. Co-IP and IB experiments were performed in triplicate. ¢ FBXW7
controls the degradation of ZEB2-D9, the shorter version of ZEB2-D8. HCT116 cells £FBXW7 were transfected with the ZEB2-D9 construct, treated
with cycloheximide (CHX) for 1 h and whole-cell lysates were subjected to IB. d Phosphorylation of ZEB2-D9 may be a prerequisite for its degradation.
Lambda protein phosphatase (APPase) treatment leads to faster motility due to the release of phosphate groups from phosphodegrons. e ZEB2-D9
protein stability depends on phosphorylation and proteasome. HEK-293T cells were transfected with the ZEB2-D9 construct, treated with Okadaic
acid (inhibitor of PP1 and PP2A phosphatases; lane2), LiCl (GSK-3(3 inhibitor; lane3) or MG132 proteasome inhibitor | (Prot Inhib; lane4) for 8 h and
whole-cell lysates were subjected to IB. f Phosphodegrons within ZEB2-D9 are collectively essential to its stability. HEK-293T cells were transfected
with wild-type (WT) ZEB2-D9 and D9-phosphorylation-defective mutants (AA1-AA7 constructs) together with FLAG-GSK-3(3 plasmid and whole-cell
lysates subjected to IB. g HCT116™"7~/=) cells were transfected with GFP-ZEB2-D9 wild-type (WT) and mutant (AA7) and the activated FLAG-GSK3.
FLAG-GSK3( was immunoprecipitated with anti-FLAG and then detected with the phospho-S/T antibody. GFP-ZEB2-D9 phosphorylation status was
examined by immunoblot analysis after immunoprecipitation using an anti-phospho-(Ser/Thr) antibody that efficiently detected phospho wild-type

GFP-ZEB2-D9-WT

these findings, we sought to study the molecular links
between FBXW?7 loss, ZEB2 and the consequent changes
in the intestine and CRC cells using several models.
Interestingly, both WB and IF assays verified that homo-
zygous or heterozygous FBXW7 knockout in CRC cells
augmented ZEB2 protein levels (e.g. Fig. 3a, left, S4B and
$4C), and in murine fhaw7°S crypts versus fhaw7""
controls (Fig. 3a, right). In contrast, ZEB2 mRNA and
miR200 expression levels were unchanged (Figure S5,
D-F), indicating that FBXW?7 did not affect the signalling
pathways regulating ZEB2 transcription or mRNA
degradation. However, the immunohistochemistry (IHC)
analysis demonstrated substantial expression of the ZEB2
protein in epithelial cells but not in the intestinal myofi-
broblasts (IMF) of fbaw7"S mice. In contrast, a strong
ZEB2 immunopositivity was detected in IMF cells, but not
in the cells of the intestinal epithelium in fbxw7"" con-
trols (Fig. 3b, top, green and red arrowheads). Con-
sistently, in patients’ samples harbouring FBXW7
mutations, ZEB2 expression was higher in epithelial cells
than in stroma, while in samples with wild-type FBXW7,
the expression pattern was opposite (Fig. 3b, bottom, and
S5A, green and red arrowheads). These findings were
irrespective of the genetic background of the tumours
(MSI, type of FBXW?7 mutation and grade and stage of a
tumour). Although due to the low number of samples, no
statistically significant correlation between ZEB2 protein
and patient’s metastasis-free or overall survival was
assessed. The study of patients’ samples further confirmed
the differences in the ZEB2 expression between the epi-
thelium and stroma detected in mouse intestinal tissues.

To investigate whether the ZEB2-expression pattern has
an effect on the functioning of the immune system, we
isolated CD4 + T cells (i.e. essential mediators of immune
homeostasis and inflammation) from the intestinal lamina

Oncogenesis

propria (LP) of fhaw7S and fbxw7™™ mice as previously
described®®. The number of CD4 + T cells in different
individual mice varied, but statistical analysis revealed no
significant difference between mutant and control groups
(n="7/group) (Figure S5B). These results suggest that the
intestinal FBXW7 mutation resulting in aberrant expres-
sion of ZEB2 may alter tumorigenicity via the EMT and
potential changes in the interactions between epithelial
cells and IMF with no effect on the intestinal immunity.

HCT116"¥7C/) and DLD1"P*Y7C/7) cells failed to
form confluent monolayers with intercellular conjunc-
tions, and exhibited elongated, spindle shapes (Fig. 3c,
left). Consistent with a recent report27, an increased
Vimentin, N-cadherin, ZEB1, Snaill and reduced E-
cadherin expression levels were found both in
FBXW7/7) CRC cell lines and fhaxw7°S crypts, sug-
gesting that FBXW7 depletion induces EMT (e.g. Fig. 3a, ¢
right, S5C, S5D and S6 A-D). ZEB2 knockdown led to a
restoration of rounded morphology (Fig. 3¢, left and S6B),
enhanced E-cadherin and reduced Vimentin expression
(e.g. Fig. 3¢, right, S6A and C-F). As ZEB1 and Snaill also
upregulated in FBXW7-depleted protein lysates, the ZEB2
knockdown had partial effects in regulating E-cadherin
and Vimentin (Fig. 3¢, right and S6C-D). Also, FBXW7
depletion in CRC cells resulted in faster in vitro wound
closure and migration, while ZEB2 knockdown attenuated
cell migration (Figure S7, A-C).

Furthermore, the ZEB2-AD8 overexpression had no
effects on E-cadherin and Vimentin protein levels in
HCT116 cells (Figure S3D). These data further confirm the
effect of FBXW7/ZEB2 interaction on EMT. Next, we
investigated FBXW7/ZEB2 roles on the migration/invasion
and metastatic potential of CRC cells in vivo. The scrambled
(s¢)-GFP:HCT116"BXY7HH) g GFP:HCT116 2XW7-/-)
and ZEB2-shRNAMP:HCT116™¥¥7-/7) cells expressing
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Fig. 3 Aberrant ZEB2 expression induces EMT, migration and invasion of CRC cells in vitro and in vivo. a WB analysis of DLD1 cells + FBXW7
(left) and murine fxw7"™ vs. fbxw7°C derived crypts and IMF proteins (right) using a-SMA, ZEB2, Vimentin, N-cadherin, E-cadherin antibodies, and 3-
actin loading control. b Top, ZEB2 IHC on the intestine from 3-week foxw7™™ and fbxw7°° mice. Dashed lines indicate the boundary of the IMF and
Ep. Red arrowheads show Ep and green arrowheads show IMF with different Zeb2 protein levels in foxw7™" vs. foxw7”C. b Bottom, IHC for ZEB2 in
samples of CRC patients with (n = 10) and without (n = 11) FBXW7 mutations. A boxed line indicates a magnified tissue area Red arrowheads show
Ep and green arrowheads show stromal cells with different ZEB2 protein levels. Scale bars, 50 pum. ¢ Left, HCT116 "7/~ and HCT116 W4 cells
with ZEB2 knockdown (ZEB2-shRNA) and scrambled vector (sc-shRNA) controls, stained with rhodamine—phalloidin marking F-actin filaments. Scale
bars, 100 um. ¢ Right, WB analysis of HCT116 cells + FBXW?7, expressing the sc-shRNA controls and ZEB2-shRNA using ZEB2, Vimentin and E-cadherin
antibodies. d Representative images of xenograft metastatic models containing disseminated sc-shRNAFBXW7(4-/+), sc-shRNA:FFBXW7(—/—) and
ZEB2-shRNA:FBXW7(—/—) HCT116 cells in the murine liver and lung. Tissues were stained with antibodies against human keratin5 (KRT5) (top panels)
or against the cell tag GFP (bottom panels). Scale bars, 50 um. e~h Total number of foci of disseminated cells or foci with size >40 um of sc-shRNA:
FBXW7(+/4), sc-shRNAFBXW7(—/—) and ZEB2-shRNA:FBXW7(—/—) HCT116 cells in the liver (e, f) and lung (g, h) were manually counted in five
views of KRT5 stained sections/mouse and per each cell line. Absolute number was normalised to control sc-shRNA:FBXW7(+/+) cell line. Bars
represent mean £ SD, n = 5; *P < 0.05, **P < 0.01, ***P < 0.001, using Student’s t test

luciferase, were injected directly into the spleen and/or the  reduced tumour cell motility and the incidence of liver and
tail vein of 15 immunodeficient mice and tracked by bio-  lung metastasis.

luminescent imaging (Figure S7D). Mice were regularly

imaged every 14 days to monitor the formation and growth ~ FBXW7/ZEB2-induced EMT inhibits the apoptotic response
of the tumours. Mice were terminated after 2 months when  to chemotherapy which can be abolished by fibroblasts
cysts/tumours became detectable (Figure S7E). Following To elucidate the consequences of FBXW7/ZEB2-
termination, livers and lungs were isolated (Figure S7F) and  induced EMT on CR-CSC biology, as CR-CSC markers
processed for IHC analyses. IHC with monoclonal anti- are very heterogeneous, we studied the in vitro colono-
human KRT5 or anti-GFP antibodies*®, marked only human  sphere model of CR-CSCs***°. Consistent with the pre-
cells in tumours (Figure S7G). The anti-KRT5 staining vious report, FBXW7 loss increased”’, and that ZEB2
showed more intensive and confirmed the presence of the  knockdown decreased the colonosphere size and effi-
human CRC cells in mouse organs (Fig. 3d, top vs. bottom).  ciency compared with FBXW7/7) cells (Fig. 4a—c).
A higher number and larger size of metastatic foci were = Moreover, ZEB2 knockdown reduced the expression of
detected in the lungs and livers (the most common site of  stemness genes (Lgr5, CD44) but increased the expression
metastasis in CRC patients), in mice injected with of the differentiation marker MUC2 in colonospheres
HCT116"%7/7) cells, while the metastatic ability of (Fig. 4d, €). As stemness associated with chemoresis-
ZEB2-shRNAMP:HCT1165*Y7/7) cells was relatively low  tance®**”*!32, we examined the effect of ZEB2 knock-
(Fig. 3e—h). These findings from both in vitro and in vivo down on FBXW7-deficiency-induced chemoresistance.
experiments suggest that ZEB2 knockdown significantly ~WBs and cytotoxicity analyses of ZEB2-shRNAMP:

Oncogenesis
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Fig. 4 ZEB2/EMT signalling increases chemoresistance and stemness driven by the FBXW7 mutation in human CRC cells. a Representative
images of sphere-derived cancer stem-like cells (SDCSCs) and sphere-derived adherent cells by sc-shRNA and ZEB2-shRNA expressing cell lines.

b Quantification of the colonosphere-forming ability of the above cell lines. FBS foetal bovine serum, SCM serum-free stem cell medium.

¢ Representative images of colonospheres derived from sc-shRNAFBXW7(—/—) and ZEB2-shRNA:FFBXW7(—/—) cells. d gRT-PCR analysis of colorectal
cancer and intestinal stem cell markers, CD44 and LGRS, in ZEB2-shRNA:FBXW7(—/—) colonospheres, compared with sc-shRNA:FBXW7(—/—) controls (n
=50 *P<0.05, **P<001). € Immunofluorescence analysis of Mucin2 (MUC2, differentiation marker) and CD44 in ZEB2-shRNAFBXW7(—/—)
colonospheres, compared with sc-shRNA:FBXW7(—/—) controls (n = 15). f EMT markers, ZEB2, E-cadherin and Vimentin, and a DNA double-strand
break marker, Gamma-H2AX (yH2AX) are measured at a low (2.5 uM) and a high (25 M) dose of (5-FU) in synchronised/serum- starved HCT116" 2%/ t++)
and HCT116™W7/2) cells by WB analysis. g Survival of synchronised/serum-starved sc-shRNAFBXW?7(+/+), ZEB2-shRNAFBXW7(+/+), sc-shRNA:FBXW7
(—=/—) and ZEB2-shRNA:FBXW7(—/—) HCT116 cell lines is assessed after treatment with 10 increasing doses of 5-FU by SRB colorimetric assay, performed
in triplicate for each cell line on three independent occasions. IC50 values, calculated by using GraphPad Prism software 7.02, represent the mean of
three different experiments + SEM. P values (~0.005) between sc-shRNA and ZEB2-shRNA expressing cell lines with the same and different FBXW?7 status

using the AIC approach in Prism by comparing two datasets (curves) at a time

HCT116"5¥Y7¢-/7) cells further confirmed that induction
of ZEB2/EMT through the loss of SCF®*Y7_E3-ligase
activity induced resistance to 5-fluorouracil (5-FU) and
Oxaliplatin (OX) chemotherapeutics in CRC cells (Fig. 4f,
g and S6G). Furthermore, the colony-forming efficiency of
5-FU ZEB2-shRNA™'® chemoresistant cells (generated by
exposing the cells to increasing concentrations of 5-FU
for 2—3 months) was compromised, compared with the
parental cell lines after exposure to 5-FU (Figure S8A).
These results demonstrated that ZEB2-induced EMT
mediates the maintenance of drug resistance and CR-CSC
properties.

That fibroblasts and tumour cells appeared to be able to
interact and crosstalk reciprocally (Fig. 3b), we investi-
gated the effect of CAFs and normal human fibroblasts
(NFs) on ZEB2-mediated drug resistance of CRC cells.
HCT116"5¥Y7C-/7) cells were cocultured with either NFs
(express high-level ZEB2) or CAFs while treated with
different doses of 5-FU. When cultured alone, wild-type
and FBXW7-mutant HCT116 cells were about 6- and 14
times, respectively, more resistant to 5-FU than the
fibroblasts (Figure S8B, black and red logline vs. green
logline). Of note, HCT116"2XY7(-/) sensitivity to 5-FU
significantly increased when cells were cocultured with
NFs but not with CAFs (Figure S8B, blue logline). Thus,
NFs may sensitise drug-resistant epithelial-derived CRC
cells to chemotherapy, whereas CAFs may promote
chemoresistance.

ZEB2-induced EMT and stromal markers promote
tumorigenesis in fbxw7-mutated organoids

Previous reports showed that Fbxw7 was highly
expressed in ISCs and transient-amplifying cells (T'As) in
wild-type mice™®. Thus, to further elucidate the physio-
logical relevance of FBXW7/ZEB2 interaction, we used
organoids (mini-gut), which are being used to model
diseases including cancer. First, we found an increased
expression of ISC markers, such as Olfind and Lgr5 in
foaw7%S mice (Fig. 5a and S9, A-B). Deregulated ISCs

Oncogenesis

were shown to drive the formation of tumour organoid
culture®***, Indeed, fhaw7* organoids, but not w70
derived organoids exhibited rapid budding events in the
crypt region, induction of crypt fission (Figure S9C) and
microadenoma-like structures (aggregated cells from
ﬂaxw7AG enteroids dispersed into the culture) (Fig. 5b—f).
Intriguingly, epithelial cells that had escaped from the
foaw7°S microadenoma-like structures exhibited high
levels of B-catenin and ZEB2 (Fig. 6a, b) and an abnormal,
highly proliferative activity (Figure S9D). Furthermore,
immunofluorescence (IF) staining of organoids demon-
strated that Fbxw7 depletion induced an EMT (reduced
E-cadherin and increased Vimentin expression) (Fig.
6c—f). We further tested the function of ZEB2 on the
organoid phenotype and found that ZEB2-shRNAXP
significantly decreased the number of microadenoma-like
structures from fbxw7“S mutant organoids, while it pro-
moted large enterospheres versus enteroids (Fig. 6g, h).
We therefore examined the effect of ZEB2 knockdown on
the stem and secretory progenitor markers. Interestingly,
math—1 (mouse atonal homologue-1) and ngn—3 (neu-
rogenin-3) significantly induced the expression of Olfin4
and Lgr5 repressed in ZEB2-knockdown organoids (Fig-
ure S9E).

Moreover, the stromal marker, a-SMA, Dpositively
marked fbxw7°C organoids but not controls (Fig. 6e).
IMFs positive for a-SMA™ were extracted from fbaw7*C
(IMF2€) and control jbxw7ﬂ/ ' AMFY?) mice, respectively
(Figure S9F). The primary IMFs“S and control IMFs™!
both showed a stellate morphology, while IMFs“S dis-
played a more polarised cell morphology (Figure S9F). Of
note, in addition to the lower level of ZEB2 as outlined
above and in Figure S8C, the expression of interleukin-6
(IL-6) was increased in isolated IMFs* (Figure S9B), and
as previously described for skin and CRCs associated
with fibroblasts**?®, To evaluate the IMFs*“ and control
IMFY! effects on the fhbaw7°-organoid growth, the Ep*©
crypts were cocultured with IMFs? or IMFs%, as feeder
cells. We found that Fbaw7"S microadenoma-like
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organisation. a Schematic shows the fbxw7™™

Fig. 5 Intestinal sub-epithelial myofibroblasts (IMFs) act as a crucial extrinsic niche factor in small intestinal organoid architecture/
before and after Cre recombination to generate fbxw?7 gut-specific inactivation (foxw7°) mice. Lower
panels: ISH for fbxw7 and olfm4 mRNA on intestinal sections of 3-week foxw 7" (left) and foxw72C (right) mice. Scale bars, 50 um. b Morphological
representative images of a 7-day time course of small intestinal organoid growth from a single crypt isolated from foxw7™" (left panels) and foxw72©
mice (right panels). Dashed lines indicate erupted epithelial cells from the foxw
different morphologies found within a population of foxw7™™ foxw72, Ep“CIMFY™ (foxw7°© organoids seeded on a layer of wild-type intestinal
myofibroblasts) and Ep“CIMFAC (foxw7”C organoids seeded on a layer of foxw7”“-derived myofibroblasts) organoids cultured for 1 week. Organoids
were classified as enterospheres (spherical structures), enteroids (lumens and budding development with multilobulated structures), microadenoma-
like structures and spheres (organoids with 1-4 small buddings). Data are from four mice per genotype with the same sex and show mean% changes
over the total number of organoids in co-cultures of crypt epithelial cells and myofibroblasts (Ep:IMF), compared with a single culture of crypt
epithelial cells (Ep) + standard error of the mean (SEM) for n = 4 parallel wells/condition. Error bars represent SEM; (*) value Ep
Ep“CIMFY™ vs. EpACAMFAS, **%p or ©°°P < 0.001; **P or °°P < 0.01; *P or °P < 0.05, as determined by Student's ¢ test

7S crypts. Scale bars, 25 pm. c—f Graphs report the percentage of

/s, Ep®© and () value

structures were less evident during Ep““:IMF"? co-
culture and could not continue expansion, whilst, the
budding structures became limited to 1-4 small protru-
sions (Fig. 5e). These data suggest a role for ZEB2 signals
enriched with stem-like/mesenchymal gene signatures
within the fhbxw7“S-tumour organoid microenvironment.

Previous data showed that secreted molecules related to
Wnt, TGF-, HGF and others from fibroblasts contribute
to the maintenance of CR-CSCs; we therefore performed
expression profiling assay to investigate the molecular
mechanisms underlying the functional interplay between
fibroblasts and organoids using a cDNA array, http://
www.sabiosciences.com/rt_pcr_product/ HTML/PAMM-
054A.html. This array allows analysis of the differential
expression of 84 genes, including cytokines, signalling
molecules and other regulators that are important in
stemness and differentiation (Table S2A). mRNA isolated
from pooled, equal numbers (25 enterospheres) of control
foaw7™™ organoids and fhxw7°S organoids at day 1 after
seeding. Heat map analysis highlighted significant changes
in associated transcripts of fbaw7“S organoids versus
control fbaw7"™ organoids (Fig. 7a and Table S2B).
Notably, several of these changes were associated with
EMT/invasion (e.g. Mmp9, Runx1, Stat3 and Notchl) and
Wnt signalling (e.g. Fzdl, Lefl, Cd44 and Cd45) genes
(Fig. 7a and Table S2). Individual gene expression patterns
were confirmed by qRT-PCR (Fig. 7b).

We then conducted a similar cDNA array, where
foaw7%S organoids cocultured with IMF"" and IMF~€
fibroblasts, respectively, at day 1 (Ep““IMF""derived
organoids vs. Ep*“IMF*€-derived organoids). Remark-
ably, Ep”® organoids released from cocultured
Ep““IMF"" showed a different gene expression pattern
with Ep“®  organoids released from cocultured
EpAGIMFAG (Fig. 7c). The IMFY? cocultured decreased
expression of some of the above-identified cytokines and
Wnt/B-catenin targets, including Mmp9, Fzdl, Wnt3a
and Cd44, as well as the associated transcription factors
and cell-fate regulators, including Etsl, Statl, Stat3,
Notchl, Notch4d and Vegfa (Fig. 7c), whose differential
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expression was verified by qRT-PCR (Fig. 7d). Finally, to
confirm whether ZEB2 plays a direct functional role in
SC-niche activity within primary intestinal fbaw7®
organoids, differential expression of the above genes in
fhaxw7”C organoids was compared with ZEB2-shRNA/
P:fxw7%C organoids (Fig. 7e). Expression of a subset of
genes (Fzdl, Cd44, Stat3 and Cd45) was suppressed by
the Zeb2 knockdown, while expression of others (Estl
and Runxl) was increased or unaffected (Notchl and
Lefl; Fig. 7e). These results support the notion that
ZEB2-mediated induction of EMT associated with both
stromal factors secreted from cancer-like IMF*€ fibro-
blasts and the SC-gene signature, reminiscent of the
alteration of intestinal epithelial homeostasis and
oncogenesis caused by Fbxw7 depletion in vivo (Fig. 7f).

Discussion

We have identified a novel mechanism in which loss of
FBXW?7 influences the epithelial-stromal microenviron-
mental interactions, increases EMT, CR-CSC properties
and metastasis.

First, we found that FBXW?7 influences ZEB2 levels.
Previous reports have demonstrated that ZEB2 was post
transcriptionally downregulated via miRNAs>"*®, How-
ever, our data suggest that the expression level of ZEB2
mRNA is not altered in FBXW7-deficient cells. In con-
trast, GSK-3B-mediated phosphorylation of conserved
sites within the homeobox-C-terminal domain of ZEB2 is
not only responsible for FBXW?7 binding, but also for
FBXW7-mediated ubiquitination and degradation. Our
biochemical analysis confirms recent data showing that
other EMT-regulating transcription factors (Twist, Slug,
Snail and Zebl) are also substrates for GSK-3p>*.
However, further studies are needed to explore whether,
like ZEB2, these proteins are substrates for and regulated
by FBXW7-mediated proteasomal degradation. It is also
exciting to explore the significance of GSK3p, its active
(i.e. phospho-GSK3B™"?'®) versus inactive form (i.e.
phospho-GSK3p°*®) in the regulation of FBXW7-induced
ZEB2 degradation and their correlation with clinical
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Fig. 6 Deprivation of ZEB2 predisposes foxw7-null organoids to a less malignant and more differentiated phenotype. a IF for ZEB2 and $3-
catenin detected accumulation of nuclear 3-catenin with ZEB2 expressed only in a small subpopulation. Scale bars, 100 um. b Increased number of
erupted epithelial cells from the foxw7°¢ crypts after seeding in RPMI 4+ 10% FCS medium, scale bars, 100 um. ¢—f Immunofluorescence (IF) staining for
ZEB2/E-cadherin (C), Vimentin (D) using paraffin sections and a-SMA/Vimentin (E) and ZEB2/E-cadherin (F) of whole-mount organoids derived from
oxw7" and foxw72C crypts. foxw7C organoids lose E-cadherin expression but acquire enhanced expression of ZEB2, a-SMA and vimentin, compared
with fxw7™™ controls. g, h Morphological analysis and digital quantification of ZEB2-shRNA:fbxw7°C organoids within 6 days of growth. Murine Zeb2
knockdown of foxw7° organoids attenuates the growth of a microadenoma-like structure and induces the formation of an enterosphere. Bars represent
mean + 5D, n=9; *P< 005, **P < 001, **P <0001, using Student’s t test. Images of sphere fbxw7"° organoids (h) shown following transduction with
ZEB2-shRNA-GFP Ientwwus. Experiments were performed in triplicate and repeated on two independent occasions
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expression levels of a number of stem and EMT-associated genes expression in Ep“© vs. Ep™™ organoids. Data are mean + SEM (*P < 0.05; **P < 0.01;
***P < 0.001). Experiments were performed in triplicate for each genotype and repeated at least on three independent occasions. ¢ Relative gRT-PCR
transcript levels of the above-84-indicated genes from pooled samples (n = 15) for released Ep”Corganoids from cocultured Ep”CIMFY™ and
Ep“CIMF“ on day 3, as compiled into a heat map. Expression was normalised to GAPDH followed by normalisation to released Ep““organoids from
cocultured Ep”““IMF™. Downregulated genes (green), and upregulated genes (red). d gRT-PCR confirming relative expression levels of a number of
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organoids for genes deferentially expressed in EpAG Vs. Epﬂ/ﬂ organoids. Data are mean + SEM (*P < 0.05; **P < 0.01; ***P < 0.001). Experiments were
performed in triplicate for each genotype (n = 25) and repeated at least on two independent occasions. f Intestinal/colon cancer progression/
metastasis could be an effect of the loss of a controlled feedback via the FBXW?7/ZEB2 complex modifying EMT and epithelial-stromal interactions

J

markers in the tumours (e.g. primary, advanced) and their  including Paneth cells and ISCs, and dramatically down-

normal counterparts.

It is widely accepted that ZEB2 was involved in cancer
cell invasion, mainly through induction of EMT'®*'~* In
addition, ZEB2 has been shown to mediate cell-fate
decision in neuronal and haematopoietic stem cells*"**,
Observations from our differential expression study also
indicate the expression of ZEB2 in the ISC niche, within
the intestinal epithelium, and IMFs. In addition, we
showed that murine Zeb2 upregulated in crypt cells,
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regulated within IMF in fbaxw7-deficient mice and CRC
patients with FBXW7 mutations. Interestingly, all the RT-
PCR data suggest that ZEB2 protein is altered in a
transcription-independent manner. Also, considering that
the Villin-Cre transgene is active in intestinal epithelial
cells, and with no expression in IMF cells, we reasoned
that ZEB2 protein in IMF is insensitive to FBXW?7-
mediated degradation. Therefore, other biochemical/cel-
lular mechanisms may change the ZEB2 protein in
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intestinal fibroblasts, for example, via the cytokine-
mediated expression/proteolysis or translational control
of protein synthesis. However, the loss of ZEB2 in stromal
cells may also have paracrine effects on the epithelial cells
and vice versa®®, a mechanism that may link these two cell
populations to pathological processes.

Previous studies showed that stromal factors secreted by
mesenchymal/fibroblasts regulate the maintenance of
stem cells, colorectal CSCs and metastatic process
through a variety of signalling pathways**~*%, Indeed, in
our study, co-culture of crypts and IMF from fbxw?7-
mutant mice exerted an adverse effect on crypt develop-
ment and expansion into organoids. Although the above
findings have identified a role for ZEB2 in metastatic
progression, it remains unclear, however, whether the
resistance to chemotherapy conferred by the tumour
microenvironment utilises shared or distinct molecular
pathways. IMFs lacking ZEB2 may have elevated levels of
the Wnt antagonist, SFRP-1*°, and thus become incapable
of supporting the normal formation of the crypt—villus
compartments in the organoid.

Traditionally, our understanding of CRC is based on the
analysis of aberrations within the epithelial tumour cells.
Although there are no published reports that FBXW7
mutated in the CRC stroma, research shows that stromal
mutations can promote tumours in genetically at-risk
tissue in other systems®>'. The non-epithelial cell types
can also be appropriately activated in response to external
stimuli, such as wounding and inflammation, and inap-
propriately activated in cancer. For example, deletion of
the murine LKB1 tumour-suppressor gene in myofibro-
blasts results in gastrointestinal (GI) polyposis®. Fur-
thermore, TGFB-R2 deletion in these fibroblasts leads to
epithelial alterations in gastric squamous cell carci-
noma®> Similarly, blocking stromal BMP4 signals in
epithelial cells leads to adenoma-like lesions and deletion
of murine Smad4 in T cells results in GI cancer®®.
Therefore, alterations in signalling from the fibroblasts
may also contribute to tumour progression in CRC.
Indeed, we found a significant change in ZEB2 protein
expression between stromal and epithelial cell popula-
tions in fbxw7-knockout mice, indicating that subsequent
reciprocal stromal—epithelial interactions may differen-
tially contribute to FBXW?7-deficient epithelial tumour
cells. The growth of the organoid-collapsed cells reveals a
novel mechanism in FBXW7-mediated ZEB2-EMT for
tumorigenesis and metastasis. This may also trigger the
non-epithelial-mediated rapid intestinal tumour develop-
ment in double-mutant Apc™baw7°S  mice at
2-3 weeks of age™®.

Consistent with recent reports on other EMT fac-
tors®*®°, we show that FBXW?7/ ZEB2-regulated EMT was
implicated in the early stages of metastasis and/or cancer
recurrence changes by disrupting the normal balance
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between differentiation and drug resistance of cancer
cells, which is linked to the stem-like nature of cancer
cells undergoing EMT. More recent data showed that the
FBXW7-ZEB1 axis is also important in cholangiocarci-
noma metastasis by regulating EMT>®. Our biochemical
analysis has also confirmed an increased level of ZEBI in
FBXW7(—/—) CRC cell lines and fbaw7°S crypts (Figures
S4C, S4D and 3A). We have also shown that the ZEB2
knockdown had partial effects in regulating E-cadherin
and Vimentin [Fig. 3c (right panels) and S5E]. Therefore,
we think that an individual action of these EMT-
activating transcription factors may ultimately lead to a
partial or steady-state level of E/M transition in cells/
patients with altered FBXW?7 expression. Also, as outlined
above, ZEB1 is a GSK substrate for phosphorylation®.
While recent data suggest that a partial EMT has been
implicated in tumour progression and metastasis®’, and
therefore, a more in-depth investigation of EMT-TFs,
such as ZEB1, Snail, Twist and Slug is required to provide
full insights into the regulation of the (partial) EMT/MET
process by FBXW?7. Beyond this single study, an in vivo
study of the role of ZEB2 in normal intestinal homeostasis
and tumour initiation requires the use of multiple
genetically modified mouse models, including intestinal
and fibroblast ZEB2-conditional knockout and xeno-
transplantation into immunodeficient mouse models.
Also, to identify the large scale of target genes regulated
by ZEB2 in a FBXW?7-dependent and FBXW?7-
independent manner in patients and how the
epithelial-stromal alteration and interactions affect the
normal homeostasis and CRC cancer initiation/progres-
sion, will require analyses of multiple primary colono-
spheres/organoids  derived from FBXW7-deficient
patients and proficient counterparts following the ZEB2
knockdown or ZEB2 knockout and/or a meaningful ZEB2
overexpression. Hence, a comprehensive genome-wide
analysis can go a long way towards chromatin-IP
sequencing (ChIP-Seq) and RNA-Seq assays of multiple
samples. Also, further studies expanding the therapeutic
potential of this newly identified pathway, by negatively
instructing the EMT signalling pathways in stromal cells,
could lead to important clinical implications.

Materials and methods
Mouse lines and human tissues

Fbxw7?" and fbxw7%¢ mouse models were described
previously’. CRC specimens: 10 cases with and 11 cases
without FBXW7 mutations were obtained on separate
slides/sections as described previously™.

In vivo metastasis/invasion assays

HCT116™*Y7 ) and HCT116"™*Y7/7) cells with
and/or without ZEB2-shRNA expression were injected
into the spleen (0.5 x 10° cells) or the tail vein (10° cells)
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of five mice and tracked by bioluminescent imaging as
previously described®®.

Tissue preparation, in situ hybridisation,
immunohistochemistry and immunofluorescence assay

Murine intestines were prepared as described pre-
viously®. In situ hybridisation (ISH) assay was carried
out as described previously’. Organoids were immuno-
stained either as whole-mount samples or as paraffin
sections. Samples for IHC were processed as outlined
before®** and the following primary antibodies were
used: ZEB2/SIP1 (H260; Santa-Cruz, or from Dr. Tul-
chinsky), E-cadherin (610181; BD), Vimentin (RV202;
Santa-Cruz), a-SMA (ab5694; Abcam), Ki-67 (M7249;
Dako) and Mucin2 (H300; Santa-Cruz). For IF, samples
were exposed to goat anti-rabbit antibodies conjugated
to Alexa Fluor594 (A11037; Invitrogen) and/or rabbit
anti-mouse antibodies conjugated to Alexa Fluor488
(A11059; Invitrogen). Tetramethylrhodamine-B iso-
thiocyanate (TRITC)-conjugated phalloidin (P1951;
Sigma) was used to label actin filaments according to the
manufacturer’s instruction.

Isolation of small intestinal crypts and myofibroblasts
(IMF), and in vitro crypt/IMF co-culture

Small intestinal crypts were isolated and cultured as
previously described®***. Crypts were released by incu-
bation in 2mM EDTA for 30 min at 4°C, and further
purified using a 70-pum cell strainer. The residue of the
intestinal pieces was pre-treated with 1ml of ice-cold
2.5% phenol red-free trypsin for 30 min, and incubated in
10ml of Hanks (Sigma) containing 0.25% trypsin and
300 Uml ™! collagenase (Invitrogen) at 37 °C for 30 min.
IMFs were eluted and cultured in DMEM with 10% FBS
for 10 days to reach confluency, and then sub-cultured
and used for experiments between passages 3 and 5. 300
crypts mixed with 25 pl of Matrigel (BD), plated in 48-well
plates, and grown in 250 ul of advanced DMEM/F12
containing B27, N2 and 1.25 mM N-acetylcysteine sup-
plements, 50 ng ul~* EGF (Invitrogen), 10% Noggin and
10% R-spondinl-conditioned medium (in-house) upon
solidification of the Matrigel. For crypt/IMF co-culture,
crypts-Matrigel mix was seeded atop IMFs in 48-well
plates with crypt-culture medium.

Cell migration, wound healing, cytotoxicity assays and
generation of 5-FU resistant cells

Cell migration and wound-healing assays were carried
out as previously outlined®. For the cytotoxicity assay,
cells were serum-starved for 18 h and then treated with 5-
FU or Oxaliplatin (Tocris) for 72 h, and sulforhodamine-B
colorimetric assay (Sigma, 230162) was performed
as previously described®**!. HCT116™®*Y7-/2) and
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HCT116™Y7(/ cell lines with or without ZEB2-
shRNA were resistant to 5-FU generated by repeated
exposure to increasing concentrations of 5-FU over
2-3 months™.

Isolation of CD4+T cells from mouse intestine

As per the manufacturer's instructions (Miltenyi Biotec,
#130-095-248), CD4+T cells were isolated from
the intestinal lamina propria (LP) of 9-10-week-old male
mice, using the anti-CD4 (L3T4) MACS system26.
Enriched CD4+ T cells were then labelled with PE-
conjugated anti-CD4 (RM4-5), FITC-conjugated anti-
CD45RB (16 A) and FITC-conjugated anti-CD25 (7D4).
Subpopulations of CD4+T cells were then generated by
two-colour sorting on FACSVantage (BD Biosciences)
using the flow cytometry facility in the University of
Nottingham. Both genotype populations were >97.0%
pure on reanalysis.

RRS screening

RRS screening of the mouse embryonic cDNA library
in yeast cdc25-2 was carried out as previously descri-
bed’. The RRS uses the yeast strain cdc25-2, which is
deficient in Ras activity and cannot grow at 37 °C. In this
study, cdc25-2 cells stably transformed with pMET3-
GSK-3p. The activated form of GSK-3f induces phos-
phorylation of encoded myristoylated proteins through
the pMyr-cDNA library. FBXW?7-associated proteins
can only rescue the growth of cdc25-2 cells if they
interact with RasV12-FBXW7AF. Yeast colonies show-
ing a galactose-dependent and efficient growth in the
absence of methionine were isolated and further
analysed.

Proteomics assay

Two-dimensional gel electrophoresis was performed as
previously described”. For an accurate determination of the
ID and weight of the novel proteins, MALDI-MS provided
by the protein chemistry facility with a Mass-Prep robotic
liquid handling system, and a MALDI-TOF mass spectro-
meter (Waters Corporation) in the University of Notting-
ham was used. Peak lists entered into MASCOT-PMF
(http://www.matrixscience.com/search_form_select.html)
and ExPASy (http://www.expasy.org/tools/aldente/) data-
base search engines (Table S1).

Plasmids, transfection, cell culture and cell-cycle analysis

Human ZEB2 full-length cDNA was ligated into Bgl/II
and Sall digestion sites of the pEGFP-C2 vector (Clon-
tech). The same strategy was applied to generate eight
GFP-ZEB2 deletions. Transfection of plasmids and the
cell-cycle analysis was carried out as previously
described”.
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Co-immunoprecipitation, HA ubiquitination (Ub) assay and
western blotting

IP, Ub and WB assays were carried out as previously
described™ using anti-Flag (F1804; Sigma), anti-ZEB2
(H260; Santa-Cruz or from Dr. Tulchinsky), anti-GFP
(3E6; Invitrogen), anti-FBXW7/hCDC4 (PA1-23468;
Thermo-Scientific), anti-E-cadherin (610181; BD), anti-
Vimentin (RV202; Santa-Cruz), anti-a-SMA (ab5694;
Abcam), anti-B-catenin (610154; BD), anti-GSK-3
(27C10; Cell-Signalling), anti-phospho-Ser/Thr (Abcam),
p-c-MycT58/S62 (Cell-Signalling), HIF-la (EP1215Y;
Abcam), MCL-1 (PA5-64688; Invitrogen), P100
(EPR4686; Abcam), KLF5 (AF3758; R&D), anti-FBXW7
antibody (ab109617; Abcam) and anti-p-actin (ab6276;
Abcam) antibodies.

RT-PCR and quantitative RT-PCR assays

RNA was isolated using RNeasy Mini-Kit (QIAGEN) for
CRC cells, or TRIZOL reagent (Sigma) for crypts, orga-
noids and IMFs. Two micrograms of RNA was used to
synthesise ¢cDNA with the SuperScript-III First-Strand
Synthesis System (Invitrogen) and oligo(dT) primers as
per the manufacturer’s instructions. To release organoids/
crypts from cocultured Ep““IMF"® and Ep“*“IMF* on
day 3 for these experiments, we used a commercial
cell recovery solution (Corning, 354253), which depoly-
merises Matrigel without enzymatic digests, to recover
organoids/cells from Matrigel. We then washed released
organoids/cells with cold PBS three times. Then, the
organoids/fibroblasts were incubated with 3 mM EDTA in
PBS for 15min at 4°C. To facilitate the organoid/crypt
release from the fibroblasts, they were agitated by pipet-
ting in 10% FBS/PBS and then filtered through a 70-um
strainer (Corning, 352350). The fraction containing
mostly organoids/crypts, on top of the filter were col-
lected, agitated again by pipetting with 10 ml of 10% FBS/
PBS and then passed through the same filter. This
passage was repeated three times. We then used an
inverted microscope to choose the best fraction in terms
of purity of the organoid/crypt concentration. Gene
expression profiling of organoids was carried out
according to the manufacturer’s instructions, http://www.
sabiosciences.com/rt_pcr_product/HTML/PAMM-054A.
html and using primers (Table S3), as previously
described”.
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