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Background: The addition of carbogen and nicotinamide (CON) to radiotherapy (RT) improves overall survival in invasive bladder
cancer. We explored whether expression of the hypoxia marker hypoxia-inducible factor-1a (HIF-1a) alone or in combination with
other markers predicted benefit from CON.

Methods: A retrospective study was carried out using material from patients with high-grade invasive bladder carcinoma enrolled
in the BCON phase III trial of RT alone or with CON (RTþCON). HIF-1a expression was studied in 137 tumours using tissue
microarrays and immunohistochemistry. Data were available from other studies for carbonic anhydrase IX and glucose transporter
1 protein and gene expression and tumour necrosis.

Results: Patients with high HIF-1a expression had improved 5-year local relapse-free survival with RTþCON (47%) compared with
RT alone (21%; hazard ratio (HR) 0.48, 95% CI 0.26–0.8, P¼ 0.02), no benefit was seen with low HIF-1a expression (HR 0.81, 95% CI
0.43–1.50, P¼ 0.5). Combinations of markers including necrosis also predicted benefit but did not improve on prediction using
necrosis alone.

Conclusions: HIF-1a may be used to predict benefit from CON in patients with bladder cancer but does not improve on use of
necrosis.

Bladder cancer is common, with over 10 000 new diagnoses in the
United Kingdom in 2010 (Kreimer et al, 2005; CRUK, 2013).
Conventional treatment for muscle-invasive disease involves
radiotherapy (RT) or radical cystectomy, which have similar
survival rates (Dunst et al, 2001). Five-year overall survival (OS) is
only around 58% for men and 50% for women (Klussmann et al,
2003). There is therefore a need for improved treatment strategies.
The BCON (bladder carbogen and nicotinamide) phase III clinical
trial showed that addition of carbogen and nicotinamide (CON) to

RT improved OS (Hoskin et al, 2010). Adding gemcitabine
(Choudhury et al, 2011) or fluorouracil and mitomycin C (James
et al, 2012) to RT also improves outcomes. Biomarkers are required
to predict benefit from the different approaches to individualise
treatment.

Hypoxic tumours benefit most from hypoxia modification
(Kaanders et al, 2002; Rischin et al, 2006; Janssens et al, 2012;
Toustrup et al, 2012). As direct measurement of hypoxia is invasive
and impractical, analysis of pathological features and surrogate
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hypoxia markers may be preferable. In support, we showed
previously that tumour necrosis is an independent prognostic
factor in invasive bladder cancer, and both necrosis and expression
of the hypoxia-inducible enzyme carbonic anhydrase IX (CAIX)
predicted benefit from hypoxia modification (Eustace et al, 2013a).
In contrast, a 26-gene hypoxia signature did not predict benefit
from RTþCON in BCON (Eustace et al, 2013b).

In this study, we explored hypoxia-inducible factor (HIF). HIF-1 is
a transcription factor that transactivates genes implicated in cancer
development, including contributors to angiogenesis and anaerobic
metabolism (Shweiki et al, 1992; Elbert et al, 1996). The subunit
hypoxia-inducible factor-1a (HIF-1a), which accumulates in response
to cellular hypoxia, correlates with stage, grade and metastatic
potential of bladder cancers (Wang et al, 1995; Deniz et al, 2010).
Moreover, HIF-1a and the downstream proteins CAIX and glucose
transporter 1 (GLUT1) are all independent prognostic factors in
bladder cancer (Hoskin et al, 2003; Palit et al, 2005; Theodoropoulos
et al, 2005; Ord et al, 2007; Chai et al, 2008; Deniz et al, 2010).

As tumour necrosis represents an attractive prognostic and
predictive factor that is relatively simple to assess, it remains
unclear whether the addition of hypoxia markers will improve our
ability to predict benefit from CON. We hypothesised that as HIF-
1a has an important role in mediating the cellular response to
tumour hypoxia, it may improve patient stratification. Therefore,
we performed a retrospective study to explore whether expression
of combinations of necrosis, HIF-1a, CAIX and GLUT1 predict
benefit from hypoxia modification. We also compared the
predictive ability of quantitative CAIX or GLUT1 gene expression
with immunohistochemistry. Samples were taken from patients
enrolled in the BCON trial. REMARK guidelines for prognostic
tumour marker studies were followed (McShane et al, 2005).

MATERIALS AND METHODS

Patients and tissue samples. A retrospective cohort study was
carried out in 137 patients with high-grade, non-metastatic
transitional cell carcinoma of the bladder. Patients participated
in the BCON phase III trial and were randomised between
November 2000 and April 2006. The study was approved by the
local research ethics committee (LREC 09/H1013/24) and
informed consent for sample collection and analysis was obtained.

Trial protocol and sample acquisition were described previously
(Hoskin et al, 2010; Eustace et al, 2013a). In brief, patients were
randomised to RT alone or RT plus carbogen (2% CO2þ 98% O2)
and nicotinamide (40 or 60 mg kg� 1). Pre-treatment tissue samples
were obtained via transurethral resection of the bladder tumour and
formalin-fixed and paraffin-embedded blocks were constructed.

Immunohistochemistry. Methods for tissue microarray construc-
tion were previously described (Eustace et al, 2013a). Immunohis-
tochemistry was carried out for CAIX and GLUT1 as per a
previous protocol (Hoskin et al, 2003). HIF-1a staining was carried
out using the Bond-Max Automated staining system (Leica
Biosystems, Newcastle, UK). Samples were de-waxed and rehy-
drated, followed by antigen retrieval at pH 9.0 for 40 min at 100 1C.
Endogenous peroxidase was blocked using 3% hydrogen peroxide
solution. Primary antibody (mouse monoclonal HIF-1a, BD
Biosciences 610959, Oxford, UK) was diluted to a 1 : 20 solution
with diluent and incubated with samples for 15 min at
room temperature. A negative control of IgG1 (Dako X0931,
Cambridge, UK) was also used. Post-primary rabbit anti-mouse
link reagent was applied (Bond Polymer Refine Detection System,
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Figure 1. Study CONSORT diagram. Data for HIF-1a expression were available for 137 patients enrolled in the BCON trial.
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Leica DS9800, Newcastle, UK), and samples were incubated for
8 min at room temperature. The anti-rabbit polymer-HRP
detection reagent (Bond Polymer Refine Detection System, Leica)
was then added and samples were incubated at room temperature
for a further 8 min. 3,30-diaminobenzidine tetrahydrochloride was
added, and after a further 10 min of incubation samples were
counterstained with haematoxylin.

Immunohistochemical analysis. Data for necrosis, CAIX and
GLUT1 were available from another study (Eustace et al, 2013a).
HIF-1a, GLUT1 and CAIX expression were determined using an
H-score: a combination of the intensity (0–3) and percentage of
cells stained, with a range of 0–300. Only nuclear expression of
HIF-1a was scored. For CAIX, scoring included both nuclear and
cytoplasmic staining. Supplementary Figure 1 shows examples of
staining for HIF-1a, CAIX and GLUT1. For HIF-1a, cores were
scored twice by the same scorer (BH) on different days. Cores
(10%) were scored independently by a consultant histopathologist
(HD). Scorers were blinded to clinical outcome data. Duplicate
scores and independent histopathologist scores correlated well
(Spearman r40.91). There was no statistically significant intra-
observer (P¼ 0.47) or inter-observer (P¼ 0.06) variability in
histological scores. Where scores were discordant, the score of
the consultant histopathologist was used. Median HIF-1a, CAIX
and GLUT1 scores were 19 (range 0–199), 2.0 (range 0–208.4) and
106 (range 0–300), respectively. Median HIF-1a H-scores were
used to provide an objective cutoff and facilitate comparison with
other studies. Owing to the distribution of scores, cutoff values
were 0 for CAIX and 100 for GLUT1. High CAIX (40) was seen in
79 (58%) patients and high GLUT1 (4100) in 65 (47%) patients.

Qualitative PCR and gene analysis. Data for quantitative gene
expression of CAIX (n¼ 111) and SLC2A1 (n¼ 147) were
available from a previous study (Eustace et al, 2013b). Methods
for RNA extraction, cDNA synthesis and gene quantification were
previously described (Eustace et al, 2013b).

Statistical analysis. Analyses were performed using SPSS (IBM,
version 12, Portsmouth, UK) and Prism (Graphpad, version 6, La
Jolla, CA, USA). Five-year OS time was taken as time from
randomisation to any cause of death; patients still alive were
censored to date of the last follow-up or at 5 years, depending on
which was earlier. Local relapse-free survival (LRFS) was taken as
time to tumour recurrence in bladder, locoregional failure or death
from any cause. Those alive and free of local disease were censored
at their last follow-up. Patients with persistent muscle-invasive
disease or with no cystoscopy post treatment had their time set to
zero. Survival estimates were performed using the Kaplan–Meier
analysis; data were compared using the Mantel–Cox log-rank test.
Hazard ratios (HRs) and 95% confidence intervals for OS and
LRFS were obtained using Cox regression analysis. Differences in
treatment effect according to HIF-1a expression were addressed
using stratum-specific treatment variables. Correlations were
assessed using Spearman’s correlation, and variability analysed
using the Wilcoxon matched pairs test. All P-values were two sided
and agreed statistical significance was 0.05. No corrections were
made for multiple testing and P-values should be interpreted
accordingly. The w2-test with Yates correction was used to compare
proportions across the levels of categorical variables.

RESULTS

Figure 1 shows the study CONSORT diagram. Analysis of HIF-1a
expression was possible in a subset of 137 patients enrolled in the
BCON trial. HIF-1a data were not obtained for some patients because
of poor stain uptake or TMA degradation. Data for CAIX and GLUT1
expression were available for 138 and 127 patients, respectively.

Table 1 shows the distribution of clinicopathological parameters by
HIF-1a expression. Patients with high tumour expression of HIF-1a
also had high expression of CAIX (P¼ 0.004) and GLUT1 (P¼ 0.006),
and tended to have more necrosis (P¼ 0.07).

Analyses for OS and LRFS were performed, but owing to
similarity in results, data for LRFS only are presented. Univariate
and multivariate prognostic analyses for patients receiving the
standard treatment of RT alone showed that neither HIF-1 a
(n¼ 74), CAIX (n¼ 73) nor GLUT1 (n¼ 70) were prognostic in
patients receiving RT alone (P40.29). Age (P¼ 0.04) and necrosis
(P¼ 0.01) were the only prognostic factors in the univariate
analysis, but neither was significant in multivariate analysis.

Multivariate analyses were performed on a smaller cohort of 133
patients, as those with missing data for any clinicopathological or

Table 1. Distribution of clinicopathological features by HIF-1a expression

Variable HIF-1ao19 HIF-1aX19 P

Gender

Male 54 (47) 60 (53) 0.18
Female 15 (65) 8 (35)

Age (years)

o75 38 (58) 27 (42) 0.1
X75 31 (43) 41 (57)

Stage

1 2 (40) 3 (60) 0.91
2 51 (50) 50 (50)
3 14 (54) 12 (46)
4a 2 (40) 3 (60)

TURBT

Complete 24 (46) 28 (54) 0.31
Partial 22 (47) 25 (53)
Biopsy 21 (62) 13 (38)

Necrosis

Absent 38 (59) 26 (41) 0.07
Present 31 (42) 42 (58)

Growth pattern

Papillary 7 (50) 7 (50) 0.4
Solid 37 (56) 29 (44)
Both 25 (44) 32 (56)

CIS

Absent 45 (46) 52 (54) 0.21
Present 24 (60) 16 (40)

Hb (g dl�1)

o14 43 (57) 33 (63) 0.15
X14 26 (43) 35 (57)

CAIX

0 34 (65) 18 (35) 0.004
40 30 (38) 49 (62)

GLUT1

o100 36 (60) 24 (40) 0.006
X100 22 (34) 43 (66)

Abbreviations: CAIX¼ carbonic anhydrase IX; CIS¼ carcinoma in situ; Hb¼ haemoglobin;
HIF-1a¼ hypoxia-inducible factor-1a; TURBT¼ transurethral resection of bladder tumour.
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immunohistochemical variable were excluded. Forward stepwise
analysis including both treatment arms stratified by HIF-1a
expression showed that age (1.65, 95% CI 1.06–2.57, P¼ 0.03)
and treatment in the presence of high HIF-1a (HR 0.49, 95% CI
0.27–0.90, P¼ 0.02) were statistically significant prognostic factors
(Table 2). Treatment was not a significant prognostic factor in
those with low HIF-1a expression (P¼ 0.55).

Kaplan–Meier survival analyses are presented in Figures 2–4.
Hazard ratios for RTþCON compared with RT alone for patients
with high or low HIF-1a, CAIX and GLUT1 expression are
presented in Table 3. Also shown are HRs for combinations of
these markers and combinations with necrosis.

Five-year LRFS was 46% in patients receiving RTþCON and 38%
in those receiving RT alone. In patients with high HIF-1a expression,
there was a statistically significant improvement in 5-year LRFS in
those receiving RTþCON (47%) compared with RT alone (21%)
(P¼ 0.02). Similarly, in those with high CAIX expression, 5-year
LRFS was improved with RTþCON (52%) vs RT alone (25%)
(P¼ 0.006). Patients with combinations of high HIF-1a and CAIX
expression or high CAIX and GLUT1 expression had improved 5-
year LRFS with RTþCON (61% and 47%, respectively) compared
with RT alone (16% and 18%, respectively, P¼ 0.01 and 0.03).
Patients with necrosis plus high HIF-1a, CAIX or GLUT1 expression
all had significant improvements in LRFS with RTþCON (57%,
54% and 66%, respectively) vs RT alone (19%, 28% and 25%,
respectively, P¼ 0.01, 0.02 and 0.01).

There was no improvement in LRFS in patients with high
expression of the CAIX gene receiving RTþCON compared with RT
(HR 0.92, 95% CI 0.49–1.75, P¼ 0.81). Similarly, no benefit from
CON was seen in those with high GLUT1 gene expression (HR 0.66,
95% CI 0.38–1.14, P¼ 0.14). There was no correlation between CAIX
gene and protein expression (r¼ � 0.02) and only weak correlation
between GLUT1 gene and protein expression (r¼ 0.39).

DISCUSSION

Hypoxia is of critical importance in cancer treatment. It
contributes to tumour progression, invasiveness, metastasis and
resistance to both chemotherapy and RT (Gray et al, 1953;
Deschner and Gray, 1959; Brown, 2000; Harris, 2002). In bladder
cancer, there is evidence that hypoxia modification improves
locoregional control after RT (Overgaard and Horsman, 1996) and
the BCON trial showed significant improvements in OS, risk of
death and local relapse for patients receiving RTþCON (Hoskin
et al, 2010). Furthermore, significant improvements in 5-year
regional control with RTþCON were observed in patients with
hypoxic laryngeal cancers; those with well-oxygenated tumours
received no benefit (Janssens et al, 2012). Our findings support the
notion that patients without evidence of tumour hypoxia do not
receive benefit from hypoxia modification. For such patients,
alternative methods of radiosensitisation such as concurrent

gemcitabine (Choudhury et al, 2011) or fluorouracil and
mitomycin C (James et al, 2012) should be considered. There is
a clear need to stratify patients according to the presence of tumour
hypoxia. Future work is planned to investigate the relationship
between necrosis and outcomes in patients enrolled in the BC2001
trial that randomised to RT alone or with 5-fluorouracil and
mitomycin. The latter study will investigate whether patients with
necrosis in their tumours benefit from the addition of fluorouracil
and mitomycin C to RT.

Direct measurement of hypoxia via Eppendorf electrodes is difficult
in bladder cancer owing to tumour inaccessibility, and while
pimonidazole binding is a widely accepted surrogate it is invasive
and impractical. Our previous work showed that tumour necrosis is an
attractive and easily assessable factor that may be used to predict
benefit from hypoxia modification in bladder cancer (Eustace et al,
2013a). Coagulative tumour necrosis, the subtype studied here is
thought to be specific to tumour hypoxia. In addition, analysis of
hypoxia-associated proteins is attractive because of the simplicity
of obtaining paraffin-embedded material. Before HIF-1a, CAIX or
GLUT1 can be used clinically they must be validated as intrinsic
markers of tumour hypoxia. In support, their expression correlates
with pO2 and co-localises with pimonidazole in cervical cancer (Airley
2001, Haugland 2002, Jankovic 2006 and Dellas 2008). There is also
significant co-localisation of CAIX and GLUT with pimonidazole in
bladder cancer Hoskin et al, 2003. Although there are no current data
correlating HIF-1a expression with pimonidazole binding in bladder
cancer, our work did suggest that patients with high HIF-1a expression
also tended to have higher expression of CAIX and GLUT1.

Analysis of a larger cohort of the BCON patients showed
tumour necrosis is a prognostic factor in bladder cancer (Eustace
et al, 2013a). The loss of significance in multivariate analysis in the
current analysis is due to reduced patient numbers owing to adding
another variable. Although our results suggest that HIF-1a, GLUT1
and CAIX are not prognostic, this is not consistent with other
studies and may be due to differences in analytical techniques,
sample heterogeneity, the limitations of TMA analysis or most
likely the small number of patients in the RT only arm (Hoskin
et al, 2003; Theodoropoulos et al, 2005).

Tumour necrosis was strongly predictive of benefit from CON
and is clinically very appealing owing to its simplicity and wide
availability. HIF-1a is a hypoxia-inducible marker, which we show
for the first time predicts benefit from CON. Kaplan–Meier
analyses showed that CAIX was also predictive in the cohort
studied here, as we reported previously with a larger group
(Eustace et al, 2013a). The findings that combined expression of
HIF-1 or GLUT1 with CAIX retained predictive ability supports
the notion that tumour hypoxia may be best assessed using
multiple markers. Furthermore, analysis of necrosis in combina-
tion with HIF-1a, CAIX or GLUT1 may be a viable option, as this
improved the predictive value of HIF-1a and CAIX. However, it is
important to note that combinations of hypoxia-specific markers
alone or with necrosis did not improve upon the prognostic or

Table 2. Multivariate forward stepwise analysis stratified by HIF-1a expression

Step Variable n LRFS HR 95% CI P OS HR 95% CI P
1 HIF-1a: treatment

RT alone or HIF-1ao19þCON 97

HIF-1a419þCON 36 0.49 0.27–0.90 0.02 0.49 0.27–0.91 0.02

2 Age

o75 62

X75 71 1.65 1.06–2.57 0.03 1.64 1.06–2.56 0.03

Abbreviations: CI¼ confidence interval; HIF-1a¼ hypoxia-inducible factor-1a; HR¼ hazard ratio; LRFS¼ local relapse-free survival; OS¼overall survival.
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predictive ability of necrosis alone. A limitation of our study was
the lack of a validation cohort to confirm our findings, but
unfortunately there is no other trial that randomised patients to RT
alone or with CON.

Previous work established a hypoxic gene signature that may
predict response to hypoxia-modifying therapy (Eustace et al,
2013b). The signature predicted response to CON in laryngeal
cancers but not in bladder tumours, which may reflect highly
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conserved genetic alterations specific to bladder cancer (Eustace
et al, 2013b). Our findings that CAIX gene expression did not
correlate with protein expression may offer some explanation as to
why the signature was not predictive. The finding differs from our
observations in head and neck cancers, where CAIX protein and
gene expression correlated (Winter et al, 2007). At present
immunohistochemical analysis of protein expression seems more
favourable than gene expression analysis in bladder cancer, but
neither of them seem to improve upon the utility, simplicity and
availability of tumour necrosis.

BCON is currently a routine treatment for bladder cancer in
some UK centres. Our data suggest that BCON is more effective in
those with evidence of necrosis or hypoxia marker expression.
Although HIF-1a could be used to predict benefit from CON, it
does not improve on the simple assessment of necrosis alone.
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Table 3. Hazard ratios for 5-year local recurrence-free survival after
radiotherapy plus carbogen and nicotinamide compared with
radiotherapy alone

Variable HR 95% CI P-value

HIF-1a X19 0.48 0.26–0.80 0.02

HIF-1a o19 0.81 0.43�1.50 0.5

CAIX 40 0.47 0.28–0.81 0.006

CAIX¼0 0.81 0.43�1.50 0.5

GLUT1 X100 0.56 0.31�1.03 0.06

GLUT o100 0.62 0.32�1.20 0.15

HIF-1a X19þCAIX 40 0.38 0.18–0.79 0.01

HIF-1a o19 or CAIX¼ 0 0.74 0.43�1.28 0.29

CAIX 40þGLUT1 X0 0.47 0.23–0.95 0.03

CAIX¼0 or GLUT1 o100 0.64 0.35�1.15 0.13

HIF-1a X19þGLUT1 X100 0.49 0.23�1.05 0.06

HIF-1a o19 or CAIX¼ 0 0.69 0.40�1.21 0.2

Necrosis present 0.46 0.29–0.73 0.001

Necrosis absent 1.37 0.81�2.30 0.24

Necrosis presentþHIF-1a X19 0.36 0.16–0.79 0.01

Necrosis absent or HIF-1a o19 0.82 0.49�1.38 0.45

Necrosis presentþCAIX 40 0.47 0.25–0.89 0.02

Necrosis absent or CAIX¼0 0.77 0.43�1.38 0.38

Necrosis presentþGLUT1 X100 0.37 0.17–0.80 0.01

Necrosis absentþGLUT1 o100 0.89 0.50�1.58 0.69

Abbreviation: CAIX¼ carbonic anhydrase IX; CI¼ confidence interval; GLUT1¼glucose
transporter 1; HIF-1a¼ hypoxia-inducible factor-1a; HR¼hazard ratio. Hazard ratios for
necrosis were assessed in the 137 patients with available HIF-1a data. Statistically significant
differences are highlighted in bold.
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