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Abstract

Prophylactic interventions such as vaccine allocation are some of the most effective public

health policy planning tools. The supply of vaccines, however, is limited and an important

challenge is to optimally allocate the vaccines to minimize epidemic impact. This resource

allocation question (which we refer to as VACCINTDESIGN) has multiple dimensions: when,

where, to whom, etc. Most of the existing literature in this topic deals with the latter (to

whom), proposing policies that prioritize individuals by age and disease risk. However, since

seasonal influenza spread has a typical spatial trend, and due to the temporal constraints

enforced by the availability schedule, the when and where problems become equally, if not

more, relevant. In this paper, we study the VACCINTDESIGN problem in the context of seasonal

influenza spread in the United States. We develop a national scale metapopulation model

for influenza that integrates both short and long distance human mobility, along with realistic

data on vaccine uptake. We also design GREEDYALLOC, a greedy algorithm for allocating the

vaccine supply at the state level under temporal constraints and show that such a strategy

improves over the current baseline of pro-rata allocation, and the improvement is more pro-

nounced for higher vaccine efficacy and moderate flu season intensity. Further, the resulting

strategy resembles a ring vaccination applied spatiallyacross the US.

Author summary

Annual vaccination campaigns continue to be one of the prime measures which help alle-

viate the burden of seasonal influenza. Due to production and logistic constraints, there is

a need for prioritization policies associated with vaccine deployment. While there is gen-

eral consensus on age-based or risk-based prioritization, spatial optimization of vaccine

allocation has not yet been explored in sufficient detail. In order to do this, we develop a
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mechanistic model of influenza spread across the United States, and propose a greedy

mechanism for spatial optimization. We test the methodology on different realistic sce-

narios with temporal constraints on vaccine production.

Introduction

Infectious diseases are the largest cause of human mortality worldwide, leading to over 13

million deaths a year [1]. Respiratory diseases alone account for a large fraction of these infec-

tions—CDC reports that the buden of illness during 2017-18 influenza season was high in the

United States, with an estimated 48.8 million illnesses and 959,000 hospitalizations [33], higher

than any season since the 2009 pandemic. Therefore, controlling the spread of infectious dis-

eases, especially influenza, remains an important priority for local, state, and federal govern-

ments in the US and countries worldwide. Pharmaceutical interventions (PI) such as the use of

prophylactic vaccinations and anti-viral drugs remain one of the most effective methods for

controlling the spread of infectious diseases, e.g., [2], [3]. However, these interventions are

constrained by limited resource supply and the high logistics cost of delivering them over a

large geographical region. These limitations have been an actively studied topic in public

health policy research. The primary objective here is to devise allocation and distribution strat-

egies to improve the overall effectiveness of the limited supply of vaccines. In this paper, we

denote this problem as VACCINTDESIGN. Most of the existing literature has focused on identify-

ing whom to allocate the vaccines to, based on age and disease risk [5] [6]. However, it is

widely understood that seasonal influenza exhibits typical spatial trends [7]. Further, the vac-

cine allocation problem is temporally constrained by the production and availability schedule,

while most prior studies on epidemic interventions have primarily focused on static allocation

before the start of the epidemic [2]. Thus the when and where aspects of allocation become

equally, if not more, relevant. In [8], the authors studied vaccine allocation and distribution

during the 2009 H1N1 pandemic and found that for many states, the vaccines arrived far too

late to be useful. While the authors define possible alternatives for the pro-rata vaccine distri-

bution using axiomatic Operations Research (OR) models, in this paper, we adopt a simulation

optimization approach, by using a mechanistic model of influenza spread across the US.

Solving VACCINTDESIGN is challenging due to multiple related factors. Epidemic spread is a

very complex phenomenon, and is typically modeled by the SEIR class of non-linear models.

Human contacts and mobility play a crucial role in the dynamics of epidemic spread [4] [9].

Therefore, solving VACCINTDESIGN requires a combination of the modeling of human mobility

and epidemic spread, and designing a strategy for optimizing the allocation of vaccines subject

to availability constraints.

Related work

There is an abundance of literature on the modeling, analysis, and control of epidemics. We

briefly mention three areas that are closely related to our paper, namely, mobility modeling,

disease modeling, and designing interventions to control the spread of epidemics. We refer to

[11] [12] for surveys on these topics.

Modeling social contact networks and human mobility. There is very limited data on

social contact networks and human mobility, and so there has been a lot of work on develop-

ing realistic models using different kinds of datasets. Eubank et al. [4] developed a first princi-

ples based approach for constructing a realistic synthetic population by integrating over a

dozen public and commercial datasets. Coarser models for some countries have been
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constructed using census and Landscan data, e.g., [13] [15]. However, none of these

approaches considers long-distance travel outside an urban region. One of the earliest

approaches for considering such travel was by Colizza et al. [9], who use information from air-

line data to construct a network-based representation of cities across the globe. However, air-

line flow does not account for all of spatial mobility, especially within the US. In [10], the

authors construct a radiation model to predict commuter flows in the United States using data

on road networks. Especially in the context of national scale disease spread, it is essential to

have a model that combines both short-range and long-range human mobility in the United

States.

Disease modeling. There are a number of variants of the SEIR type of models for disease

spread, and their applicability depends on the specific assumptions that hold. The most com-

monly used models are compartmental in nature, assuming well-mixed populations within

each compartment. A number of variants have been proposed, including stochastic models,

multiple compartments to represent various subpopulations, branching processes, chain-bino-

mial models, etc. Colizza et al. [9] use a patch model of the form we study in this paper. They

study the role of long distance travel in the spread of epidemics, and use it to explain the SARS

outbreak and to forecast other outbreaks. A different approach that is more suitable for hetero-

geneous populations is based on a network abstraction [4]. A lot of data is needed for develop-

ing such network-based models, and such models are usually computationally more intensive.

Designing interventions. Most compartmental models that have been used for studying

optimal interventions are relatively simple, and can be solved using simple black-

box optimization methods. An example is the work of Medlock et al. [2], who consider the

problem of designing an optimal vaccine allocation for the 2009 H1N1 outbreak. They use an

age-based coupled ODE model, and observe that the optimal solution is different from the

CDC recommendation at that time. Similar studies have been done for other outbreaks, e.g.,

[16], who observe that prioritization of high-risk individuals leads to more effective strategies.

However, most studies for designing vaccination policies do not take into account the spatio-

temporal spread dynamics of seasonal influenza, nor the temporal constraints in vaccine pro-

duction schedule. Thus there is need for coupling a mechanistic model of national-scale

influenza spread with realistic vaccine uptake information for deriving an effective vaccine

allocation algorithm.

Our results

We develop a framework for national seasonal/pandemic influenza planning using realistic

datasets, a mechanistic model of disease spread, and a greedy optimization algorithm for vac-

cine allocation. Our specific contributions are discussed below.

National-scale influenza model. We develop a national-scale metapopulation model for

the spread of influenza by integrating both local and long-distance travel within the United

States. We combine data on commuter mobility from the American Community Survey

(ACS) with domestic airline passenger data from the Bureau of Transportation Statistics (BTS)

to capture human mobility across the country. Next, we adopt a metapopulation approach to

simulate epidemic spread at the spatial resolution of counties (patches) wherein the temporal

travel matrix is used to represent the flow of people between these patches. While similar mod-

els exist in the literature [17], this is one of the first models to integrate realistic datasets on vac-

cine uptake, allowing us to address the VACCINTDESIGN problem.

Multi-stage Spatio-temporal calibration. Challenges in calibrating such a complex

model include: (a) model non-linearity, (b) large number of parameters, (c) multiple spatio-

temporal characteristics to calibrate to (regional attack size, peak timing, etc.), (d) lack of
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standardized and accurate infection counts. We use two-stage posterior exploration via impor-

tance sampling to calibrate the disease model to the total attack size (number of infections)

and peak timings of the ten HHS (Health and Human Services) Regions. While peak timings

for HHS regions can be obtained from the CDC ILINet (Influenza-like Illness Outpatient Sur-

veillance Network) data, we use a novel approach to estimate total attack size for each region,

and demonstrate the calibration performance for 2014-15 influenza season.

Vaccine allocation optimization. We develop a heuristic for finding a spatio-temporal

vaccine allocation using a greedy strategy GREEDYALLOC with a lookahead parameter, under a

fixed vaccine availability schedule. We evaluate the algorithm’s performance by comparing it

against a population proportional allocation strategy (baseline). Some of our key findings are:

(a) For the scenario under consideration, GREEDYALLOC leads to considerable reduction in the

total attack size compared to the baseline; (b) the performance of GREEDYALLOC improves with

vaccine efficacy, and for influenza seasons with moderate intensity; (c) the identified vaccine

allocation strategy resembles a ring-vaccination, applied spatially for the state-level adjacency

matrix of the US.

The overall framework that implements the steps above is shown in Fig 1. The modular

approach allows the refinement of each module, when novel datasets, algorithms, and model-

ing techniques become available. In the Materials and Methods section, we briefly describe the

key ideas involved in construction of the national influenza model, the calibration procedure

and the vaccine allocation algorithm. We refer the reader to the S1 Appendix. Additional

methods for more details on each of these modules. We then present the results of calibration

and vaccine allocation using 2014-15 season data as a running example. A preliminary version

of the model and early results for VACCINTDESIGN were reported in [18], and the current paper

includes improved calibration process and provides more realistic estimates for the effective-

ness of vaccine allocation. We have also made the national simulation model code and associ-

ated data available online [29].

Materials and methods

National-scale influenza model

Our approach in building the national scale model involves two broad steps:

• Developing a model of national level mobility that yields estimates of the fractions Y
t
ij mov-

ing from county i to county j on day t.

• Developing the metapopulation model that uses Θ and a realistic vaccine allocation schedule

X to produce the spatiotemporal spread of influenza and in particular, to compute the

national attack size f(X).

Travel module. The purpose of the travel module is to generate the temporal travel matrix

Θ representing flow of people between the patches (i.e., counties) on a daily basis. Each entry

Y
t
ij of the travel matrix represents the fraction of individuals in patch i spending their time in

patch j on day t. The travel matrix Θ is synthesized using datasets pertaining to commuter flow

and domestic airline traffic. These datasets are visualized in Fig 2.

Commuter data. The commuter flow dataset is obtained through the American Commu-

nity Survey (ACS) [19] that, among other things, surveys individuals for their county of resi-

dence and county of workplace. ACS then provides population adjusted estimates of number

of commuters between any pair of counties for a typical day. Fig 2 shows relationship between

number of commuters from a source county to a destination county, and the distance between

Spatial optimization of seasonal influenza vaccine
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these counties. Other than the high volume of self-loop flows, most of the flows are concen-

trated in the 10–100 miles range.

Domestic airline data. Domestic airline flow data is obtained from the Bureau of Trans-

portation Statistics (BTS) [20]. For a given year, this dataset provides the monthly total number

of passengers who flew end-to-end between any two major airports. Fig 2 shows the number

of airline passengers between counties, for a sample month. Contrasting this with that com-

muter flows, we find the large volume flows are concentrated in the 100–1000 miles range. In

order to integrate this dataset with the county-level commuter mobility, we first identify the

catchment area of each airport (defined as 120 miles surrounding the airport), and apportion

the airport flows to counties based on their population in area of intersetion with the catch-

ment area. We also distribute the monthly number of passengers uniformly through the

month to get a daily count. Unlike a daily commuter, an airline passenger tends to stay longer

in the visiting county. Therefore the effective number of airline passengers in the visiting

county is obtained by scaling the flow by stay duration (in our model, we set the average stay

duration as 3 days). More details on the travel network construction are provided in the S1

Appendix. Additional methods.

Disease dynamics module. Consider a population of individuals each of whom can be in

one of the following states: Susceptible (S), Exposed (E), Infected (I), Recovered/Removed (R),

Fig 1. System diagram. Datasets used in the study are listed on top, and the four main modules of our framework are highlighted in the system

diagram. The Travel Module uses long distance airline travel data and short-range commuter flow data to construct the county to county

temporal travel matrix. This is used by the Disease Dynamics Module for simulating national scale epidemic spread via the metapopulation

model. Additional inputs to this module include the seeding and vaccination schedule, disease model parameters, and vaccine efficacy. While

some of these are fixed based on the study design, the Calibration Module uses historical incidence data to estimate the remaining disease model

parameters. The calibrated disease model is then used as an oracle to compute the optimized vaccine allocation in the Optimization Module.

https://doi.org/10.1371/journal.pcbi.1007111.g001
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Vaccinated (V). Compartmental models operate under a homogeneous mixing assumption,

i.e., every individual can directly infect any other individual. Initially, the entire population is

susceptible, except for a few initial infections possibly due to external contact. The disease pro-

gression is modeled by the evolution of number of individuals in each of the disease states,

often described by a difference or differential equation.

Within each patch, we use an SEIRV model, and connect the patches using the travel matrix

Θt. When we extend the model for multiple patches, susceptible individuals can be infected by

infectious individuals from other patches. This depends on the fraction of individuals moving

from county i to county j on any given day, estimated using the temporal travel matrix Θt.

The temporal travel matrix Y
t
ij is used to calculate the force of infection among patches,

without actually moving infected individuals around (i.e., virtual dispersal) [21]. We compute

the conditional force of infection for an individual present in patch j by using the effective pop-

ulations due to mobility. We can then calculate the unconditioned force of infection on a sus-

ceptible individual from patch i, as a component-wise product of (a) the probability of the

individual being in a patch j (Y
t
ij) and (b) the conditional force of infection in patch j (b

eff

j ).

See S1 Appendix. Additional methods for the equations describing the model evolution, details

on seeding and vaccination, and the sensitivity analysis of the model.

Note that the model is described through a system of difference equations, with each time

step representing a day. The model is deterministic, and represents the average system trajec-

tory. Fig 3 shows an example of the model evolution when simulated with the temporal travel

matrix and a hypothetical seeding event in Louisiana.

Fig 2. Travel datasets. Datasets used to capture short-range and long-range mobilities in the United States are depicted as networks on

top (commuter data on the left, airline data on the right). Commuter data is shown between counties, whereas airline network is shown

for key domestic airports in the United States for a chosen month (January). The distribution of flow volume with respect to pairwise

county distances in shown as heatmaps for both the commuter and airline data. Airline flows are fractional because they are mapped to

the counties that are served by them.

https://doi.org/10.1371/journal.pcbi.1007111.g002
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Spatio-temporal calibration

Model calibration is the process of estimating parameters of the computational model that can

reproduce observed characteristics in the ground truth. In the context of epidemiology,

beyond forecasting, calibrated models allow us to perform counterfactual (i.e., what-if) studies,

and address resource allocation questions like VACCINTDESIGN. In this section, we will briefly

describe our approach and the ground truth used for the two-stage calibration of the national-

scale influenza model.

We begin with the assumption that the ground truth of interest y is a noisy version of the

simulation model η(�) at some unknown input parameter configuration ŷ. We use a gaussian

error model, which are simple and adopted widely for many applications, including epidemics

[30, 31]. We adopt importance sampling [32] scheme to produce posterior realizations of the

calibration parameters. We begin with sampling from an easy-to-sample importance distribu-

tion Im(θ) (say, uniform), and run the simulation model η at each of those samples. The

importance weights are computed as the ratio of the posterior distribution (proportional to

the product of likelihood and prior distribuion) and importance distribution evaluated for

each of the samples. The samples along with the normalized weights then constitute an esti-

mate of the posterior distribution.

Further, it is often useful to factorize the likelihood function, if possible, when the simula-

tion model is required to be calibrated to several different criteria [31]. One possible way

is to sequentially calibrate the model to different criteria. In addition to simplifying the com-

putation of importance weights, the approach allows user to introduce more samples as

Fig 3. Model evolution. Spatio-temporal spread of influenza, for a sample scenario, seeded in Louisiana. Counties where the epidemic

emerges by Day 7, 30, 90 or 180 are respectively shaded in red, orange, brown and yellow. We observe that the evolution of influenza

spread exhibits both spatially local spread (aided by the commuter flow), and long range transmission events (aided by the domestic

airline flow). This is especially evident in the transition between Day 7 to Day 30, where the epidemic originally seeded in southern

counties of Louisiana spreads to other neighboring counties, as well as far away counties which have major airport cities (such as Seattle,

Chicago, DC).

https://doi.org/10.1371/journal.pcbi.1007111.g003
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needed using the intermediate calibrated parameter space. More details on the statistical

framework and the two-stage posterior exploration is provided in S1 Appendix. Additional

methods.

Finally, in our case, since we are interested in using a single calibrated model for the optimi-

zation study (as against a weighted ensemble provided by the posterior distribution), we con-

sider the Maximum a Posteriori (MAP) estimate i.e., model configuration with highest

frequency to be the calibrated model.

Vaccine allocation optimization

We now consider the problem of determining the spatial allocation of vaccines across the US

to minimize a chosen objective function. In addition to the complexity introduced by non-lin-

ear dynamics of the disease model, we also need to account for the temporal constraints

imposed by vaccine production and delivery logistics. Formally, the VACCINTDESIGN problem

involves determining the vaccine allocation vector X that minimizes the total attack size given

by f(X). This can be expressed as:

minimize
X

f ðXÞ

subject to
X

i

Xi;t � Bt; for all t;

where Bt is the total number of vaccines available at time t. Our goal in the VACCINTDESIGN

problem is then determine the amount of vaccine allocated to each patch i at time t, denoted

by Xi,t.

• To reduce the dimensionality of the problem, we focus on allocating vaccines to the states,

which are subsequently allocated to the counties proportional to their population. We will

also consider the temporal allocation at the level of a weeks. Thus we will denote the alloca-

tion to state s 2 S for week w 2W as Xs,w to improve readability.

• A possible objective function f(X) could be the total national attack size under vaccination

schedule X, i.e., ∑i Ri(T), where T is the duration of the epidemic, and Ri(T) denotes the num-

ber of individuals in Recovered state in patch i at time T.

• B is a W-dimensional vector, where Bw represents the number of vaccines available for week

w.

The VACCINTDESIGN problem is very challenging, and its exact complexity remains open. A

strategy that has been useful in many kinds of intervention design problems is to design a

greedy allocation, which selects each decision variable based on the marginal improvement to

the objective function. If the problem involves submodular maximization, such a strategy is

guaranteed to give a constant factor approximation; see, e.g., [22] [23]. In contrast, VACCINTDE-

SIGN involves a minimization, and the objective functions are neither submodular or super-

modular, in general.

Nevertheless, the greedy strategy is a reasonable approach for designing vaccine allocation

strategies, and we study it here with an allocation step size of L. The algorithm begins with an

initial zero allocation. For each week w, the algorithm allocates the next set of L vaccines to the

state s which leads to the maximum reduction in the objective value f(X). The algorithm is

repeated for week w, until we exhaust Bw, and then proceed to the next week’s supply of vac-

cines. Note that the computation of marginal benefit of allocating L additional vaccines to state

s subject to population constraints, can be computed in parallel.

Spatial optimization of seasonal influenza vaccine
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As a generalization, we have also included the lookahead duration d (in weeks) as an addi-

tional parameter. This means that the potential allocations at a greedy stage of week w are eval-

uated by their reduction of attack size at week min(w + d, T) where T is the total duration of

the epidemic. While this includes the total attack size (full lookahead, when d� T) as a special

case, it also allows us to explore the resulting trade-off due to varying forecast horizons. The

detailed algorithm is provided in S1 Appendix. Additional methods.

Results

Calibration performance

Calibration criteria. We calibrate the national influenza model at the level of Health and

Human Services (HHS) regions. We use the timing of peak influenza activity across these

regions to test the model’s ability to reproduce the spatiotemporal variation. To capture the

spatial variation of impact, we use the total attack size in each HHS region. Both these calibra-

tion criteria are obtained from the Outpatient Influenza-like Illness Surveillance Network (ILI-

Net) data provided by the CDC [34]. ILINet reports the weighted percentage of patient visits

to healthcare providers for ILI each week and for each HHS region, wtILI(h, w).

While peak timings are straightforward to obtain from ILINet data, regional attack sizes

need to be inferred. We use CDC’s influenza burden estimates [33] with appropriate scaling

(accounting for asymptomatic proportion) to obtain the national attack size ASN. We then use

the normalized cumulative weighted ILI% of an HHS region (normh) to proportionally obtain

regional attack sizes.

normh ¼

P
w2WwtILIðh;wÞP
h2H
w2W

wtILIðh;wÞ

where W is the set of weeks of interest (typically from week 40 of a given year to week 20 of the

following year, considered to be the influenza season) and H is the set of HHS regions. We

observe that across seasons normh of HHS regions are quite consistent (as shown in the box-

plots of Fig 4), and we used the median value across seasons. For our study, we used the peak

timings of 2014-15 influenza season, and a national attack size of 40 million cases.

Calibrated parameters. The following is the list of simulation parameters (θ) in the

national influenza model.

500 � sk ¼ Number of initial seeds in county k � 2000; 7levels

0 � tk ¼ Seeding timing in county k � 28; 29 levels

0:4 � b ¼ Transmissibility � 0:9

0:2 � vaceff ¼ Vaccination efficacy � 0:6

14 � vacdel ¼ Vaccination delay 28; 15 levels

0 � Aw ¼ Stay duration � 5; 6 levels

ð1Þ

For seeding the influenza model, we used data from CDC ILI Activity Level Indicator [35]

for the 2014-15 season. We chose to seed in Louisiana and Alabama, the two earliest states to

reach High activity level in the season. Within these states, we chose to seed in the most popu-

lous counties (Lafourche parish, LA and Jefferson county, AL) respectively. The seeding policy

is consistent with the finding that most influenza seasons likely start from the Southern US

[24]. Given the seeding in two counties, we now have 8 parameters to be calibrated θ = (s1, s2,

t1, t2, β, vaceff, vacdel, Aw). Note that the seeding time is time since the start of the simulation.

Spatial optimization of seasonal influenza vaccine
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We fix the remaining parameters of the disease model (such as α, γ) based on literature. In our

study, α = 0.67, γ = 0.4 and correspond to mean incubation period of 1.5 days and mean infec-

tious period of 2.5 days [14].

We begin with an initial set of m uniformly random parameter configurations according

to (1). Based on initial runs, we choose to work with m = 1000. Full simulations are carried

out at these 1000 configurations to obtain simulated regional attack sizes and peak timings.

We then perform the two-stage calibration procedure described earlier, to obtain a MAP esti-

mate of the best parameter configuration. For the gaussian likelihood (see S1 Appendix.

Additional methods on Calibration methodology), we defined independent errors with a

standard deviation of 20% around the calibration criteria [30]. While varying the standard

deviation may affect the posterior distribution, it is to be noted that the MAP estimator

remains unaffected.

After the first stage of calibration (i.e. regional attack sizes), the MAP estimate

y
?

ð1Þ
¼ ð1000; 1250; 3; 5; 0:43; 0:53; 23; 2Þ. After the second stage of calibration (i.e.,regional

peak timing), we get y
?

ð2Þ
¼ ð2000; 1500; 18; 21; 0:59; 0:56; 22; 2Þ. Fig 4 shows the results

of multi-stage calibration, with the green, blue and purple circles respectively showing the

calibration criteria, simulated output with y
?

ð1Þ
and simulated output with y

?

ð2Þ
. We use y

?

ð2Þ

as the calibrated parameter for the vaccine allocation study. We note that we are able to

calibrate within 14% of the national attack size. The calibrated model is also within 24% on

average for HHS region level attack sizes and 1.5 weeks (11 days) for the respective peak

timings.

Fig 4. (a) Normalized cumulative weighted ILI% (normh) for each HHS region, across past influenza seasons. (b) Results of multi-stage

calibration. Target attack sizes for each HHS region and peak time are shown relative to the results of the calibration. For each HHS

region, green circle represents the ground truth attack size, and the associated green dashed line represents the peak timing. In blue

(purple) we show the targets achieved by best model chosen after first (second) stage of calibration. All combinations of attack sizes, peak

timing achieved by the particles in the design space are shown in grey.

https://doi.org/10.1371/journal.pcbi.1007111.g004
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Optimization study scenarios

For the current study, we begin with the disease model calibrated to the 2014-15 influenza sea-

son. Given the best fit model Mθ?, we define the optimization study scenarios as follows: A sce-

nario is defined by a (v, E) tuple and is derived by setting the vaccination efficacy to v in model

Mθ? and calibrating the transmissibility β to achieve national attack size of E under pro rata

vaccine allocation.

We do this to simulate multiple seasons that spread spatially like the 2014-15 season, but

vary in their severity (captured by the national attack size E) and the efficacy of seasonal vac-

cine (captured by v). In our study setting, we construct 12 scenarios, where v takes values in

{0.2, 0.35, 0.5} and E takes values in {40, 61, 73, 86} where the values are in millions of cases,

corresponding to different severity levels based on past seasons of seasonal influenza. Thus for

each target attack size E, we have three scenarios, in which E is achieved by assigning vaccines

at v efficacy.

In our study (restricted to contiguous US, including DC), the number of states S = 49. Also,

we set the number of weeks W = 40, roughly the period from September to May corresponding

to the influenza season. Therefore, the allocation profile X has 1960 spatio-temporal dimen-

sions. The temporal constraint B is based on historical vaccine uptake schedue available from

CDC FluVaxView [36]. CDC FluVaxView provides monthly coverage estimates nationally for

the past influenza seasons. We scaled it by the national population to get a vaccine uptake

schedule and converted it to the temporal constraint B. Note that CDC also provides the vac-

cine supply and distribution schedule [37], however, we noticed a considerable delay between

the supply and uptake schedules, so we chose to use the uptake schedule to reflect ground

reality.

Effect of vaccine efficacy. Fig 5 shows the attack size under optimized allocation under a

10 week lookahead policy. In the least severe scenario (40 million cases), with the best vaccine

efficacy (0.5), we are able to reduce the national attack size by up to 17%. On the other extreme,

with 80 million cases and 0.2 vaccine efficacy, the allocation helps, but only minimally (2%).

Fig 5. Episizes achieved by optimized allocation for different baseline episizes and vaccine efficacies.

https://doi.org/10.1371/journal.pcbi.1007111.g005
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Another thing to note is that for a fixed attack size scenario, with increased vaccine efficacy,

the benefit of optimized allocation increases. This makes sense, since this translates to more

effective vaccines being moved around.

Spatio-temporal allocation of vaccines. Note that the algorithm outputs an allocation

schedule, where for each week, each state is allocated Xs,w units of vaccines. This can be visual-

ized using a 2-D heat-map as shown in Fig 6. It is useful to remember that all simulations are

initialized in Louisiana and Alabama. Fig 6 shows the allocation by the 10 week lookahead pol-

icy with vaccine efficacy of 0.5. We observe that the optimized allocation begins allocating to

Louisiana (state code LA), followed by its neighbors Alabama (AL), and Mississippi (MS). This

is followed by larger states around Louisiana such as Texas, Georgia, and Florida. This is very

different from a pro-rata allocation scheme (distributing the vaccines for each week propor-

tional to state populations). This strategy also resembles a ring-vaccination (in social contact

networks), applied spatially to regions around the origin of the epidemic. Further, even though

we prioritize some of the states early in the season, the final vaccine allocation for each state is

close to its pro-rata quota. As shown in Fig 7, most states receive their fair-share of vaccines.

Sensitivity to hyperparameters. We also tested the sensitivity of greedy algorithm perfor-

mance to the hyperparameters of the algorithm, namely lookahead duration d and the vaccine

allocation stepsize L. We tested the sensitivity on the best fit configuration for 2014, with total

national attack size of 34 million. We observe from Fig 8 that the solution quality is pretty

Fig 6. Weekly allocation of vaccines across states for the optimized allocation with 10 week lookahed, vaccine efficacy of 0.5 and baseline

episize of 40M.

https://doi.org/10.1371/journal.pcbi.1007111.g006
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stable across allocation step size L, with marginal improvement for lower L (although the run-

time for L = 100, 000 step size would be roughly 5 times as longer as that for L = 500, 000).

We also found that a medium lookahead policy (10 weeks) performed better than a short-

term or full lookahead policy. This implies that allowing the algorithm to target the reduction

of attack size a couple of months into the future, leads to improved performance in the final

attack size. Short lookahead duration (5 weeks) does not perform well, because the lookahead

is almost comparable to the delay for the vaccine to take effect. For longer lookahead, the algo-

rithm allocates vaccines to states farther from the current epidemic activity to have the most

impact on the total attack size at the end of the simulation. This, however, may not limit the

Fig 7. Population normalized total allocation of vaccines per state under the optimized schedule. A value of 1.0 indicates that the state

received exactly the same amount of vaccines it would have received under the pro-rata schedule. Values greater (less) than 1.0 correspond to

more (fewer) vaccines allocated under the optimized schedule than the pro-rata schedule.

https://doi.org/10.1371/journal.pcbi.1007111.g007

Fig 8. Effect of hyperparameters (lookahead duration and allocation stepsize) on algorithm performance.

https://doi.org/10.1371/journal.pcbi.1007111.g008
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spatial spread of the disease per se, and hence may be sub-optimal. As we can see, the medium

lookahead policy, through its ring-vaccination style approach, ensures that the disease is

curbed near its origin, thus leading to greater overall reduction in the attack size.

Discussion

Current policies for vaccine interventions are designed based on a host of social and political

issues, and tend to be fairly simplistic. For instance, Department of Health and Human Ser-

vices (HHS) directives for targeting pandemic vaccines are based on age group [5], and the

allocation of the national vaccine supply and other resources is typically done proportional to

the state population. There has been a lot of interest in developing more effective interven-

tions, e.g., [2] [4] [25] [26]. For instance, Medlock et al. [2] developed an optimal vaccination

strategy for the H1N1 outbreak; their model showed a prioritization for a different age group

than the ones recommended by CDC directives. All prior methods are restricted to simple

models, and only focus on non-temporal interventions in which the allocation is done ahead

of time. In reality, vaccine supply varies over time, and the real problem involves finding an

allocation that respects the supply constraints and optimizes the epidemic outcomes.

Our current model can be extended in several ways. Firstly, the model calibration process

can be refined to match more detailed trajectories of influenza spread, like the ILI % time

series, or the in-season burden estimates being produced by CDC starting 2018-19 season

[33]. Such approaches can then be used to do real-time forecasting and provide vaccine alloca-

tion recommendations for an ongoing influenza season. Further, instead of selecting the MAP

model for vaccination study, one could use an ensemble of calibrated models based on the pos-

terior distribution, thus being able to quantify uncertainty in the vaccine allocation policy’s

effectiveness. Another aspect of the real-world dynamics currently not being captured in our

model is that of residual immunity. The national influenza model can be improved by taking

into account the co-circulating and dominant influenza strains, as well as the strains present in

the recommended vaccine for the season. Note that while improving over pro-rata allocation,

greedy algorithm, even with the lookahead duration, may lead to sub-optimal policies. One

can develop algorithms that earmark resources for regions with high spreading capacity, thus

potentially improving the effectiveness of vaccine allocation.

Finally, the logistics of the supply of medical resources, such as medicines, medical equip-

ment (e.g., ventilators), and medical staff is also very complex. The health infrastructure is gen-

erally optimized for typical demand for such resources, and any surge, as would happen

during a pandemic outbreak, would place a severe strain on hospitals. Ajao et al. [27] show

that over 50,000 ventilators might be needed in the event of a national influenza pandemic out-

break. Since local and state health systems are usually unprepared for such a surge in demand,

the Office of the Assistance Secretary for Preparedness and Response (ASPR) maintains a

stockpile of mechanical ventilators in strategic locations [38], which can be deployed during

an emergency. While existing efforts partially address the question of optimizing stockpile

redistribution [28], a mechanistic model like the one developed in this paper will help design

better national-scale studies for pandemic preparedness exercises, and develop strategies for

allocation of vaccines and other resources during such emergencies.

In conclusion, we have presented a national level seasonal influenza model, based on short-

range and long-range mobility datasets, and used it to optimize the spatio-temporal allocation

of vaccines. For the scenario under consideration, we find that the national attack size can be

reduced by up to 17% by allocating the early vaccines to regions around the origin of the epi-

demic. Most states still end up with close to their overall pro-rata quota of vaccines, however,

these findings demonstrate that shifting when and where these vaccines are administered has a
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sizable impact on the national attack size. Achieving these optimal outcomes would require

better surveillance and the ability to accelerate vaccine uptake at will, which presents multiple

challenges. However, the study shows there is ample room for improvement and this frame-

work provides means for developing a play-book for epidemic containment.

Supporting information

S1 Appendix. Additional methods. Additional technical details pertaining to the disease

model, calibration framework and optimization algorithm are provided.

(PDF)
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