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Abstract

The prefrontal cortex (PFC) is a key brain structure for decision making, behavioural flexibil-

ity and working memory. Neurons in PFC encode relevant stimuli through changes in their

firing rate, although the metabolic cost of spiking activity puts strong constrains to neural

codes based on firing rate modulation. Thus, how PFC neural populations code relevant

information in an efficient way is not clearly understood. To address this issue we made sin-

gle unit recordings in the PFC of rats performing a GO/NOGO discrimination task and ana-

lysed how entropy between pairs of neurons changes during cue presentation. We found

that entropy rises only during reward-predicting cues. Moreover, this change in entropy

occurred along an increase in the efficiency of the whole process. We studied possible

mechanisms behind the efficient gain in entropy by means of a two neuron leaky integrate-

and-fire model, and found that a precise relationship between synaptic efficacy and firing

rate is required to explain the experimentally observed results.

Introduction

The prefrontal cortex (PFC) is a key brain region within the neural circuit of decision making.

An intact PFC is necessary for proper execution of cognitive tasks demanding working mem-

ory [1,2], behavioural flexibility [3], and learning [4], and there is considerable evidence show-

ing that PFC neurons code reward-related cues by means of increments in their firing rate [5–

7]. Thus, sustained levels of activity during stimuli presentation and delay period have been

proposed as the neural substrate of neuron selectivity and working memory [8,9]. However,

the optimal firing rate for a neuronal population is neither the lowest nor the highest when a

cost-efficient information coding and transmission strategy is required [10]. In this regard, the

increased firing rate associated with the presence of conditioned stimuli can be seen as a sub-

optimal coding strategy from many points of view: it is inefficient when rapid discrimination

responses are needed [11], and the metabolic cost associated to the emission of a spike is
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several orders of magnitude higher than the cost of basal metabolism [12–14]. Thus, how neu-

rons in the PFC achieve an appropriate balance between robustness and information capacity

to attain fast, robust and cost-efficient stimuli coding remains elusive.

The goal of the present study is to determine the neuronal dynamic underpinning the infor-

mation capacity of the PFC during reward-associated behaviours. In this regard, entropy,

which is the averaged expected information associated with the occurrence of an event, is a

natural candidate to measure information processing in neuronal populations. Entropy cap-

tures the total information conveyed by a neural population without making any a priori
assumptions about the underlying neural code. Although the number of possible states that a

neural population could adopt increases exponentially with the number of neurons, it has

been found that second order maximum entropy models explain almost all variability in corti-

cal networks [15,16].

We recorded single-cell activity in the PFC of behaving rats during a GO/NOGO auditory

discrimination task. We used pairwise entropy to analyse interactions among neurons in the

populations in order to explain the amount and cost of information gained during the decision

making process. Then, by means of a leaky integrate-and-fire (LIF) model, we explored differ-

ent physiological mechanisms to understand how information is cost-effectively coded in the

PFC when reward-predicting stimuli are presented.

Results

Rats were first trained to perform an auditory GO/NOGO discrimination task using a head-

fixed paradigm (Fig 1A). Four out of the six rats reached criteria (Fig 1B). We recorded 95 sin-

gle-cell neurons in PFC and changes in PFC information capacity and coding efficiency were

assessed during task performance. We observed different patterns of activity in stimulus-

responding neurons in the PFC, as shown by the peri-stimulus time histograms (PSTH) (Fig

1C). During stimuli presentation, 29/95 neurons increased significantly (p<0.05, Sign test)

their firing rate, 12/95 decreased it significantly (p<0.05, Sign test), whereas 54/95 neurons did

not show significant changes. On average, PFC neurons responded to the presentation of the

GO stimulus by increasing their firing rate, as summarized in the Z-scored PSTH data set for

correct trials only (Fig 1D and 1E).

To measure how much information is conveyed by the population of PFC neurons, we first

built a two-state neuron model. In the model, we set the output of every neuron at a given time

t to ‘0’ or ‘1’ depending on whether the number of spikes within a time window centred at that

time was lower/higher than the average computed across trials (see Methods). To obtain the

best temporal resolution constrained to a reliable measure of pairwise entropy, we looked for

the shortest time window that maximized mutual information (I) between stimuli and neuron

state. We found that I has its maximum shortly after stimulus onset for a time window of 320

ms (Sign test, P<0.001), accounting for 80% of the maximum I value (Fig 2A). Therefore, we

selected this time window length for subsequent analysis. The probability of finding a neuron

in a ‘1’ state (p1) increased along with its firing rate (Spearman correlation, ρ = 0.67, P<0.001),

fluctuating around the values expected of a Poissonian spike emission process (Fig 2B). Using

the binary model, we measured the Fano Factor for each neuron and found that it decreased

during the presentation of the GO tone (Fig 2C), consistent with the reduction in normalized

variance observed in previous work during stimuli presentation [17,18].

We then computed pairwise entropy during tone presentation (t = 0.5 s), obtaining one

average pairwise entropy per session. Interestingly, average entropy was positively correlated

with session performance (Fig 2D), highlighting the behavioural relevance of the total infor-

mation carried in the activity of the PFC neural population.
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Fig 1. Training protocol, behaviour and neural activity. (a) Animals (n = 6) were trained in a GO/NO-GO paradigm. After a random 1–3 s pre-stimulus

delay, a 1 s tone (1 KHz or 8 KHz) was presented. Licking responses were measured during a two seconds opportunity window after stimulus offset. Rats had

to lick during the opportunity window after the GO tone, and avoid licking after the NOGO tone. Only correct GO responses were rewarded with a water drop,

while in the case of correct NOGO ones the reward consisted in a reduction in the inter-trial interval (ITI), giving the chance to get water sooner in subsequent

trials (b) Animals were trained until they had a session performance higher than 80% (dashed line) with a NOGO performance higher than 60%. (c) Peri-

stimulus time histograms (PSTH) of PFC neurons estimated within 10 ms bins. Black triangles mark the onset and offset of the tone. Examples of PFC

neuronal activity are depicted to illustrate the different patterns of responses. Insets show neuron spike waveforms (mean ± std), scale bar = 200 μv) (d)

Raster plots showing the activity of a PFC neuron and the licking responses during 30 consecutive GO trials. (e) Z-Scored PSTHs for 95 neurons in PFC

during GO trials (blue) and NOGO trials (red), mean ± s.e.m. values are shown. Compared with NOGO trials, the activity of PFC neurons in GO trials was

higher during and after tone presentation (P<0.05, Sign test, measured at 0.5 ms).

https://doi.org/10.1371/journal.pone.0188579.g001
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To get insight into the dynamics of PFC information, we computed entropy along stimulus

presentation separately for GO and NOGO tones. Pairwise entropy analyses revealed that the

coding capacity of the PFC was differentially affected by the presence of stimuli. Entropy

increased only after the presentation of a reward-related stimulus (GO trials), while no changes

were observed in NOGO trials, (Fig 2E and 2F).

Since p1 was proportional to the firing rate (Fig 2B), and having the spike generation a

strong energetic constrain [12–14], we reasoned that a pair of neurons is efficient when they

maximize their entropy at the cost of the smallest change in their p1. Consequently, we asked if

the observed growth in PFC entropy (ΔH) occurred in an efficient way. We defined pij
11 as the

probability of having neurons i and j firing above their mean. Thus, the 3-tuple (pi
1
; pj

1; p
ij
11)

completely defines the probability distribution for a given pair of neurons (i,j) (see Methods).

We named Dpi
1

to the variation of pi
1

compared to the pre-stimuli basal value and Dpij
1 ¼

Dpi
1
þ Dpj

1 to the total change in the probability of being in state ‘1’ for neuron i or neuron j.
Thus, the value of Dpij

1 can be interpreted as the cost that a pair of neurons has to pay in order

to cause a given ΔH.

Fig 3A shows the relationship between changes in entropy (0.5 s after tone onset) versus

Dpij
1 for the pool of recorded pairs. It is worth noting the positive slope (m = 0.97; 95% CI =

[0.85,1.09]) for the linear regression between ΔH and Dpij
1, which means how much entropy is

gained due to an increase in pi
1

and/or pj
1. Together with results in Fig 2B, the positive slope

suggests that an increase in spike frequency translate into a growth in the information con-

veyed by the population. We defined the efficiency E at time t as the slope of the curve ΔH ver-

sus Dpij
1 computed at that time. We found an increment in efficiency after tone onset during

GO trials, which means that during stimuli presentation information capacity increased in a

cost-efficient way (Fig 3B). Since both (pi
1
; pj

1) and pij
11 determine the value of efficiency, we

then asked how efficiency is specifically affected by the interaction component pij
11. We

addressed this issue by comparing the measured values of entropy and efficiency with the cor-

responding ones obtained from a null distribution built from 1000 surrogates, in which we

kept (pi
1
; pj

1) fixed while changing pij
11 (see Methods and Fig 3C). In this way, we can keep the

Dpij
1 values constant, and the effect of pij

11 on ΔH and E can be assessed. We found that entropy

and efficiency in the experimentally observed dataset were significantly higher than the aver-

age expected from the surrogates (Fig 3D), suggesting that the mechanisms operating in the

PFC lead to specific combinations of (pi
1
; pj

1) and pij
11 in order to achieve the observed increase

in entropy and efficiency. To rule out the possibility that increments in efficiency were pro-

voked by any increase in firing rates, we searched for an event-driven evoked changes in firing

rates not correlated with reinforcement. Thus, we selected the end of trial (EoT) signal, which

comes from a mechanical relay and precedes the inter trial interval (ITI), and measured the

average firing rate for neuron pairs. We then computed the change in the firing rate at this

Fig 2. Pairwise entropy and correlation in the PFC. (a) Mutual information I between stimuli and PFC neurons depends on the size of the analysis

window and the time from stimuli onset. We computed Mutual information for window sizes ranging from W = 100 ms to W = 600 ms centred at a time t,

which varied from t = 0 ms to t = 500 ms. The averaged across time value <I> increases significantly with the window size, reaching 80% of the maximum

at a window size of 320 ms (dashed line). (b) Relationship between binary model and firing rate. The plot depicts p1, the probability of finding a PFC neuron

firing over its average across trials, versus the associated average firing rate, computed in a 320 ms window centred at t = 0.5 s. Each dot represents one

out of 95 PFC neurons. The red line is the theoretically expected p1, assuming that neurons fire following a Poisson distribution. As firing rate becomes

higher, p1 approaches 0.5, which is the expected value for a symmetric probability density function. (c) Fano factor computed for all PFC neurons during

GO and NOGO trials. Comparing to basal values, neurons reduced their Fano Factor only during correct GO trials and after stimulus onset (p<0.05,

Wilcoxon signed-rank test). (d) Behavioural performance increases with pairwise entropy (lineal regression slope = 0.31, CI 95% = [0.12, 0.49]). Each dot

represents one session. (e-f) Pairwise entropy for GO trials became higher than for NOGO trials after 0.5 s (P<0.05, Sign test). The effect can be observed

in each animal (e) and in the pool consisting of all neurons from all animals (f).

https://doi.org/10.1371/journal.pone.0188579.g002
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Fig 3. The cost of rising entropy in the PFC. (a) Entropy changes ΔH as a function of marginal probability changes Dpij
1 ¼ Dpi

1
þ Dpj

1 in the case of GO

correct trials. Changes were computed between +0.5 s and -1 s from stimuli onset. Each dot corresponds to a neuron pair. The linear regression is shown

in red, and efficiency E is defined as the slope if the regression (slope = 0.97, 95% CI = [0.85,1.09], assessed by bootstrapping). (b) Efficiency dynamics

along GO and NOGO trials. Efficiency increases as soon as the stimuli is presented in the case of GO trials whereas no differences were observed in the

NOGO case (E values and CI are shown). (c) Surrogate pairs were built by changing only the p11 values observed during stimulus presentation (no

changes were made for basal p11, pi
1

and pj1 values, neither for pi
1

and pj1 values during stimulus presentation). The scheme represents two pairs of

neurons, composed of neurons i and j, and neurons k and l. Each pair has its p11 (full length of the arrow) and its pind (length till black dot). Additionally,

each pair has its f value, which is the quotient between the observed p11 and the pind. Surrogates are then constructed by exchanging f values and

multiplying the original pind with the f value of the other pair, thus obtaining a surrogate p11 value (psurr
11

). Only f values of pairs belonging to the same

session were permuted. (d) Assessing the role p11 in efficiency. A thousand surrogate values of E were generated by changing the probability of

coincidence p11 as described in (c) in order to build the null distribution P(Es). Efficiency measured from our data (E = 0.975) is significantly higher than the

expected by chance (P = 0.021).

https://doi.org/10.1371/journal.pone.0188579.g003
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time and sorted trials into two groups: those showing an increment in firing rate, and those

showing a decrement in firing rate. We found that entropy changes were different between

groups (P<0.0001, Sign Test) without a significant difference in efficiency, despite that evoked

activity during EoT and GO tone were similar (see S1 Fig).

We then asked about possible neural mechanisms behind this efficient modulation of

PFC coding. Within our binary neuronal model, neurons that fire with Poisson statistics are

expected to increase their entropy along with their firing rate, mainly because the Poisson

distribution becomes more symmetrical as the mean firing rate raises. Whether this rise in

entropy occurs along with a concomitant increase in efficiency is not a trivial question. Indeed,

it is known that connections between neurons impose constrains that can aid or interfere with

the coding process [19]. To address these issues, we built a model of two leaky integrate-and-

fire neurons that receive inputs from an external afferent population, which is assumed to fire

selectively for the GO cue, and from the other neuron in the pair through a symmetrical excit-

atory connection (Wr) (Fig 4A). We explored how changes in external firing rates and in the

strength of Wr affected both entropy and the cost variable pij
1 (Fig 4B and 4C). Increments in

Fig 4. Entropy and pij
1 in a LIF model. a, Scheme of a leaky integrate-and-fire model composed of two neurons with intrinsic and extrinsic connections.

Neurons N1 and N2 receive inputs from an afferent population of 400 excitatory and 100 inhibitory neurons, which contains an exclusive population (Pob1 and

Pob2 projecting to neurons N1 and N2 respectively) and a common populations (Pobc) where each afferent excitatory and inhibitory neuron projects both to

N1 and N2. Moreover, neurons N1 and N2 are reciprocally connected through an excitatory synaptic weight Wr. b-c, Effect of changing the mean firing rate of

the excitatory afferent population (λEx) and Wr in the entropy (b) and pij1 (c). An increment in λEx and Wr causes a significant rise in entropy, while pij1 remains

constant if λEx is increased while decreasing Wr at the same time. d, A trajectory in (Wr, λEx) space that allows to increase entropy efficiently is depicted as a

blue arrow. The red arrow implies increments in λEx only. Light and dark grey lines represent level curves for constant entropy and constant pij1 respectively. A

simultaneous increment in efficiency and entropy requires increasing λEx while reducing Wr in such a way that the change in p1 tends to zero. e-f, Efficiency

and entropy for points 1, 2 and 3 of trajectories shown in (d). Efficiency increases for the blue trajectory, and decreases for the red trajectory. All comparisons

within trajectories are significantly different (N = 30 repetitions, P<1x10-3, sign test).

https://doi.org/10.1371/journal.pone.0188579.g004
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external firing rates (λEx) lead to a rise in entropy, as expected (Fig 4D and 4E, red line). Yet,

the value of pij
1 also increased proportionally to λEx, causing a net decrement in efficiency dur-

ing the process (Fig 4F, red line). Since Wr impacts on both entropy and pij
1, we considered the

possibility of a coordinated change in λEx and Wr to explain the rise in efficiency observed

experimentally. By studying the level curves of entropy and pij
1 shown in Fig 4D, we found that

an efficient increase in entropy can be obtained by following a trajectory that gets closer to a

curve of constant pij
1, while ascending the level curves of entropy at the same time (Fig 4D–4F,

blue line). Therefore, a rise in efficiency cannot be explained as a result of the sole increase in

firing rates. Instead, increments in firing rate must be accompanied by a coordinated decre-

ment in the strength of the connection between neurons, which decreases pij
1, making efficient

the increment in entropy.

Discussion

Neurons in the PFC encode reward-related stimuli by changing their firing rate during stimuli

presentation and delay periods. This coding strategy may result energetically inefficient, given

the cost of spike emission [12,13]. However, this energy constrain could be less severe in the

PFC neuron population, where it has been shown that neurons change their firing rate mostly

when reward-related stimuli are presented [20]. In this sense, we have found that a significant

change in the firing rate of PFC neurons, which is in turn associated to an increase in their

pairwise entropy, occurs along with the presentation of the GO tone.

Entropy is a non-parametric measure which assesses the average information contained in

a stochastic variable. It makes no assumptions about the underlying neural code, and allows to

estimate information in highly variable processes, a hallmark property of neural populations.

In that sense, in our binary neuron model, entropy captures the information conveyed in the

trial-by-trial fluctuations of the firing rates, independently of the direction of the mean firing

rates itself.

From the point of view of the states that a neural population can adopt, an increase in

entropy means less predictability, which seems to contradict the well-established results that

show a stimuli-driven attenuation of neuronal variability in the cortex [17,18]. It is worth not-

ing that both normalized variance and the variance of the conditional expectation are indeed

related to the variance to mean ratio (i.e. Fano Factor) of individual neurons. In terms of our

binary model, the variance and the mean can be expressed as pi
1
ð1 � pi

1
Þ and pi

1
respectively,

being the Fano Factor equal to ð1 � pi
1
Þ. Due to the low basal firing rate of PFC neurons and

the positive correlation found between firing rate and pi
1
, the Fano Factor would decrease as

soon as stimuli are presented. It is also expected that the entropy of single neurons increases in

this situation, due to the increase of pi
1

at the onset of reward-predicting cues. Thus, the

observed stimuli-driven reduction of neuronal variability and the increase in average informa-

tion are compatible features of the PFC population dynamics.

Since the cost of cortical computation imposes a main challenge to the way in which infor-

mation is processed [10,13,14], we wondered to what extent the observed activity-driven

increase in information capacity is efficient. By measuring efficiency as the slope between

changes in entropy and changes in pi
1

we found that efficiency rises during presentation of the

GO tone only, accompanying the rise in entropy. Moreover, by means of a surrogate analysis

we were able to show that the observed increments in pairwise entropy requires a specific rela-

tionship between (pi
1
; pj

1) and pij
11, suggesting that an efficient growth in entropy is accom-

plished through coordinated changes in firing rates and the effective connectivity between

neurons.
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Whether the observed cost-effective increment in the average information encoded by the

PFC is the sole consequence of input changes, or is the result of intra-PFC population mecha-

nisms is not known. We proposed a computational model built from two interconnected LIF

neurons, which we employed to describe possible mechanisms underlying an efficient increase

in pairwise entropy. Neither the change in the input firing rate nor the modulation of the syn-

aptic interconnection between PFC neurons alone account for a cost-effective increase of pair-

wise entropy. Indeed, a delicate balance between these parameters is necessary to explain the

experimental results. In this regard, dopamine can be a good candidate to modulate the

dynamics of prefrontal neurons as our model indicates. For example, D1-NMDA synergisms

changes the probability of up-states in pyramidal neurons [21,22] while D2 receptors has been

shown to increase fast spiking interneurons (FSI) firing rates [23,24]. Moreover, dopaminergic

neurons in the ventral tegmental area (VTA) fire with reward-predicting stimuli [25–27] and

project to the PFC [28,29]. Thus, dopamine in the PFC could be a possible neuromodulator

mediating the changes in neuronal coupling that are required to explain efficient information

increments. It would be useful to perform simultaneous recordings of VTA and PFC activity

in order to understand the impact of dopaminergic neurons activity on the information

encoded in the PFC.

Methods

All animal protocols used in this study were approved by the Animal Care and the Ethics

Committee of the Instituto de Biologı́a y Medicina Experimental—Consejo Nacional de Inves-

tigaciones Cientı́ficas y Técnicas (IByME—CONICET), and were conducted according to the

National Institute of Health (NIH) Guide for Care and Use of Laboratory Animals.

Animals

Adult (2 month old) male Long Evans rats (270-330g) housed individually with food and

water ad libitum were used in the present study. They were provided by the IByME-CONICET

and maintained on a 12 h dark/light cycle.

Pre-surgery handling

Pre-surgery handling started two weeks before surgery so the animals (N = 6) got habituated

to the operator. Animals were lifted by the operator, first for a short time (30 s) and then grad-

ually increased up to 10 min. They were released only when they were calm and still, tanking

special care not to release them when trying to escape from restraint.

Head fixation device

Fixation devices were cross-shaped aluminium pieces (2 gram of weight) manufactured from 2

mm thick aluminium sheet. The four ends of the device were screwed to two plastic adapters,

which in turn were fastened to the ear bar holders of a Kopf stereotaxic apparatus.

Surgery

Animals were anesthetized using Ketamine/Xylazine (75mg/kg, 10 mg/Kg, respectively). The

proper state of anaesthesia was tested by observing absence of the paw reflex. Throughout sur-

gery, the eyes were covered with ointment to prevent drying. Body temperature was measured

by a rectal probe and held constant at 37˚C using a controlled pad.

The head fur was shaved and the skull was cleaned and disinfected. Once the skull was

exposed, one hole of 2 mm in diameter was drilled over the PFC area (PFC coordinates: AP =
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+2.7 mm, L = 0.5 mm, Bregma as zero [30]). A 3 mm diameter by 4 mm deep plastic cylindri-

cal recording chamber was positioned around the hole. Two Stainless-steel screws were posi-

tioned in each of the parietal bones (4 screws in total), after being disinfected in ethanol 70%.

Finally, the fixing device was held in place, and fixed to the screws and a recording chamber

with dental acrylic. The recording chamber was filled with antibiotic solution (neomycin 3.5

mg/ml, polymixin B 5000 UI, gramicidin USP 0.025 mg; OFTAL 3, Holliday–Scott, AR), and

sealed with a cotton cap.

Immediately after surgery rats were subcutaneously injected with 1 mg/kg of the analgesic

Meloxicam (Mobic, Boehringer Ingelheim, AR). During postoperative, rats were treated with

antibiotic (Enrofloxacin in drinking water at 0.05 mg/ml; Floxacin, Afford, AR) and analgesic

(3 drops of Tramadol 5% per 100 ml of drinking water; Calmador, Finadiet, AR) for at least 5

days.

Electrodes and data acquisition

Extracellular recordings were obtained using tetrodes made following standard procedures

[31]. Briefly, they consisted of four coiled wires of nychrome of 12 μm in diameter (Kantal,

Palm Coast). Each tetrode was then introduced inside a stainless steel cannula of 230 μm of

external diameter. Each wire was isolated by a polyamide sheath, and its impedance (at 1 KHz)

was adjusted between 0.5 to 0.8 MO by gold electro-deposition at the tip. Electrode bundles

were built using three cannulas with cyanoacrylate in a triangle configuration and a separation

of 250 μm. A wire attached to the cannulas of each set of tetrodes was used as ground. Signals

were pre-amplified x10 and amplified x1000. Data were acquired with a National Instruments

device at a sampling frequency of 30 KHz.

Habituation to head fixation

Seven days after surgery, water supply was progressively reduced down to 12 ml per day, taking

care of the animal weight, which was never less than 85% of their ad libitum weight. To habitu-

ate animals to the head fixation framework they were progressively fixed 10, 20, 40, 80, 160

minutes per day to the stereotactic frame while drops of water were delivered sporadically.

Animals were kept fixated unless they presented signals of stress such as agitation or teeth

chattering. During fixation, the animal body was placed in a half-cylinder bed (7 cm in diame-

ter and 20 cm long) made of PVC.

Preparatory training

On the first day of training, animals were trained on a single classical conditioning session,

where a tone (T1) lasting 1 s was followed by a drop of water (0.06 ml) as reward. On the sec-

ond day, an operant conditioning protocol was conducted: the same tone was followed by a 2 s

window of opportunity to lick in order to get a drop of water. Once the subjects performed

above 80% of correct trials in the operant protocol, the discrimination task training was

begun.

Discrimination task training

Rats were trained to learn an auditory discrimination task, under the GO/NOGO paradigm.

Each trial started with a random 1-to-3 s delay, followed by a 1-s long stimulus presentation,

chosen at random from two possible frequencies (T1: lick tone, and T2: no lick tone). After the

tone, the animal had a two seconds opportunity window to execute the response: to protrude

the tongue, or to hold it. When the T1 tone was presented and the animal made a lick action, a
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drop of water was delivered (GO correct trial). There was no reward if the animal did not lick

(GO incorrect trial). In the case of GO trials the inter-trial interval (ITI) was 4 s.

If after the T2 tone animals withdraw the tongue, no reward was delivered, but the ITI was

cancelled and the next trial started immediately (NOGO correct trial). Conversely, a lick action

(NOGO incorrect trial) meant no reward and a time out of 15 s as punishment.

In three subjects T1 was a 1 KHz tone and T2 an 8 KHz tone, while in the other subjects the

frequencies were inverted. Four out of six trained animals reached a performance criterion of

80% of correct trials, with at least 60% of correct NOGO trials. Recordings were conducted in

animals within performance criterion.

Before a recording session, cotton caps were removed and a few drops of lidocaine 2% were

applied on the meninges. Next, the meninges were cut using a 30 gauge needle with the aid of

a surgery microscope. Three tetrodes were lowered in each area. When spikes were found in at

least one tetrode of each area the behavioural protocol was started. All recording sessions were

finished when the subject was no longer willing to perform the task.

Histology

At the end of the last recording session, rats were deeply anesthetized and the electrode posi-

tions were marked by injecting a 10 μA current during 10 seconds. Animals were perfused

with formalin 4%, brains were removed and cut with a vibroslide, making 40 μm thick slices

which were suspended in 0.5% triton for enhanced staining. Finally, cressyl violet staining was

performed, according to Paxinos & Watson 2007 protocol.

Data analysis

Spike detection and clustering. Electrophysiological raw data was processed with Wave_-
Clus clustering software [32]. Frequencies below 300 Hz or above 3000 Hz were filtered. Puta-

tive spikes were detected when the filtered signal surpassed a threshold value determined as in

[33]:

Thr ¼ 4s;

s ¼ median
jxj

0:6745
:

A preliminary automatic sorting was performed in each channel, followed by visual inspec-

tion. Waveforms were aligned to the most prominent peak and its Signal to Noise Ratio (SNR)

was computed (as the ratio between the average peak and the signal standard deviation 500 μs

before the peak). Based on the stability of both, principal components (PC) and firing rates

along the recording, together with the SNR values (SNR> 4) [34], units were selected as single

cells for the rest of the analysis.

We constructed rasters at a time resolution of 1 ms, employing the time-stamp of each

spike of each isolated unit. Peristimulus time histograms (PSTHs) were constructed by count-

ing spikes occurring within bins of 10 ms length, aligned to stimulus onset. For Z-scored

PSTHs, we employed spike counts in 100 ms bins. Then, we subtracted the mean basal firing

rate (computed between -500 and 0 ms from stimulus onset) and divided by the basal standard

deviation.

The binary random model for neurons activity. In order to analyse how interactions

among neurons account for information processing capabilities, joint probability density func-

tions (JPDF) need to be estimated. Though evoked firing rates can be accurately estimated

when hundreds of trials are used, measures that involve joint probability distributions of the
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firing rates become, in general, unreliable due to insufficient number of samples [35]. Thus, to

study how much information is contained in the neuron population we built a binary neuron

model that allows reliable estimation of pairwise Shannon entropy, mutual information and

correlations. The state of each neuron was set to ‘1’ when the number of spikes in a given time

window was higher than its average across trials; otherwise it was set to ‘0’. For extremely short

windows, our approach is similar to the one employed by other authors [15,16]. There, the

probability of finding a neuron in a ‘1’ state is directly related to the existence of a spike inside

the window and, in consequence, with its firing rate. For larger size windows, the probability

of being in a ‘1’ state has to do with the skewness of the firing rate distribution.

We define the binary random variable Xi(t) associated with neuron i which takes the value

Xi(t) = 1 if its spike count is greater than the mean across trials in the analysis window W cen-

tred at time t, otherwise Xi(t) = 0, being t = 0 the time of stimulus (tone) onset.

Correlation and entropy estimation. Correct trials were grouped into two categories:

GO and NOGO. Then, using the binary model we computed Pearson correlation ρij and the

Shannon entropy Hij for each pair of neurons across trials:

rij ¼

P
kðX

i
k �

�XiÞ:ðXj
k �

�XjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

kðXi
k �

�XiÞ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

kðX
j
k �

�XjÞ
2

q ; ð1Þ

Hij ¼ �
P
fXi ;XjgPðX

i;XjÞ log2PðX
i;XjÞ; ð2Þ

where k is the trial index and {Xi,Xj} the set of possible states for the pair of neurons. In the par-

ticular case of our binary model, correlation and entropy can be re-written as:

rij ¼
p11� pi

1
:pj

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pi
1
:ð1 � pi

1
Þ:pj

1:ð1 � pj
1Þ

q ; ð3Þ

Hij ¼ � p11:log2ðp11Þ � ðp
i
1
� p11Þ:log2ðp

i
1
� p11Þ � ðp

j
1 � p11Þ:log2ðp

j
1 � p11Þ � ðp11 � pi

1
� pj

1

þ 1Þ:log2ðp11 � pi
1
� pj

1 þ 1Þ; ð4Þ

being pi
1
¼ PðXi ¼ 1Þ the probability of finding neuron i in state ‘1’ and p11 = P(Xi = 1, Xj = 1)

the probability of finding both, neurons i and j in state ‘1’.

We define efficiency E as the slope of the linear regression between ΔHij and Dpij
1 for all

pairs of neurons, being ΔHij = Hij(t1) −Hij(t0) and Dpij
1 ¼ Dpi

1
þ Dpj

1 the changes in entropy

and in the sum of marginal probabilities respectively, with Dpi
1
¼ pi

1
ðt1Þ � pi

1
ðt0Þ.

We corrected the entropy bias, which varied between 1% and 2% of raw entropy values,

according to the analytical approximation shown in Panzeri & Treves [35].

Optimal window size parameter. In order to determine the length of the analysis window

W, we computed Mutual Information I(Xi,S) between the neuron state Xi and the set of all sti-

muli S = {T1,T2} across all correct GO (T1) and NOGO (T2) trials, as follows:

I Xi; Sð Þ ¼
P
fXi ;SgPðX

i; SÞ log2

PðXi; SÞ
PðXiÞPðSÞ

; ð5Þ

where {Xi,S} is the set of all combinations of neuron and input stimuli states. Mutual Informa-

tion bias was computed by shuffling the GO and NOGO labels 30 times, thus obtaining 30 dif-

ferent shuffled data sets, and averaging their Mutual Information values. The bias was then

subtracted from raw Mutual Information values.
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We computed Mutual Information I(Xi,S) for window sizes ranging from W= 100ms to
W = 600 ms centred at a time t, which varied from t = 0 ms to t = 500 ms. Throughout our

analysis, t = 0 ms corresponds to the onset of stimuli. For each time window W we computed

<I>, the average of mutual information in the interval (0 ms, 500 ms) and determined the

shortest window that provides a mutual information value of at least 80% of the highest <I>.

This length (320 ms) was then used for subsequent analysis; see the red curve in Fig 2A.

Assessing pair-wise interactions in entropy and efficiency changes. After converting

the activity of a pair of neurons i and j to the binary space at time t, the system has 3 degrees of

freedom and can be readily defined by the vector

�p ¼ ðpi
1
; pj

1; p11Þ ð6Þ

Each 3-dimensional point in this space defines a unique value for both, H and ρ. We then

assessed the probability of measuring efficiency E by keeping the values of Dpij
1 fixed and

changing p11 values. We reasoned that if E were one of the highest possible among all combina-

tions of p11, then it should decrease when p11 values are randomised. In order to test this

hypothesis we built a set of 1000 surrogates where variations in p11 led to different values of E.

We defined f as a coefficient that tells how far the probability of coincidence departs from inde-

pendence:

f ij ¼
pij

11

pi:pj
ð7Þ

For each surrogate we re-wrote all the probabilities of coincidence by randomly permuting f
values as follows:

p�
11
¼ f kl:pi:pj ð8Þ

where kl refers to a different pair of neurons belonging to the same session.

We then computed the mean pairwise H �, ρ
�

and efficiency E � (See Fig 3C).

Leaky integrate-and-fire (LIF) model. Two neurons (N1 and N2) were implemented by

means of a leaky integrate-and-fire model, where membrane potential V a time t is defined

though its derivative:

t
dV
dt
¼ E þ Rm:I � V ð9Þ

where τ is the time constant, E is the resting potential, Rm is the membrane resistance and I is

the total input current, which is the sum of currents from the external population and from

the other neuron in the pair.

Eq (9) rules for V(t)< Vthreshold. When V(t) surpasses Vthreshold the neuron produces an

action potential: the membrane potential reaches Vpeak, and then goes to Vreset, where V is

again controlled by Eq (9).

Both neurons connect to each other through synaptic weight Wr. Besides, each neuron

receives input from an external population composed of 500 neurons, of which 400 are excit-

atory and 100 inhibitory (Ex:Inh = 4:1). Neurons in the external population fire independently

and each one is modelled as a Poisson process of mean λEx for excitatory neurons and λInh for

inhibitory neurons. Each afferent spike changes the membrane potential of the target neuron

in an amount equals to wEx or wInh for excitatory and inhibitory afferents respectively. The

effects of several input spikes are linearly added.

The external population is composed of a subpopulation which projects exclusively to one

neuron in the pair but not the other (Pob1 and Pob2 in Fig 4A), and another subpopulation
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which projects to both neurons (Pobc). The size of Pobc was set equal to 40 neurons (10% of

the whole population [36]).

Simulations were run integrating Eq (9) with the Euler method, with dt = 0.1 ms. For the

parameter exploration of Fig 4B and 4C, for each parameter we simulated 200 trials of 300 ms

each. For Fig 4E and 4F, entropy and efficiency were computed from 30 independent runs of

200 trials, 300 ms long. The parameters employed were: E = -70 mV, Vreset = -80 mV, Vthreshold

= -55 mV, Rm = 40 mΩ, τ = 10 ms, wInh = -20 mV, wEx = 10 mV A, λInh = 20Hz).

Supporting information

S1 Fig. Efficiency during the end of trial event. Trials were grouped into two groups

(Increasing/Decreasing) according to the change in firing rate. a) Firing rate changes in the

Increasing and Decreasing firing rate groups (mean ± sem). b) Entropy changes in the Increas-

ing and Decreasing groups follow the change in firing rates (mean ± sem). c) Efficiency does

not show significant differences between groups; error bars denote 95% CI. d) Comparison

between firing rates in EoT and GO events (mean ± sem).

(EPS)

S1 File. Data file S1_File.mat contains a) average firing rates (in 25 ms non-overlapped bins)

for 95 PFC cells, from -0.5 s to 1.5 s from tone onset, grouped into GO trials and NOGO trials

(PSTH structure). b) Binary model neuron data (BinaryData structure).

(MAT)

S2 File. Data structure description.

(PDF)
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