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Abstract

Single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq)
identifies requlated chromatin accessibility modules at the single-cell resolution.
Robust evaluation is critical to the development of scATAC-seq pipelines, which calls
for reproducible datasets for benchmarking. We hereby present the simATAC
framework, an R package that generates scATAC-seq count matrices that highly
resemble real scATAC-seq datasets in library size, sparsity, and chromatin accessibility
signals. sSimATAC deploys statistical models derived from analyzing 90 real scATAC-seq
cell groups. sSimATAC provides a robust and systematic approach to generate in silico
scATAC-seq samples with known cell labels for assessing analytical pipelines.
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Background

Single-cell sequencing has revolutionized and expedited our understanding of the struc-
ture and function of cells at unprecedented resolution. This technology resolves a
fundamental limitation of bulk sequencing, which averages signals over a large number
of cells resulting in obscured biological heterogeneity among individual cells [1]. The
assay for transposase-accessible chromatin sequencing (ATAC-seq) measures chromatin’s
openness, a proxy for the activity of DNA binding proteins [2—4]. Single-cell ATAC-seq
(scATAC-seq) has opened up vast fields of applications, including extracting accessibility
and co-accessibility patterns of genomic regions to identify cell-type-specific enhancers,
chromatin heterogeneity, and transcription factor activities.

The rapid advancement of scATAC-seq technology has given rise to the development
of computational tools for scATAC-seq data and the integrative analysis of transcrip-
tomic and epigenomic profiles [5-7]. Though simulated datasets with known cell labels
have been the most common approach to benchmark the performance of analytical
pipelines, there is no existing standard practice or simulation tool available to generate
synthetic scATAC-seq datasetsfrom real single-cell samples. Some previous studies gen-
erated in silico data by downsampling reads from bulk or existing scATAC-seq data or
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deploying simple sampling algorithms [8—18]. However, these simulation methods were
implemented as part of scATAC-seq analytical tool development and were usually incom-
pletely documented, resulting in a lack of reproducibility. Further, due to the sparsity and
noisy nature of scATAC-seq data, generating synthetic samples that closely resemble real
datasets remains challenging.

Most scATAC-seq analytical pipelines consist of pre-processing (read quality control
and alignment), core analysis (feature matrix generation), and downstream analyses (e.g.,
cell type clustering). A feature matrix summarizes the filtered reads from BAM files by
counting the number of aligned reads that overlap within the defined genomic regions.
The features represent a subset of genomic regions with specified genomic positions,
nucleotide patterns, or biological functions [8, 19, 20]. A commonly used feature matrix
for scATAC-seq is the peak-by-cell matrix that captures the highest accessibility signals
from genomic regions (peaks) obtained from bulk ATAC-seq or single cells. However,
a sufficient number of cells are required to identify such peaks, and consequently, the
peak-by-cell feature matrix usually fails to recognize the rare cell type regulatory pat-
terns [11]. Alternatively, the bin-by-cell feature matrix is generated by segmenting the
whole genome into uniformly-sized non-overlapping “bins” and mapping the read counts
to each bin [11]. Unlike the peak-by-cell matrices, the uniform segmentation of the
genome does not screen out any genomic region, and thus has the potential to detect rare
cell groups.

We hereby propose simATAC, a scATAC-seq simulation framework that generates
simulated samples resembling real scATAC-seq data. Given a real scATAC-seq feature
matrix as input, simATAC estimates the statistical parameters of the mapped read dis-
tributions by cell type and generates a synthetic count array that captures the unique
regulatory landscape of cells with similar biological characteristics. We demonstrate that
the synthetic samples generated by simATAC highly resemble real scATAC-seq datasets
in library size, sparsity (proportion of zero entries), and averaged chromatin accessibility
signals.

Results

simATAC framework

simATAC deploys statistical distributions to model the properties of a bin-by-cell count
matrix for a group of cells with similar biological characteristics. The main modeling
parameters include read coverage of cells (library size), non-zero cell proportion in each
bin, and the average of read counts per bin (bin mean). Bin-by-cell matrix quantifies
the number of open chromatin read fragments overlapping with the fixed-length bins (5
kbp windows) across the whole genome. For each user-input real scATAC-seq dataset,
simATAC performs two core simulation steps: (i) estimating the model parameters based
on the input bin-by-cell matrix, including the library sizes of the cells, the non-zero cell
proportion, and the read count average of each bin; (ii) generating a bin-by-cell matrix
that resembles the original input scATAC-seq data by sampling from Gaussian mixture
and polynomial models with the estimated parameters. simATAC outputs a count matrix
as a SingleCellExperiment (SCE) object [21], with additional options to convert it to
other formats of feature matrices. Figure 1 summarizes the simulation architecture of
simATAC. We discuss the statistical modeling of sSimATAC in the next sections and the
“Methods” section.
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Fig. 1 The simATAC simulation framework. The red circles represent values directly extracted from the
user-input bin-by-cell matrix, the white squares represent estimated parameters, and the brown circles
represent the simulated values. simATAC initially estimates the library sizes, the non-zero cell proportions,
and the bin means from the input cell group (including cells having similar biological characteristics).
simATAC generates the library sizes with a Gaussian mixture distribution, the zero and non-zero status with a
Bernoulli distribution, and the bin means with a polynomial regression model linking to the non-zero cell
proportion. The synthetic counts are sampled from a Poisson distribution whose mean is a factor of the cell
library size adjusted by the bin mean. simATAC offers optional sparsity adjustment factor y and noise
parameters to adjust the sparsity and noise level of the synthetic counts generated from the Poisson
distribution. The simATAC framework simulates synthetic scATAC-seq data using the default values for all the
parameters if no user-input real data or parameters are given

Library size

Library size refers to the number of aligned reads per cell. simATAC models cells’
log-transformed library sizes through a Gaussian mixture model (GMM) with two com-
ponents whose parameters are estimated based on the user-input real scATAC-seq data.
With the estimated parameters, simATAC randomly samples library sizes of C single cells
based on

log, (1) ~ w x N (p1,08) + (1 = w) x N (112,03), 1)

where [} is the simulated library size for the ith simulated single-cell. See Table 1 for the
detailed definition of the Gaussian mixture model parameters.
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Table 1 Input parameters to the simATAC simulation step

Parameter Symbol  Description

Library size mean w1, 12 The estimated means of two Gaussian modals of library size.

Library size standard deviation o7, 02 The estimated standard deviations of two Gaussian modals of
library size.

Library size weight w The estimated weight parameter of the first Gaussian modal.

Non-zero cell proportion P The proportion of non-zero cells in real bin-by-cell matrix.

Polynomial coefficient B The estimated coefficients of polynomial model fitted to

the relation between bin non-zero cell proportions and bin means.

Previous studies have shown that the library sizes of cells significantly affect the identifi-
cation of cell types [11-13, 15, 17]. Higher sequencing coverage usually results in a larger
library size, thus providing more accurate chromatin accessibility information. Since the
library sizes of scATAC-seq usually vary across different experiments, simATAC offers
users the flexibility to adjust the library sizes from low to high coverage based on their
needs.

Bin non-zero cell proportion

Sparsity is the inherent nature of scATAC-seq data [10, 11, 17], which results in a large
proportion of zero entries in the bin-by-cell matrix. Let M;; denote the number of reads
that fall into the bin j of cell i for B bins. If M;; > 0, it is considered as a non-zero entry.
The number of cells with non-zero entries within a bin is associated with the chromatin
accessibility in the corresponding genomic region. Based on the user-input real scATAC-
seq bin-by-cell matrix, simATAC first estimates the proportion of cells with non-zero
entries for the jth bin, pj, and then determines whether an entry in the simulated count

matrix is zero or not based on a Bernoulli distribution,
Xji ~ Bernoulli(p). (2)

If X;; = 1, the read count of cell i at bin j is non-zero, i.e. M;; > 0. If Xj; = 0, the read
count of cell i at bin j is set to zero, i.e. M;; = 0. The non-zero cell proportion of bin j, p},
of the simulated bin-by-cell matrix is then defined as

C
pi=Y_X./C. 3)
i=1

Bin mean

The extent of genome accessibility leads to the variations in the number of sequenced
reads falling into the fixed-length bins, and consequently, the variations in the average
of the reads in each bin. More accessible regions potentially have larger bin means, that
is, more cells with non-zero entries are mapped to that region. Based on the model-
ing scATAC-seq datasets, we observed a polynomial regression relationship between the
non-zero cell proportions and the bin means for each cell group. sSimATAC simulates the
average of the read counts at bin j, m]’., by

m; = Bo + P11} + Bop}, (4)

where By, B1, and B, are estimated based on the input real scATAC-seq dataset.
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Bin-by-cell count matrix

simATAC generates the final count of cell i at bin j, ¢j;, using a Poisson distribution with
yc]/.'i as the mean parameter, where c]f,i is the library size of cell i scaled by the bin mean
m/’ at bin j, and y denotes the sparsity adjustment factor with a default value of 1. When
y < 1, the simulated scATAC-seq data tend to be more sparse, and vice versa.

, , m; ‘ /
Cii = l; x =5 | i~ Poisson (ch,i> . )
Zk:l my

To reproduce the high noise level of scATAC-seq data, simATAC offers an optional step
to include additional noise to the final simulated counts by

¢ji = ¢ji + int(N (mean, sd)). 6)

High noise level blurs the difference in the read distributions between different cell
types, which mimics real sequencing artifacts. However, as the noise level increases, the
distribution of the library sizes and the sparsity of the simulated data may differ from the
input real scATAC-seq data. The default setting of simATAC omits the optional adding
noise step, but leaves users the flexibility to set their desirable noise level.

simATAC outputs the final simulated bin-by-cell matrix as a SCE object, a container for
single-cell genomics data, from the SingleCellExperiment R package [21].

Simulating feature matrices in other formats

simATAC can also generate synthetic scATAC-seq data in other formats of feature matri-
ces. The default bin-by-cell output can be converted to a peak-by-cell matrix by filtering
bins enriched in aligned reads (top bins by measuring the bin means). simATAC gener-
ates a synthetic peak-by-cell count matrix with the “simATACgetPeakByCell” function,
given a simulated bin-by-cell matrix by simATAC and a user-specified number of peak
bins. simATAC also offers additional functionality to extract other feature matrices given
a user-input list of regions (in a BED format) with the “simATACgetFeatureByCell” func-
tion. Another commonly used feature matrix format is the binary version, which is
provided by “simATACgetBinary” function.

Evaluation

In this section, we demonstrate the resemblance of the simulated samples generated by
simATAC to the input real scATAC-seq datasets. The simulated samples are compared to
the real samples on the distributions of library size, sparsity, and bin means. We also eval-
uate the clustering performance of the simulated matrices. The evaluations are performed
on each cell group (or cell type) from the annotated benchmark scATAC-seq datasets,
Buenrostro2018 [22], Cusanovich2018 [23], and PBMCs [24], representing a wide range of
platforms, cell types, and species. See the “Methods” section and Additional file 1: Table
S1 for the description of cell types and platforms of these datasets.

Statistical evaluation

With each of the three real scATAC-seq datasets as input, we simulate bin-by-cell matri-
ces for each cell group with the same number of cells as in the real datasets. We then
compare the distribution of library size, bin means, and sparsity of the simulated datasets
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to the real samples, by cell group. We present four cell groups from each benchmark
dataset to demonstrate the similarity.

Figure 2 depicts the library size distributions of the scATAC-seq data simulated by
simATAC using 12 cell groups from the benchmark datasets as input. The library size dis-
tributions of the simulated data highly resemble those of the real datasets. See Additional
file 1: Figure S1 for the complete comparison between the real and simulated data for all
the cell groups in the three benchmark datasets.

simATAC synthesized bin-by-cell matrices preserve the accessibility of genomic regions
with its input real scATAC-seq dataset. Table 2 summarizes the Pearson correlation
of the bin means and non-zero cell proportions between the simulated and the input
real scATAC-seq datasets. The high correlations demonstrate that sSimATAC retains the
genomic region accessibility characteristics of the input real data. See Additional file 1:
Table S2 for the complete comparison for all cell groups from the benchmark datasets.
All the reported Pearson correlations are averaged over 20 simulation runs.

Figure 3 illustrates the sparsity of the simulated bin-by-cell matrices in 12 cell groups
of the benchmark datasets, which demonstrates that the synthetic samples generated by
simATAC retains the sparsity of the real samples across bins and cells. See Additional
file 1: Figures S2-S3 for other cell groups comparison. To demonstrate the bin sparsity
resemblance of the simulated to the real data, we provide the bin sparsity QQ-plots of 12
benchmark sample groups for sparsity adjustment factor y = {0.8, 0.9, 1} in Additional
file 1: Figures S4-S6.

We further investigate the impact of the bin sparsity adjustment parameter y on the
simulated bin-by-cell matrices. We observe that mild changes in the sparsity adjustment
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Fig. 2 Comparison of the library size distribution. Library size box plots of the simulated (in orange) and real
(in green) scATAC-seq data are illustrated for the three benchmark datasets: Buenrostro2018,
Cusanovich2018, and PBMCs. The library size distributions of the synthetic samples (without additional
Gaussian noise) closely resemble those of the real samples
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Table 2 Pearson correlation between the simulated and real samples’ bin means and the non-zero

cell proportion of bins

Correlation
Cell type Bin mean Non-zero cell proportion
Buenrostro2018
CMP 0.96 0.98
GMP 0.98 0.99
pDC 0.97 0.97
mono 0.92 0.94
Cusanovich2018
Heart 0.95 0.96
Kidney 0.97 0.97
Largelntestine 093 093
Liver 0.98 0.98
PBMCs
Celln 0.99 1
Cell3 0.99 1
Cell5 0.98 0.99
Cell7 0.99 0.99

factor do not significantly affect the distributions of cell sparsity, library sizes, or bin spar-

sity. See Additional file 1: Figure S7 for a comparison of these distributions under different

sparsity adjustment factor values y = {0.8, 0.9, 1, 1.1, 1.2} using the LMPP cell type from
the Buenrostro2018 dataset.
We also report the median absolute deviation (MAD), mean absolute error (MAE),

and root mean square error (RMSE) of the sorted library sizes, bin means, and non-zero
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Fig. 3 Comparison of the bin sparsity and cell sparsity distributions. Bin sparsity QQ-plots and cell sparsity
box plots of the simulated (in green) and real (in purple) scATAC-seq data are illustrated for the three
benchmark datasets: Buenrostro2018, Cusanovich2018, and PBMCs. The sparsity of the synthetic data
generated by simATAC (without additional Gaussian noise) closely resembles that of the corresponding real
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cell proportion of each bin between the real and the simulated datasets in Table 3. The
reported metrics are averaged over 20 simulation runs. The small values of MAD, MAE,
and RMSE suggest that the synthesized bin-by-cell matrices’ properties closely resemble
those of the real input data.

The main functionality of simATAC is to simulate bin-by-cell scATAC-seq count matri-
ces, yet it also offers additional functionalities such as converting the simulated bin-by-cell
matrices to peak-by-cell feature matrices using the “simATACgetPeakByCell” function.
We show that the extracted peak-by-cell matrices preserve the chromatin accessibility
information of the real input data. We compare the clustering performance and peak over-
laps of the simulated data with those extracted from two commonly used non-segmenting
peak callers, MACS2 [25] and Genrich [26]. See Additional File 1: Figure S8, Tables S3-54,
and Note S2 for the detailed comparison.

Clustering evaluation
The ability to cluster cells with similar biological characteristics is one of the major evalu-
ation aspects of many scATAC-seq analytical tools. Many previous studies reported close
to perfect cell clustering performance when evaluating scATAC-seq pipelines using sim-
ulated data [11, 12, 17], which is not ideal in comparing the performance across different
computational tools.

We here show that the simulated data by simATAC produce realistic downstream analy-
sis results. Further, if the data is simulated based on an input real sScATAC-seq dataset, the
clustering performance based on the simulated data closely resemble those based on the
real input data. Table 4 summarizes the clustering metrics, normalized mutual informa-
tion (NMI), adjusted mutual information (AMI), and adjusted Rand index (ARI) evaluated
on the simulated datasets by simATAC. We adopt the SnapATAC graph-based clustering
algorithm, and all the reported metrics are averaged over 20 simulation runs [11].

We vary the Gaussian noise levels (mean = 0, SD = 0; mean = — 0.3, SD = 0.3; mean =
— 0.4, SD = 0.4) added to the simulated data, representing no noise to high noise levels.
We compare the clustering metrics using the simulated data with those using the input
real scATAC-seq data, which is listed on the “Real-input data” row. The clustering results
in Table 4 show that the simulated data by simATAC maintain the chromatin accessibility
information of each cell group reasonably close to the real data. The clustering metrics
of the synthetic data can get very close to the real data when adding Gaussian noise and
achieve realistic clustering performance in contrary to existing simulation methods. We
further assess the distributions of the simulated counts under these three recommended

Table 3 Median absolute deviation (MAD), mean absolute error (MAE), and root mean square error
(RMSE) average for sorted real and sorted simulated library sizes, real and simulated bin means, and
real and simulated non-zero cell proportions across all cell groups in the associated dataset. The
reported values are the averages of these metrics = the corresponding standard deviations based
on 20 simulation runs. The unit of the values is 0.1%

Buenrostro2018 Cusanovich2018 PBMCs
MAD MAE RMSE MAD MAE RMSE MAD MAE RMSE
Non-zero cell 24428 65417 152438 40+14 58417 86+23 58+91 90+14 139418

proportion
Bin mean 24428 90425 5319421 44+£16 66£20 322416 72£12 13.14£20 578+59
Librarysize  90+46 111.6£47 1502 £60 500+18 633 +17 882+23 726438 107.8+44 169 £45
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Table 4 Clustering evaluation results. The NMI, AMI, and ARI scores are the cell type clustering results
using SnapATAC software. “Real-input data” refers to the clustering results using the input real
sCATAC-seq data. Metrics for simATAC's simulated bin-by-cell matrices for different noise levels are
also compared presented for each of the Buenrostro2018, Cusanovich2018, and PBMCs datasets

Mean Standard deviation NMI AMI ARI
Buenrostro2018
0 0 0.71 0.83 0.54
—-03 03 0.72 0.83 0.54
—04 04 0.67 0.78 0.50
Real-input data 0.54 0.62 0.36
Cusanovich2018
0 0 0.96 097 0.94
—03 0.3 0.79 0.85 0.69
—04 04 0.62 0.71 040
Real-input data 041 046 0.22
PBMCs
0 0 0.78 087 0.71
—03 03 0.61 0.73 047
—-04 04 0.56 0.67 044
Real-input data 045 0.54 0.28

noise levels in Additional file 1: Figures S9-S14 and Tables S5-S6, which suggests that
there is a trade-off between the closeness in clustering performance and the closeness in
the distributions of library size and the sparsity parameters between the simulated and
real samples. We also note that the impact of Gaussian noise level on clustering metrics
may vary across different cell types, and thus simATAC offers the flexibility for users to
adjust their desirable noise level.

In Table 4, we assume the sparsity parameter y = 1 when simulating all the data. We
show in Additional file 1: Table S7 the impact of y on the downstream clustering perfor-
mance of the simulated data. With all other parameters fixed, the clustering results are
generally consistent across different values of y. Hence, we set the default value of y to 1
in simATAC.

Discussion and conclusions

The rapid development of scATAC-seq technology led to a surge of scATAC-seq analyt-
ical tools. However, the lack of systematic simulation frameworks hinders the consistent
evaluation of the computational tools and reproducibility of the analytical results. To
meet this need, we developed simATAC, a systematic scATAC-seq simulator that gen-
erates synthetic samples that closely resemble real scATAC-seq data. sSimATAC builds
upon Gaussian mixture distribution to model cells’ library size, and polynomial regression
model to represent the relationship between the average of bin counts and the non-zero
cell proportion of bins. Moreover, simATAC grants users the flexibility to adjust parame-
ters manually. simATAC generates a synthetic bin-by-cell matrix given a real scATAC-seq
dataset as input. If there are no user-specified count matrix or parameters available,
simATAC simulates samples using the default parameters derived from real scATAC-seq
data. A list of estimated values for library size Gaussian mixture distribution and polyno-
mial function parameters are provided in Additional file 2. simATAC also offers additional

functions to transform the bin-by-cell matrix into feature matrices in other formats.
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The statistical modeling framework of simATAC is built upon 90 real scATAC-seq
cell groups from various sequencing platforms, species, and cell types. We demon-
strated the distributions of the library sizes, bin means, and sparsity parameters of the
simATAC synthetic datasets resembling those of the real input examples. simATAC offers
additional options to modify the noise levels to mimic the artifacts in real scATAC-
seq data and generate samples with various difficulty levels for downstream analyses
assessment.

Quality control steps in most scATAC-seq pipelines apply filters on the raw feature
matrices, such as removing cells with a library size less than a fixed threshold or filtering
out regions based on the number of mapped reads. As the denoising thresholds may affect
the downstream analyses, simATAC offers users the flexibility to manually set the quality
control filtration thresholds on the simulated raw count matrix.

The feature matrices generated by simATAC cover regions spanning the whole genome
without discarding the off-peak reads, enabling the identification of rare cell types in com-
plex tissues. While the peak-by-cell matrix has been the common version of scATAC-seq
feature matrix to be analyzed, recent studies challenged this strategy and proposed the
bin-by-cell version for downstream analyses. Peak calling pipelines perform differently in
defining accessible genomic regions based on the approach they deploy. Therefore, we
believe genome binning is an optimal approach to simulate scATAC-seq data, providing
a standard representation for samples from different sources.

simATAC generates count matrices using a 5 kbp bin window, and at this resolution,
each human cell spans ~ 600,000 bins. However, there is no standard agreement on the
optimal bin size for all samples, and bin size selection induces a trade-off between the
ability to capture chromatin accessibility signals and computational cost. We assessed the
runtime of sSimATAC on a desktop workstation (Intel(R) Xeon(R) CPU @ 3.60GHz pro-
cessor). Simulating 1,000 human cells at 5 kbp window size on average took 43 seconds in
five simulation runs. See Additional file 1: Table S8 for the running time of all benchmark
datasets.

To our best knowledge, simATAC is the first scATAC-seq simulator that directly sim-
ulates bin-by-cell count matrices that are reproducible and closely resemble real data.
Though the availability of real scATAC-seq data has been increasing, real scATAC-seq
data with annotated labels (“ground truth”) remains lacking. simATAC offers users the
convenience to generate scCATAC-seq data with known cell types and desirable num-
ber of single cells, yet closely resemble the real data. Further, simATAC provides users
the flexibility to adjust the library size, bin sparsity, and noise level of the simulated
data. We envision that simATAC empowers users to develop scATAC-seq analytical tools

effectively and reproducibly.

Methods

simATAC statistical modeling

We compiled and processed each of the 90 scATAC-seq cell groups as well as each of
the eight datasets (considering all cell groups together) to model the library size param-
eter. We conducted the Kolmogorov-Smirnov test and the chi-squared test to test the
goodness of fit of the log-transformed library sizes to the Gaussian probability distribu-
tion, using the stats and fitdistrplus R packages [27-30]. The p-values of the goodness
of fitness tests showed that non-10xG samples generally follow a Gaussian distribution.
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Our preliminary statistical analysis of the 10xG scATAC-seq data showed that many
of them are sampled from a mixture of probability distributions. We tested the null
hypothesis if the 10xG samples’ library sizes are sampled from a unimodal probability
distribution using Hartigan’s dip test from the diptest R package [31, 32]. In most of the
modeling datasets, the null hypothesis is rejected at a significance level of ¢« = 0.05.
Considering the probability density function and the cumulative distribution function
plots, we modeled the log-transformed library sizes with a Gaussian mixture model with
two modes and estimated the parameters using the mixtools R package [33]. Statisti-
cal parameters of the aforementioned tests for library size modeling are provided in
Additional file 3.

We observed a significant difference in the distribution of library sizes between the
real scATAC-seq data generated by the 10xG platform and other platforms. Library sizes
of the non-10xG samples generally fit a unimodal Gaussian model, while those of the
10xG samples fit a bimodal GMM. All the statistical analyses results are provided in the
Additional file 3. simATAC simulates the library size using a bimodal GMM for sam-
ples from all platforms, and for non-10xG samples, the weight of the second Gaussian
distribution can be set to zero.

To recover the scATAC-seq data sparsity, simATAC first assigns zero or non-zero labels
to the bin-by-cell matrix using a Bernoulli distribution for each bin. The probability that
a cell at bin j is non-zero is the estimated non-zero cell proportion at the corresponding
bin of the input real scATAC-seq dataset.

Based on the 90 real scATAC-seq modeling cell groups, we observed a polynomial rela-
tionship between the non-zero cell proportions and the bin means in the normalized real
bin-by-cell arrays. The input matrix is normalized by dividing primary counts by the cells’
library size and multiplying by the median of library sizes. The quadratic relation between
bin means and non-zero cell proportions for the 12 sampled cell groups of benchmark
datasets are provided in Additional file 1: Figure S15. simATAC estimates the regression
parameters using the Im function from the stats package [29], and calculates bin means
based on Eq. 4. Note that the parameters in Eq. 4 are estimated by cell types/groups, as
the chromatin accessibility patterns of different cell types vary biologically.

Evaluation metrics

We assessed the simulated feature matrices by calculating the absolute differences
between sorted real and sorted simulated library size vectors, real and simulated bin
means, and non-zero cell proportion vectors of original and synthetic count matrices. The
MAD, MAE, and RMSE of these vectors are computed by the following equations, where
R are the real values and S are the simulated values:

MAD = median(IR — S|), (7)

MAE = mean(|R — S)), (8)

RMSE = /mean((R — S)2). )

We used three metrics to evaluate the clustering performance, normalized mutual
information (NMI), adjusted mutual information (AMI), and adjusted Rand index (ARI).
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Considering gz and pred as the ground truth and predicted labels, NMI is calculated using
MI

max(H (gt), H(pred))’

where MI = MI(gt, pred) is the mutual information (MI) between gt and pred, and H is

(10)

NMI(gt, pred) =

the entropy.
AMlI is defined as
MI — E[ MI]
AMI(gt, pred) = , (11)
mean(H (gt), H(pred)) — E[ MI]
where E(-) is the expectation function.
Using the same notations, ARI is defined as
RI — E[RI
ARI(gt, pred) = [R1] (12)

max(RI) — E[RI]’
where the Rand index (RI) is a similarity measure between two lists of labels. See more
details of NMI, AMI, and ARI in Additional file 1: Note S2 [34].

Availability of data and materials

We built the simATAC statistical model and estimated the default input parameters
based on 90 cell groups from eight publicly available real scATAC-seq datasets from
various platforms, including Fluidigm C1, 10x Genomics Chromium (10xG), single-
cell combinatorial indexing ATAC-seq (sciATAC-seq), multi-index single-cell ATAC-seq
(MI-ATAC), and single-nucleus ATAC-seq (snATAC-seq) to ensure a generalizable simu-
lation framework. The datasets supporting the modeling and evaluation of this article are
all available publicly. All datasets used in this study are available from GEO accessions: (1)
63 10xG sample groups from GSE129785 [35], (2) GSE99172 [8], (3) GSE74310 [36], (4)
GSE65360 [37], (5) GSE68103 (GSM1647122) [38], (6) GSE68103 (GSM1647123) [38], (7)
GSE112091 (series GSE112245) [39], and (8) GSE100033 (GSM2668124) [40].

The benchmark datasets used for evaluating simATAC framework are:

e The Buenrostro2018 dataset contains 1974 cells generated from the Fluidigm C1
platform. Samples are from 9 FACS-sorted cell populations from CD34+ human
bone marrow, namely, hematopoietic stem cells (HSCs), multipotent progenitors
(MPPs), lymphoid-primed multipotent progenitors (LMPPs), common myeloid
progenitors (CMPs), granulocyte-macrophage progenitors (GMPs),
megakaryocyte-erythrocyte progenitors (MEPs), common lymphoid progenitors
(CLDPs), plasmacytoid dendritic cells (pDCs), and monocytes (mono) [22].

e The Cusanovich2018 dataset is a subset of mouse tissues with 12178 cells from 13
different sources [17]. Sequenced cells are from bone marrow, cerebellum, heart,
kidney, large intestine, liver, lung, prefrontal cortex, small intestine, spleen, testes,
thymus, and whole brain, generated using a sciATAC-seq protocol [23].

e The PBMCs dataset is produced by the 10x Genomics Chromium (10xG) droplet-
based platform and comprises 5335 cells from human peripheral blood mononuclear
cells (PBMCs) [24]. There are no true cell type labels for PBMCs cells. However, we
used 10x Genomics Cell Ranger ATAC’s [24, 41] clustering labels as ground truth
and performed simulation on each cluster. Although existing labels are not perfect,
we included this data to evaluate how simATAC mimics features of a group of cells
with similar biological characteristics from a droplet-based platform [17].


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129785
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99172
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74310
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65360
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68103
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68103
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112091
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100033
https://github.com/pinellolab/scATAC-benchmarking/tree/master/Real_Data/Buenrostro_2018
https://github.com/pinellolab/scATAC-benchmarking/tree/master/Real_Data/Cusanovich_2018_subset
https://github.com/pinellolab/scATAC-benchmarking/tree/master/Real_Data/10x_PBMC_5k
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All the aforementioned datasets are publicly available. The detailed information of all
samples with cell groups and numbers are provided in the Additional file 1: Table S1. We
also provide a table of abbreviations in Additional file 1: Table SO.

Dataset pre-processing

The raw FASTQ or BAM files were downloaded from the links provided, and bin-by-cell
matrices used in simATAC development were generated using the SnapTools (version:
1.4.6) [11, 42]. SnapTools is a Python module that pre-processes scATAC-seq data. Snap-
Tools aligns raw FASTQ files to a reference genome using the Burrows-Wheeler aligner.
Reads that were properly paired according to the SAM flag value, uniquely mapped
with mapping quality > 30, and had a length less than 1,000 base pairs were filtered
for further analyses. SnapTools groups the reads with the same barcode and removes
PCR duplicate reads in each group. SnapTools outputs a .snap file, which is an hdf5 file
that stores the input scATAC-seq data, including cell-by-bin matrix used in the devel-
opment and analyses of sSimATAC modeling [11]. For 10xG samples, we started from
the fragment.tsv file provided by 10x website, which is a barcoded and aligned frag-
ment file processed, with an implemented option by SnapTools for 10xG samples. The
rest of the samples were processed from FASTQ or provided BAM files, and unique
randomly generated barcodes were added to the samples that did not have barcodes
themselves.

We used samtools (version 1.10) for some of our pre-processing [43]. Bedtools (version
2.27.1) was used for generating peak-by-cell matrices [44] and Picard tool (version 2.23.3)
for removing duplicate reads [45]. SnapATAC (version 1.0.0) R package was used for data
pre-processing, loading bin-by-cell matrices, and clustering analysis [42]. We also used
Signac R package (version 1.0.0), which is an extension of Seurat for the clustering analysis
of peak-by-cell matrices [46].

The code and dataset files used for benchmarking are available at https://github.com/
bowang-lab/simATAC [47].
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