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THE BIGGER PICTURE Understanding the functions of genes requires the investigation of the structure of
their regulatory networks of interactions. Single-cell RNA sequencing (scRNA-seq) brings new challenges
and opportunities to the study of such networks. Here, we present a machine learning tool for constructing
and comparing single-cell gene regulatory networks. Our algorithm, scTenifoldNet, can be used to identify
differentially regulated genes between two scRNA-seq samples. It complements and enhances the
commonly used differential expression analysis by revealing differences between samples in the regulatory
relationships among genes, rather than the expression level. We anticipate that, by deciphering the
complexity of data that surpasses human interpretative ability, scTenifoldNet can help achieve break-
throughs in understanding regulatory mechanisms underlying cell behaviors.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
We present scTenifoldNet—a machine learning workflow built upon principal-component regression, low-
rank tensor approximation, and manifold alignment—for constructing and comparing single-cell gene regu-
latory networks (scGRNs) using data from single-cell RNA sequencing. scTenifoldNet reveals regulatory
changes in gene expression between samples by comparing the constructed scGRNs. With real data, scTe-
nifoldNet identifies specific gene expression programs associated with different biological processes,
providing critical insights into the underlying mechanism of regulatory networks governing cellular transcrip-
tional activities.
INTRODUCTION

A gene regulatory network (GRN) is a graph depicting the intri-

cate interactions between transcription factors (TFs), associated

proteins, and their target genes, reflecting the physiological con-

dition of the cells in question. The analysis of GRNs promotes the

interpretation of cell states, cell functions, and regulatory mech-

anisms that underlie the dynamics of cell behaviors. Multiple

methods have been developed to build GRNs from data of

gene expression.1–4 It is important to compare GRNs con-

structed using datasets from different samples because the

comparison may reveal regulatory mechanisms leading to tran-
This is an open access article under the CC BY-N
scriptomic changes. In particular, the comparison results may

help us understand what is themost significant shift in regulatory

mechanisms between samples, as well as how genetic and envi-

ronmental signals are integrated to regulate a cell population’s

physiological responses and how cell behavior is affected by

various perturbations. All of these are key questions in the study

of the functional participation of given GRNs. Despite the critical

importance of comparative GRN analysis, relatively fewmethods

have been established to compare GRNs.5

Single-cell RNA-sequencing (scRNA-seq) technology has

been revolutionizing the biomedical sciences in recent years.

New research provides an unparalleled degree of precision in
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analyzing transcriptional regulation, cell history, and cell interac-

tions with rich knowledge. It transforms previous entirely tissue-

based assays into transcriptomic single-cell measurements and

greatly enhances our understanding of cell development, ho-

meostasis, and disease. Current scRNA-seq systems (e.g.,

103Genomics) can profile transcriptomes for thousands of cells

per experiment. The sheer number of measured cells can be

leveraged to construct GRNs. Advanced computational

methods can facilitate such an effort to reach unprecedented

resolution and accuracy, revealing the network state of given

cells.6–8 Furthermore, comparative analyses among GRNs of

different samples will be extremely powerful in revealing

fundamental changes in regulatory networks and unraveling

the transcriptional programs that govern the behaviors of cells.

Since our ability to generate scRNA-seq data has outpaced

our ability to extract information from it, there is a clear need to

develop effective computational algorithms and novel statistical

methods for analyzing and exploiting information embedded

within GRNs.9

Constructing single-cell GRNs (scGRNs) using data from

scRNA-seq and then effectively comparing constructed scGRNs

presents significant analytical challenges.9,10 Ameaningful com-

parison of scGRNs first requires a robust construction of a GRN

from scRNA-seq data. Comparing scGRNs built via an unstable

solution would cause misleading results and inappropriate con-

clusions. The vast number of different cellular states in a sample

and the technical and biological noise, as well as the sparsity of

scRNA-seq data, complicate the process of scGRN construc-

tion. Often, the expression of a gene is governed by stochastic

processes and also influenced by transcriptional activities of

many other genes. Thus, it is difficult to tease out subtle signals

and infer true connections between genes. Furthermore, a direct

comparison between two scGRNs is difficult; e.g., comparing

each edge of the graph between scGRNs would be ill powered

when scGRNs involve thousands of genes. Taken together, the

key challenge in conducting comparative scGRN analysis is to

extract meaningful information from noisy and sparse scRNA-

seq data, since the information is deeply embedded in the differ-

ences between highly complex scGRNs of two samples.

In this paper, we introduce a workflow for constructing and

comparing scGRNs using data from scRNA-seq of different

samples. The workflow, which we call scTenifoldNet, is built

upon several machine learning algorithms, including principal-

component (PC) regression, low-rank tensor approximation,

and manifold alignment. Through several examples, we show

that scTenifoldNet is a sensitive tool to detect specific changes

in gene expression signatures and the regulatory network rewir-

ing events. The input of scTenifoldNet is a pair of expression

matrices from scRNA-seq of two different samples. For instance,

one sample may come from a healthy donor and the other from a

diseased donor. In scTenifoldNet, the two input expression

matrices are simultaneously processed through a multistep pro-

cedure. The final output is a list of ranked genes, sorted accord-

ing to the differential regulation level of each gene. The ranked

gene list can be used to perform functional enrichment analysis

to detect the enriched molecular functions and involved biolog-

ical processes. The constructed scGRN can also be used to

identify functionally significant modules, i.e., subsets of tightly

regulated genes.
2 Patterns 1, 100139, December 11, 2020
scTenifoldNet includes an innovative method for comparing

two scGRNs. We are not aware of any prior work using a similar

design to achieve the same analytical goal. scTenifoldNet over-

comes several methodological challenges, resulting in an effec-

tive and efficient scGRN comparison method. Here, we first

benchmark and demonstrate the utility of scTenifoldNet across

synthetic datasets and then apply scTenifoldNet to real data-

sets. Our real data analyses showed scTenifoldNet’s power in

identifying significant genes and network modules whose regu-

latory patterns shift greatly between samples. Some of these

findings have not been reported in the respective original studies

in which the datasets were generated.

RESULTS

The scTenifoldNet Architecture
To enable comparative scGRN analysis in a robust and scalable

manner, we base our method on a series of machine learning

methods. A key challenge of our comparative analysis is to

extract meaningful differences in regulatory relationships be-

tween two samples from noisy and sparse data. Specifically,

we seek to contrast scGRNs constructed from different

scRNA-seq expression matrices. Figure 1 shows the main com-

ponents of scTenifoldNet architecture. The whole workflow con-

tains five key steps: subsampling cells, constructing multilayer

scGRNs, denoising, manifold alignment, and differential regula-

tion (DR) test. To produce biologically meaningful results, we

made dedicated design decisions for the task in each of these

steps. Next, we briefly describe the numerical methods imple-

mented in scTenifoldNet. More technical details are presented

in the Experimental Procedures.

Numerical Methods

The numerical methods used to construct and compare scGRNs

involve the following five steps:

Step 1. Pre-processing Data and Subsampling Cells. The input

data are two scRNA-seq expression data matrices, X and Y,

containing expression values for n genes in m1 and m2 cells

from two different samples. Next,m cells inX andY are randomly

sampled to formX0 andY0. This subsampling process is repeated

t times to create two collections of subsampled cells, fX 0
ig

andfY 0
ig, where i = 1; 2; .; t.

Step 2. Constructing Initial Networks. For each X 0
i˛fX 0

ig, i = 1;

2; .; t, PC regression is used to construct a GRN. The con-

structed GRN from X 0
i is stored as a weighted graph represented

with an n 3 n weighted adjacency matrix X 0
i . Similarly, for each

Y 0
i˛fY 0

ig, i = 1; 2; .; t, we construct a GRN and represent it

with an n 3 n weighted adjacency matrix Wy
i . Diagonal values

of each adjacency matrix are set to zeros, and other values are

normalized by dividing by their maximal absolute value. Each

normalized adjacency matrix is then filtered by retaining only

the top 5% of edges ranked using the absolute edge weight, re-

sulting in a sparse adjacency matrix.

Step 3. Denoising. Tensor decomposition11 is used to denoise

the adjacency matrices obtained in Step 2. The collection of t

scGRNs for each sample, fWx
i g or fWy

i g, is processed sepa-

rately as a third-order tensor, denoted as Tx or Ty, each contain-

ing n 3 n 3 t elements. The CANDECOMP/PARAFAC (CP)

decomposition is applied to decompose Tx and Ty into compo-

nents. Next, Tx and Ty are reconstructed using the top r



Figure 1. Overview of the scTenifoldNet Workflow

scTenifoldNet is amachine learning framework that uses a comparative network approachwith scRNA-seq data to identify regulatory changes between samples.

scTenifoldNet is composed of five major steps.

(A) Cell subsampling. scTenifoldNet starts with subsampling cells in the scRNA-seq expression matrices. When two samples are analyzed, each of the two

samples is subsampled either randomly or following a pseudotime trajectory of cells. The subsampling is repeatedmultiple times to create a series of subsampled

cell populations, which are subject to network construction and form a multilayer scGRN.

(B) Network construction. PC regression is used for scGRN construction; each scGRN is represented as a weighted adjacency matrix.

(C) Tensor denoising. Two samples produce two multilayer GRNs and form two three-order tensors, which are subsequently decomposed into multiple com-

ponents. The top components of tensor decomposition are then used to reconstruct two denoisedmultilayer scGRNs. Then, two denoisedmultilayer scGRNs are

collapsed by taking the average weight across layers.

(D) Manifold alignment. The two single-layer average scGRNs are then aligned with respect to common genes using a nonlinear manifold alignment algorithm.

Each gene is projected to a low-rank manifold space as two data points, one from each sample.

(E) Differential regulation test. The distance between the two data points is the relative difference of the gene in its regulatory relationships in the two scGRNs.

Ranked genes are subject to tests for their significance in differential regulation between scGRNs.
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components to obtain denoised tensors: Tx
d and Ty

d. Denoised

fWx
i g and fWy

i g in Tx
d and Ty

d are collapsed by taking the average

of edge weights for each edge to form two denoised, averaged

matrices, Wx
d and Wy

d, which are subsequently normalized as

in step 2 and then symmetrized.

Step 4. Aligning Genes onto a Manifold. The weighted adja-

cency matrices Wx
d and Wy

d are regarded as two similarity

matrices for a nonlinear manifold alignment procedure. The

alignment is done by solving an eigenvalue problem with a Lap-

lacian matrix derived from the joint matrices, W = ½Wx
d;

lI =2; lIT =2; Wy
d�, where l is a tuning parameter and I is the iden-

tity matrix that reflects the binary correspondence between

genes in the samples, X and Y. As the result of manifold align-

ment, all genes in the samples, X and Y, are projected on a

shared, low-dimensional manifold with a dimension km << n.

The projections of each gene j from the samples, X and Y, are

two km-dimensional vectors, Fx
j and Fy

j .
Step 5. Ranking Genes. For each gene j, let dj be the Euclidean

distance between the gene’s two projections Fx
j and Fy

j on the

shared manifold: one is from the sample X, and the other is

from the sample Y. Genes are sorted according to this distance.

The greater the distance, the greater the regulatory shift.

In the following sections, we explain the rationale behind each

step of scTenifoldNet, as well as the selection of machine

learning algorithms and implementation details.

Subsampling of Cells

The rationale for randomly subsampling cells is close to that of

ensemble learning. Ensemble learning is a technique where mul-

timodel decisions are merged to improve overall performance.

Similarly, instead of attempting to build a single scGRN, scTeni-

foldNet randomly samples subsets of cells from the given

scRNA-seq expression matrix and builds a series of ‘‘low-preci-

sion’’ scGRNs with the subsampled datasets. These low-preci-

sion scGRNs are then combined to obtain a ‘‘high-precision’’
Patterns 1, 100139, December 11, 2020 3
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scGRN. As mentioned above, current scRNA-seq technology

can produce the transcriptome profiles of thousands of cells

from each sample. It is fundamentally challenging to process

high-dimensionality and large-scale scRNA-seq data, especially

since there can be a substantial variation among cells. This hap-

pens even in a group of highly homogeneous cells of the same

type.12 The presence of so-called outlying cells, i.e., cells

showing profiles of expression that deviate from those of most

other cells, may influence the construction of high-precision

scGRNs. Therefore, subsampling offers promise as a technique

for handling the noise in the input datasets. When the number of

cells is small, the input data matrix may be resampled with

replacement.13

Constructing scGRNs Using PC Regression

Although many GRN construction methods have been devel-

oped,1,2,4 it is unclear which one is suitable for constructing mul-

tiple large scGRNs from the subsampled data.9 When dealing

with multiple sets of input data, both the accuracy and the

computational efficiency of these algorithms have to be consid-

ered. After conducting a thorough review of existing methods,

we opted to adopt PCNet,5 a method of network construction

using PC regression.14 The PC regression method extracts the

first few (e.g., k = 3) PCs and then uses these components as

the predictors in a linear regression model fitted using ordinary

least squares. The values of the transformed coefficients of

genes are treated as the strength and regulatory effect between

genes to generate the network. The utilization of PC regression in

scTenifoldNet lies in its ability to surpass the multicollinearity

problem that arises when two or more explanatory variables

are linearly correlated.

Denoising via Low-Rank Tensor Approximation

Removing the noise from constructed scGRNs is an important

step of scTenifoldNet. Here the term ‘‘noise’’ is used in a broad

sense to refer to any outlier or interference that is not the quantity

of interest, i.e., the true regulatory relationship between genes.

For each sample, the multilayer scGRN constructed from multi-

ple subsampled datasets is regarded as a rank 3 tensor. To

reduce the noise in the multilayer scGRN, we decompose the

tensor and reconstruct the multilayer scGRN using leading com-

ponents. The idea is similar to that of denoising using truncated

singular value decomposition (SVD). After cutting a larger portion

of the noise spread over the lowest singular value components,

the reconstructed data matrix based on the truncated SVD

would, therefore, represent the original data with reduced noise.

Indeed, tensor decomposition has been used in video data ana-

lyses for denoising and information-extracting purposes.15 It has

also been used to impute missing data.16 Using the CP algo-

rithm,17 we factorize the two multilayer scGRNs separately and

regenerate all adjacency matrices using leading components.

The number of components used for reconstruction can be

specified and is set to 3 by default. In the real data applications,

we find the tensor GRN regeneration serves two purposes,

denoising and enhancing, i.e., making main signals stronger

and making less important signals weaker.

Manifold Alignment of Two scGRNs

For a gene, its position in one of the two scGRNs (i.e., denoised

adjacency matrices from the two samples) is determined by its

regulatory relationships with all other genes. Here we regard

each gene as a data point in a high-dimensional space where
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components of the data point are the features, i.e., weights be-

tween the gene and all other genes in the scGRN adjacency

matrix. To compare the same gene’s positions in the two

scGRNs, we first align the two scGRNs. To do so, we take a

popular and effective approach for processing high-dimen-

sional data, intuitively modeling the intrinsic geometry of the

data as being sampled from a low-dimensional manifold,

commonly referred to as the manifold assumption.18 This

assumption essentially means that local regions in the data

can be mapped to low-dimensional coordinates, while the

nonlinearity and high dimensionality in the data come from

the curvature of the manifold. Manifold alignment produces

projections between sets of data, given that the original data-

sets lie on a common manifold.19–22 Manifold alignment

matches the local and nonlinear structures among the data

points from multiple sources and projects them to the same

low-dimensional space while maintaining their local manifold

structure of each source. The ability to flexibly learn and accu-

rately represent the structure in the data with manifold align-

ment has been demonstrated in applications in automatic ma-

chine translation, face recognition, and so on.23,24 Here, we use

manifold alignment to match genes in the two denoised

scGRNs, one from each sample, to identify cross-network link-

ages. Consequently, the information of genes stored in two

scGRNs is aligned, meaning points close together in the low-

dimensional space are more similar than points that are farther

apart.

Ranking Genes and Reporting Differentially

Regulated Genes

To identify genes whose regulatory status differs between the

two samples, we calculate the distance between projected

data points in the manifold alignment subspace. For each

gene, if the gene appears in scGRNs of both samples, there

are two data points for the same gene, one from each sample.

We compute the Euclidean distance between the two data

points of the gene and use the distance to measure the dissim-

ilarity in the gene’s regulatory status in two scGRNs.25 We do

this for all genes shared between two samples and then rank

the genes by the distance. The larger the distance, the more

different the gene in two samples. In this way, we obtain a

list of ranked genes. These ranked genes are subject to func-

tional annotation, such as by using the pre-ranked gene set

enrichment analysis (GSEA)26 to assess the enriched functions

associated with top genes. To avoid choosing the number of

selected genes arbitrarily, we compute p values for genes using

c2 tests, adjust the p values with a multiple testing correction,

and select significant genes using a 5% false discovery rate

(FDR) cutoff.

Benchmarking the Performance of scTenifoldNet Using
Simulated Data
Precision and Recall of the Network Construction

Method Adopted in scTenifoldNet

PC regression is the method we adopted for scTenifoldNet to

construct scGRN. It is important to ensure that scTenifoldNet/

PC regression is an effective and efficient network construction

method for our purpose.

To this end, we conducted a systematic comparison between

network construction algorithms using a published evaluation



Figure 2. Benchmarking the Performance of scTenifoldNet Using Simulated Data

(A) The accuracy and recall of scGRN construction using different methods, PC regression, SCC, MI, and GENIE3, as functions of the number of cells used in the

analysis. Error bar is the SD of the computed values after 10 bootstrapped evaluations. PCR, PC regression; SCC, Spearman’s correlation coefficient; MI, mutual

information; GENIE3, a random-forest-based network construction method.

(B) Visualization of the effect of tensor denoising on accuracy and recall of multilayer scGRNs. Each subpanel is a heatmap of a 100 3 100 adjacency matrix

constructed using PC regression over the counts of 500 randomly subsampled cells. Gray scale indicates the relative strength of regulatory relationships between

genes. Top part includes networks before tensor denoising (adjacency matrices in heatmap with red box); bottom part includes corresponding networks after

tensor denoising (adjacency matrices in heatmap with green box). In each part, adjacency matrices of networks of 10 subsamples (10 small heatmaps) and their

average adjacency matrix (one large heatmap) are shown.

(C) Evaluation of the sensitivity of scTenifoldNet in identifying punctual changes in the regulatory profiles. Top: evaluation of the original data matrix against itself.

Bottom: evaluation of the original matrix against the perturbed matrix. Significant genes identified using the differential regulation test (FDR <0.1, B-H correction)

are indicated in red. All significant genes are perturbed in simulation and thus are expected to be identified.
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tool package called BEELINE.10 We benchmarked scTenifold-

Net/PC regression and compared it with 11 other algorithms

(see Experimental Procedures). We chose to reuse a reference

dataset called the gonadal sex determination (GSD) in the

BEELINE package to perform the benchmarking. In the BEELINE

package, GSD is the largest curated reference dataset, and it

contains 19 genes and 2,000 cells. We compared different algo-

rithms jointly using the area under the precision-recall curve

(AUPRC), area under the receiver operating characteristic curve

(AUROC), and computation time, and found that scTenifoldNet/

PC regression and partial information decomposition and

context (PIDC)27 outperformed other algorithms (see Figure S1

for details).

We also simulated scRNA-seq data using a parametric

method with a predefined scGRN model (see Experimental Pro-

cedures for details).28 With the simulated data, which contain

100 genes and up to 3,000 cells, we compared constructed

scGRNs against the ground truth (i.e., the simulated scGRN) to

estimate the accuracy of reconstruction.We tested the accuracy

of scTenifoldNet/PC regression against methods based on

Spearman’s correlation coefficient (SCC) andmutual information

(MI)1 and on GENIE3.2 The SCC and MI methods are computa-

tionally efficient, whereas GENIE3 is not, but GENIE3 is the

top-performing method for network inference in the DREAM

challenges.3 For each method, their performance in recovering

gene regulatory relationships was compared with the ground-

truth interactions between genes, whichwere generated accord-

ing to pre-setting parameters. We found that scTenifoldNet/PC

regression produced more specific (better accuracy) and more
sensitive (better recall) scGRNs than other methods (Figure 2A).

This is true across a wide range of settings of cell numbers in

input scRNA-seq expression matrices. scTenifoldNet/PC

regression is also much faster than GENIE3 (running time infor-

mation is available in Table S1).

A limitation of our simulation-based evaluation is that simu-

lated scGRNs are much simpler than GRNs in reality, which

may contain hundreds or thousands of genes. It is a challenge

to simulate such a realistic GRN and, for GRN inference algo-

rithms, to figure out the key regulators and their targets. In this

study, we chose to apply our method directly to real datasets

and evaluate the biological relevance of results, rather than

explore the impact of the size and diversity of synthetic GRNs

on the results.

Effect of Denoising with Tensor Decomposition

To show the effect of tensor denoising, we simulated scRNA-seq

data (see Experimental Procedures) and processed the data us-

ing the first two steps of scTenifoldNet, i.e., cell subsampling fol-

lowed by the construction of scGRNs using PC regression. We

subsampled 500 cells each time and generated 10 scGRNs.

The 10 scGRNs were treated as a multilayer network or a tensor

to be denoised. For each scGRN, we kept the top 20% of the

links. The presence and absence of links in each scGRN were

compared with those in the simulated, ground-truth scGRN to

estimate the accuracy of recovery and the rate of recall. Fig-

ure 2B contains the heatmaps of adjacency matrices of the 10

scGRNs before and after denoising (small heatmaps). We also

show two collapsed scGRNs (Figure 2B, large heatmaps), which

were generated by averaging link weights across the 10 scGRNs
Patterns 1, 100139, December 11, 2020 5
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before and after denoising. These results illustrate the ability of

scTenifoldNet to denoise multilayer scGRNs. For instance,

tensor denoising improves the recall rate of regulatory relation-

ships between genes by 25%. This simulation study suggests

that tensor denoising could be useful for removing the impacts

of random dropout and other noise issues affecting the scGRN

construction using scRNA-seq data.

Detecting Power Illustrated with a Simulated Dataset

We used simulated data to show the capability of scTenifoldNet

in detecting differentially regulated genes. We first used the

negative binomial distribution to generate a sparse synthetic

scRNA-seq dataset (an expression matrix including 67% zeros

in its values). This toy dataset includes 2,000 cells and 100

genes. We called it sample 1. We then duplicated the expression

matrix of sample 1 to make sample 2. We modified the expres-

sion matrix of sample 2 by swapping expression values of three

randomly selected genes with those of another three randomly

selected genes. Thus, the differences between samples 1 and

2 are restricted in these six genes. Using scTenifoldNet with

the default parameter setting, we compared the originally gener-

ated expression matrix (sample 1) with itself (sample 1 versus

sample 1) and also with the manually perturbed version (sample

1 versus sample 2). As expected, when comparing the original

matrix against itself, none of the genes was identified to be sig-

nificant. However, when samples 1 and 2were compared, the six

genes whose expression values were swapped were identified

as significant differentially regulated genes (Figure 2C, FDR

<0.1). These results are expected and support the sensitivity of

scTenifoldNet in identifying subtly shifted gene expression

programs.

Real Data Analyses
Practical Considerations of Real Data Analysis Using

scTenifoldNet

First of all, we address several practical questions regarding

the application of scTenifoldNet to real scRNA-seq data. (1)

What are the input expression matrices to be compared? The

input to scTenifoldNet is two matrices of gene expression

values (e.g., unique molecular identifier [UMI] counts) as

measured in two samples to be compared. In each matrix, col-

umns represent cells, and rows represent genes. We assume

that each input matrix contains a sizable number of cells. For

example, a typical input matrix may contain UMI counts for

5,000 genes and 2,000 cells. Whether a gene is expressed

among cells can be determined by examining if this gene has

a nonzero UMI count in more than 5% of cells. Scaling normal-

ization (e.g., the library size normalization) of the input UMI

count matrix does not seem to affect the construction of

scGRNs (Figure S2). In contrast, imputing the UMI count matrix

using an imputation algorithm (e.g., MAGIC)29 may have an

impact on the performance of scTenifoldNet (Figure S3). (2)

How does scTenifoldNet handle cell heterogeneity? Heteroge-

neity in expression among cells is inevitable. scTenifoldNet is

designed to tolerate a certain level of such heterogeneity as

long as the cells are of the same type. scTenifoldNet is not a

data preparation tool. It also does not perform any clustering

analysis for cells; it does not assign cells to cell types. We as-

sume all cells in both input matrices are of the same type.

Otherwise, the results would be difficult to interpret. To solve
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this problem, a specific tool (to prioritize cell types most

responsive to biological perturbations) has been developed

elsewhere.30 (3) What if the number of cells is too small? We

expect that each input matrix contains a sizable number of cells

(e.g., n > 2,000). If this is the case, the jackknife method (sub-

sampling without replacement) is adapted by default: m = 500

cells are subsampled each time. Alternatively, an m-out-of-n

bootstrap method (subsampling with replacement) can be

used.13 When the number of cells is small (e.g., n = 500), a

full bootstrap method can be used, i.e., resampling 500 cells

each time out of 500 given cells with replacement.13,31 scTeni-

foldNet is robust against unbalanced cell numbers in the two

samples for comparison (Figure S4). (4) What is the relationship

between scTenifoldNet analysis and differential expression (DE)

analysis? scTenifoldNet analysis should be used as a comple-

mentary analysis method in addition to DE analysis, rather than

replacing DE analysis. DE analysis (using, e.g., MAST,32

edgeR,33 or SCDE)34 is still a widely used method for under-

standing the difference between two scRNA-seq samples.35

scTenifoldNet is designed based on a principle different from

that underlying DE analysis. Thus, the results of scTenifoldNet

analysis and DE analysis are not supposed to be compared

side by side. It is not uncommon that scTenifoldNet and DE an-

alyses report the same genes to be significant. This is because

the change in the regulatory pattern of a gene in scGRNs may

be associated with the change in the gene’s expression level.

To evaluate the influence of gene expression level on scGRN

construction, we calculated the correlation between the

average gene expression level and the average weighted de-

gree of nodes in scGRNs, which are constructed using scTeni-

foldNet/PC regression and other algorithms in the BEELINE

package.10 If the weighted degree of nodes in an scGRN con-

structed using a method is correlated with the expression level

of genes, then it indicates that the method is likely to be biased

toward highly expressed genes during the process of scGRN

construction. We found that all evaluated algorithms produced

results showing a certain level of such a correlation (Figure S5).

However, compared with all other algorithms, scTenifoldNet/

PC regression produced the smallest correlation value and

thus is most robust against the bias toward highly ex-

pressed genes.

Analysis of Transcriptional Responses of Neurons to

Acute Morphine Treatment

To illustrate the use of scTenifoldNet, we first applied scTenifold-

Net to an scRNA-seq dataset from Avey and colleagues36 This is

a study on transcriptional responses of mouse neural cells to

morphine (Figure 3A). In the study, Avey and colleagues per-

formed scRNA-seq experiments with the nucleus accumbens

of mice after 4 h of morphine treatment and used mice treated

with saline as mock controls. Single-cell expression data were

obtained for 11,171 and 12,105 cells from four morphine- and

four mock-treated mice, respectively.36 The measured cells

were clustered to identify neurons (7,972 and 8,912 from

morphine- and mock-treated samples, respectively); the identi-

fied neurons were then subgrouped into 11 clusters, including

major clusters of D1 and D2 medium spiny neurons (MSNs),

comprising ~95% of the neurons in the nucleus accumbens. Us-

ing DE analysis implemented in SCDE,34 Avey et al. identified

several hundred genes that are differentially expressed between



Figure 3. Analysis of Transcriptional Responses to Morphine in Mouse Cortical Neurons

(A) Illustration of experimental design and data collection of the morphine response study.36

(B) t-SNE plot of 7,972 and 8,912 neurons from morphine-treated (blue) and mock-treated (red) mice, respectively.

(C) Violin plots showing the log-normalized expression levels of representative differentially regulated and/or differentially expressed genes in four (M) morphine-

and four (C) mock-treated mice.

(D) Quantile-quantile (Q-Q) plot for observed and expected p values of the 8,138 genes tested. Genes (n = 65) with FDR <0.1 are shown in red; genes (n = 56) with

FDR <0.05 are labeled with an asterisk. Inset shows results of the GSEA for genes ranked by their distances in manifold aligned scGRNs from morphine- and

mock-treated mice.

(E) The module enriched with differentially regulated genes and the corresponding subnetworks in two scGRNs. For illustrative purposes, the module is centered

on the differentially regulated genePpp3ca. Significantly differentially regulated genes (FDR <0.05) in themodule are highlighted in green. Edges are color-coded:

red indicates a positive association, and blue indicates negative. Weak edges are filtered out by thresholding for clear visualization, and the background shadow

indicates the shared portion of the module in the two scGRNs.
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morphine- andmock-treated samples (Table S2 of Avey et al.).36

Although this result is intriguing, we argue that it seems that

when so many genes are identified as ‘‘significant players,’’ it

is difficult to interpret the result and to pinpoint the specific reg-

ulatory mechanism underlying the true response. Indeed,

instead of functional enrichment analysis with identified differen-

tially expressed genes, the subsequent analyses in the study of

Avey and coworkers36 were refocused on a tiny portion of D1

MSNs, called activated MSNs. It was only when activated

MSNs were compared with all other D1 MSNs that 256 differen-

tially expressed genes were identified (SCDE, p < 0.001, Table

S2 of Avey et al.).36 These genes were then found to be associ-

ated with several terms related to opioid addiction, including

morphine dependence and opioid-related disorders (Table S3
of Avey et al.).36 In the morphine-treated sample, less than

4.5% of D1 MSNs were activated MSNs; in the mock-treated

sample, less than 2% (see Figure S2B of Avey et al.).36 In view

of this, we point out here that while relevant signals can be de-

tected using traditional DE analysis, the analytical method in-

volves extensive human intervention; i.e., an iterative clustering

procedure is needed to identify a final population of cells (in

this case, activated MSNs). The cell population size is small,

making the analysis result potentially variable.

We were motivated by these considerations and set out to re-

analyze the data. We first reproduced the results of the DE anal-

ysis. We found that the mock- and morphine-treated neurons

indeed exhibited a striking similarity. For example, mock- and

morphine-treated neurons are indistinguishable in a t-distributed
Patterns 1, 100139, December 11, 2020 7
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stochastic neighbor embedding (t-SNE) plot (Figure 3B); expres-

sion levels of several known morphine-responsive genes, e.g.,

Adcy5, Ppp1r1b, and Ppp3ca, show no difference (Figure 3C).

Thus, a direct comparison of gene expression between neurons

using the DE method may have limited power to identify relevant

genes involved in the morphine response.

Next, using scTenifoldNet, we identified 56 genes showing

significant differences in their transcriptional regulation between

mock- and morphine-treated neurons (Table S2). Compared

with other genes, these genes have a significantly greater dis-

tance between their positions in two scGRNs aligned into the

manifold (FDR <0.05, c2 test with Benjamini-Hochberg (B-H)

multiple test adjustment, see Experimental Procedures for de-

tails). GSEA showed that these differentially regulated genes

are enriched for opioid signaling, signaling by G protein-coupled

receptors, reduction of cytosolic calcium levels, and morphine

addiction (Figure 3D, inset, see also Table S3). It is known that

morphine binds to the opioid receptors on the neuronal mem-

brane. The signal is then transmitted through the G-protein-

signaling system, inhibiting the adenylyl cyclase in the cytoplasm

and decreasing the levels of cAMP and calcium-channel con-

duction.37–39 Furthermore, 21 of 56 (38%) identified differentially

regulated genes were found to be targets of RARB (adjusted p <

0.01, Enrichr enrichment test based on the chromatin immuno-

precipitation sequencing [ChIP-seq] data).40 RARB plays a role

in synaptic transmission in dopaminergic neurons and the ad-

enylate cyclase-activating dopamine receptor signaling

pathway.41,42 Thus, these enriched functions are relevant to

themorphine stimulus, which is known to induce the disinhibition

of dopaminergic neurons byGABA transmission, enhance dopa-

mine release, and cause addiction.43,44 Using the constructed

scGRN, we were able to trace differentially regulated genes

back to their topological positions in the network and examine

their interacting genes. Figure 3E shows such a network module,

including multiple differentially regulated genes.

In this case, scTenifoldNet was used as an unsupervised tool,

which needs no human interference to operate. This feature is

critical when referring to this specific set of data because where

the signal is limited to rare types of cells, there is a chance that a

less sensitive approach would miss the signal, especially when

human interference is not provided. It is ideal to have an unsu-

pervised tool that is sensitive to signals and, at the same time,

robust to variation between cells. We note that scTenifoldNet

is a tool different from conventional DE analysis tools: —scTeni-

foldNet reported fewer differentially regulated genes, in terms of

the number of genes, compared with differentially expressed

genes identified in the original study.36 Among the 56 differen-

tially regulated genes that scTenifoldNet detected, 11 (Actb,

Adcy5, Akap9, D430041D05Rik, Eif1, Pcp4l1, Penk, Phactr1,

Rasd2, Scn4b, and Ubb) are among the 256 differentially ex-

pressed genes reported in Table S2 of Avey and colleagues36

The number of overlapping genes is not significantly higher

than expected by random according to a hypergeometric test

(p = 0.29) with a total of 1,432 genes (from Table S2 of Avey

et al.)36 included in the test. Figure 3C shows expression levels

of three representative genes, Pde1b, Adcy5, and Gabrg1, in

neurons frommock- and morphine-treated mice. All three genes

are known to be involved in themorphine response,45–47 but only

when DE and DR tests were applied jointly were all three genes
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identified: Pde1b is a differentially expressed but not a differen-

tially regulated gene,Adcy5 a differentially regulated and a differ-

entially expressed gene, and Gabrg1 a differentially regulated

but not a differentially expressed gene.

Analysis of Transcriptional Responses of a Carcinoma

Cell Line to Cetuximab

To further illustrate the power of scTenifoldNet in identifying

genes associated with specific perturbations, we applied scTe-

nifoldNet to another published set of scRNA-seq data.48 In this

study,48 Kagohara et al. use scRNA-seq to study mechanisms

underlying the development of resistance to cetuximab in head

and neck squamous cell carcinoma (HNSCC) (Figure 4A). Cetux-

imab is a human-murine chimeric monoclonal antibody used to

treat metastatic colorectal cancer, metastatic non-small cell

lung cancer, and head and neck cancer. In conjunction with

radiotherapy, cetuximab improves the objective response rate

in first-line treatment of recurrent or metastatic squamous cell

carcinoma of the head and neck.49 Cetuximab binds to the extra-

cellular domain of the epidermal growth factor receptor (EGFR)

on both normal and tumor cells.50 EGFR is overexpressed in

many cancers. Competitive binding of cetuximab to EGFR

blocks the phosphorylation and activation of receptor-associ-

ated kinases and their downstream targets, e.g., MAPK, PI3K/

Akt, and Jak/Stat pathways,51 thereby reducing their effects on

cell growth and metastatic spread. It is known that blocking

EGFR activation also affects cellular processes such as

apoptosis, cell growth, and vascular endothelial growth factor

production.52 Cetuximab is also known to cause degradation

of the antibody-receptor complex and the downregulation of

EGFR1 expression.53

Kagohara et al. sequenced the transcriptome profile of cells

before and after cetuximab treatment for 120 h in three different

HNSCC cell lines: SCC1, SCC6, and SCC25.48 They found that

SCC6 is themost sensitive to the cetuximab treatment, reporting

8,389 genes as differentially expressed (including 4,166 upregu-

lated and 4,223 downregulated ones with p < 0.05; Table S4 of

Kagohara et al.).48 Such a large number of differentially ex-

pressed genesmakes it difficult to identify genes directly associ-

ated with the molecular mechanism through which cetuxi-

mab acts.

We extracted scRNA-seq data for 4,507 and 5,217 SCC6 cells

treated with and without cetuximab, respectively (Figure 4B).

Expression levels of three genes,DuSP4, TIGA3, and LIF, in cells

of two treatment groups are shown in Figure 4C. All three genes

are in the EGFR pathway. We used scTenifoldNet to reanalyze

the data and identified 125 differentially regulated genes (FDR

<0.05, Figure 4D and Table S4). These genes are enriched with

those (39 of 125) that are under the regulation of TFs: SMAD2

and SMAD3. GSEA showed that these differentially regulated

genes are associated with the EGFR1 pathway, regulation of

apoptosis, cell-cycle checkpoints,G1 cell-cycle arrest, and regu-

lation of apoptosis (Figure 4D inset, Table S5). Once again, scTe-

nifoldNet identified a much smaller set of significant genes

compared with those reported in the original paper:48 125 differ-

entially regulated genes versus 8,389 differentially expressed

genes. Nevertheless, functional analyses show that scTenifold-

Net identified a more specific gene set relevant to cetuximab’s

mechanism of action. Further scrutinization of enriched molecu-

lar functions of these differentially regulated genes will help to



Figure 4. Analysis of Transcriptional Responses of a Carcinoma Cell Line to Cetuximab

(A) Illustration of experimental design, including sample groups and the known mechanism of drug action, in the study of cetuximab resistance of HNSCC cell

lines.48

(B) t-SNE plot of 5,217 and 4,507 HNSCC-SCC6 cells treated with cetuximab (red) and PBS (blue), respectively.

(C) Violin plots showing the log-normalized expression levels of selected differentially regulated genes in SCC6 cells with and without cetuximab treatment.

(D) Q-Q plot for observed and expected p values of the 7,503 genes tested. Genes (n = 25) with FDR <0.05 are labeled with an asterisk. Inset shows the results of

the GSEA for genes ranked by their distances in manifold aligned scGRNs from young and old mice.

(E) A representative module with differentially regulated genes and corresponding subnetworks in two scGRNs. The module is enriched with differentially

regulated genes and the corresponding subnetworks in two scGRNs. For illustrative purposes, themodule is centered on the differentially regulated geneH2AFZ.

The colors, edges, and marks are presented as in Figure 3E.
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identify more regulatory targets induced by cetuximab in

HNSCC cells.

Analysis of Transcriptional Responses of Alveolar Type 1

Cells to Nkx2-1 Gene Knockout

In the third example, we applied scTenifoldNet to another pub-

lished set of scRNA-seq data from type 1 alveolar (AT1) cells.54

AT1 cells are responsible for gas exchange, the physiological

function of the lung.55 Little et al. found that NK homeobox 2-1

(Nkx2-1) is expressed in AT1 cells and thought Nkx2-1 might

be essential to the development andmaintenance of AT1 cells.54

To determine the function of NKX2-1 during the development of

AT1 cells, they performed scRNA-seq experiments to obtain the

transcriptome profile of cells from the lungs of Nkx2-1CKO/CKO;

Aqp5Cre/+ mutant mice (i.e., knockout [KO] mice) and littermate
controls (i.e., wild-type [WT] mice). They used early infant mice

(postnatal day 10, P10), because P10 represents an intermediate

time point when individual AT1 cells in the mutant lung are ex-

pected to collectively feature the full range of transcriptomic

phenotypes. They reported 3,622 differentially expressed genes

(2,105 upregulated and 1,517 downregulated, Supplementary

Dataset S1 of Little et al.)54 between the KO and the WT mice.

Their analyses suggest that, without Nkx2-1, developing AT1

cells lose their molecular markers, morphology, and cellular

quiescence, leading to aberrant expression of gastrointestinal

(GI) genes, alveolar simplification, and lethality (Figure 5A).

To evaluate the power of scTenifoldNet in identifying

regulatory changes caused by gene KO, we reanalyzed the

transcriptional profiles of 2,397 mutant AT1 cells from the
Patterns 1, 100139, December 11, 2020 9



Figure 5. Analysis of Transcriptional Responses of Alveolar Type 1 Cells to Nkx2-1 Gene Knockout

(A) Illustration of experimental design and data collection of the KO experiment.54

(B) t-SNE plot of 2,397 and 638 AT1 cells from Nkx2-1 KO mice (red) and WT mice (blue).

(C) Violin plots showing the log-normalized expression levels of selected differentially regulated genes in KO (red) and WT (blue) mice.

(D) Q-Q plot for observed and expected p values of tested genes. Genes (n = 29) with FDR <0.05 are labeled with an asterisk. Inset shows the results of GSEA for

genes ranked by their distances in manifold aligned scGRNs.

(E) A representative module that contains the differentially regulated gene Tpt1 in the WT mice. Most parts of the module disappear in the KO mice. The colors,

edges, and marks are presented as in Figure 3E.
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Nkx2-1CKO/CKO; Aqp5Cre/+ mice and 638 AT1 cells from the WT

mice (Figure 5B). Expression levels of Cd24a, Fau, and Eef1a1

in AT1 cells of KO and WT mice are shown in Figure 5C.

Cd24a is a marker gene for AT1 cells; Fau and Eef1a1 are GI

genes, known to be highly expressed in the GI tissues. Using

scTenifoldNet, we identified 29 genes exhibiting significant dif-

ference in their regulation between the two samples: KO versus

WT (FDR <0.05, Figure 5D). These 29 genes are Cd24a, Clu,

Muc1, Stard10, Glul, Fxyd3, Gsto1, Eef1a1, Bag1, Atp1b1,

Txnip, Csrp2, Tspan1, Nr2f2, Elf3, Sepp1, Pabpc1, Lurap1l,

Gnb2l1, Eef2, Smim6, Cox7a2l, Tpt1, Fau, Eef1b2, Eif3f, Atpif1,

0610040J01Rik, and Krt19. Targets of Sox2 are highlighted in

bold.56 As reported,54 this gene list is enriched with genes highly

expressed in the intestine. Using GSEA, we showed the signifi-

cant enrichment of GI marker genes (Figure 5D, insets),57 which
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confirmed the effect of Nkx2-1 KO on the cellular identity of

AT1 cells.

Analysis of Transcriptional Responses of Human Dermal

Fibroblasts to a Double-Stranded RNA Stimulus

Next, we show the use of scTenifoldNet on an scRNA-seq data-

set from human dermal fibroblasts.58 In the original paper, Hagai

et al. focused on single-cell transcriptional responses induced

by the stimulus of polyinosinic-polycytidylic acid (polyI:C), a syn-

thetic double-stranded RNA (dsRNA) (Figure 6A).58 They ob-

tained and compared the transcriptomes of 2,553 unstimulated

and 2,130 stimulated cells and identified 875 differentially ex-

pressed genes (Table S3 of Hagai et al.).58 These differentially

expressed genes include IFNB, TNF, IL1A, and CCL5, encoding

antiviral and inflammatory gene products, and are enriched for

inflammatory response, positive regulation of immune system



Figure 6. Analysis of Transcriptional Responses of Human Dermal Fibroblasts to a Double-Stranded RNA Stimulus

(A) Illustration of experimental design and tested mechanism of transcriptional responses.58

(B) t-SNE plot of human dermal fibroblasts before (blue) and after (red) dsRNA stimulus.

(C) Violin plots showing the log-normalized expression levels of selected differentially regulated genes before (blue) and after (red) stimulus.

(D) Q-Q plot for observed and expected p values of tested genes. Genes (n = 29) with FDR <0.05 are labeled with an asterisk. Inset shows the results of GSEA for

genes ranked by their distances in manifold aligned scGRNs.

(E) Comparison of a representativemodule that contains three differentially regulated genes in the control sample. The colors, edges, andmarks are presented as

in Figure 3E.

(F) Scatterplots showing the correlation between TPT1 and ANXA2 before (top) and after (bottom) dsRNA stimulus.
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process, and response to cytokine, amongmany other biological

processes and pathways. We found that the original scRNA-seq

data have a batch effect between two samples, but the global

batch effect can be removed using Harmony,59 as shown in

the t-SNE plot of cells of two samples (Figure 6B). Nevertheless,

the differences in the expression levels between samples can

still be detected in selected genes with Harmony-processed

data (Figure 6B).

Applying scTenifoldNet to the processed data, we identified

29 differentially regulated genes: SOD2, GBP1, WARS,

ZC3HAV1, EGR1, BBC3, ISG15, HLA-B, ZFP36, PPP1R15A,

JUN, IFI6, JUNB, B2M, APOL2, HLA-A, IER3, SAT1, NFKBIA,

NNMT, FN1, IFITM3, MEG3, NEAT1, COL1A1, PLEKHA4,

EEF1A1, SOCS1, and SERF2 (Figure 6D, Table S6). Among

them, 14 (highlighted in bold) are targets ofRELA (48%, adjusted

p < 0.01, enrichment test by Enrichr).60 These differentially regu-

lated genes are functionally enriched for interferon signaling, im-

mune system, interleukin-1 regulation of extracellular matrix, and

others (Table S7).
Once again, scTenifoldNet reports fewer genes than DE anal-

ysis does in the original paper.58 By comparing the differentially

regulated genes with the differentially expressed genes, we

found that enriched functions of differentially expressed genes

reflect the differences between unstimulated cells and cells that

have completed an initial response to a dsRNA stimulus and

reached a final phase of the response, whereas the enriched

functions of differentially regulated genes reflect ongoing activ-

ities associated with regulatory changes and immune re-

sponses to the stimulus. In this sense, differentially regulated

genes are valuable for informing about mechanisms through

which the dsRNA acts to induce immunological responses.61–63

For example, it is known that dsRNA inhibits the translation of

mRNA to proteins62 and leads to the synthesis of interferon,

which induces the synthesis of ribosomal units that are able

to distinguish between cell mRNA and viral RNA.63 Interferon

also promotes cytokine production that activates the immune

response and induces inflammation.61 To further illustrate the

changes in the regulatory patterns between samples, we
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plotted the GRN module around EEF1A1. It can be seen that,

before and after the dsRNA treatment, the interacting partner-

ship of the genes is changed substantially (Figure 6E). Two

scatterplots show the change in correlation between TPT1

and ANXA2, as an example (Figure 6F). The negative correla-

tion between the two genes’ expression among cells disap-

pears after the dsRNA treatment and, thus, the two genes are

not linked in the scGRN constructed using the after-treat-

ment data.

Analysis of Transcriptional Responses of Mouse

Neurons in Alzheimer Disease

Last, we applied scTenifoldNet to scRNA-seq data of isolated

single nuclei from the brains of the WT and 5xFAD mice.64

The 5xFAD strain recapitulates the major features of Alzheimer

disease amyloid pathology. The genotype of these mice con-

tains several familial Alzheimer disease (FAD) mutations in

APP and PSEN1, causing the overexpression of mutant human

amyloid-b (Ab) precursor protein and human presenilin 1. The

5xFAD model rapidly develops amyloid pathology, with high

levels of intraneuronal Ab accumulation beginning around

1.5 months of age and extracellular Ab deposition beginning

around 2 months.65

In the original paper,64 Zhou et al. compared scRNA-seq

data between 6-month-old WT mice with 6-month-old

5xFAD mice. They found that neurons show limited responses

to Ab peptides: compared with microglia and oligodendro-

cytes, neurons show minimal transcriptional changes (149

differentially expressed genes) between WT and 5xFAD

mice. To test whether scTenifoldNet can detect genes whose

expression is differentially regulated between WT and 5xFAD

mice, we decided to apply our method to these scRNA-seq

data exclusively in neurons. We downloaded expression

data matrices from the GEO database using accession no.

GSE140511 and extracted expression data of neurons

from two samples: WT2 (GSM4173505) and WT_5XFAD2

(GSM4173511) (Figure 7A).

After reanalyzing the data using scTenifoldNet, we identified

18 differentially regulated genes: Zdhhc17, Chl1, Abhd17b,

Rchy1, Stmn2, Tjp1, Nrbp2, Ly6h, Smarcd1, Rhbdd2, Ndfip1,

Mark2, Icam5, Fam92a, Rgl1, Gmcl1, Daam1, and Fxr1 (FDR

<0.05, Figure 7D). For functional enrichment analysis, we

relaxed the significant-gene cutoff to include 57 additional

genes with FDR R0.05 but nominal p < 0.05. These additional

genes include Apoe and Bin1. Bin1 encodes bridging integrator

1 (also known as amphiphysin 2), which is the second most

important risk locus (after Apoe) for late-onset Alzheimer dis-

ease.66,67 Apoe and Bin1 rank 25th and 61th, respectively, in

the list of 75 significant genes (18 genes with FDR <0.05 fol-

lowed by 57 genes with nominal p < 0.05), and both play a

role in negative regulation of amyloid precursor protein cata-

bolic process and tau protein binding. Enrichr analysis reported

the following top gene ontology terms: regulation of neuron

projection development, positive regulation of cell projection

organization, phosphatidylserine metabolic process, protein

acylation, potassium channel activity, and methylation-depen-

dent protein binding. GSEA showed that regulatory changes

are associated with integrin signaling pathway, serotonin

HTR1 group and FOS pathway, and glutamate neurotransmitter

release cycle (Figure 7D, insets).
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DISCUSSION

We present scTenifoldNet, a robust, unsupervised machine

learning workflow that streamlines comparative GRN analyses

with data from scRNA-seq. The key feature of scTenifoldNet is

to apply comparative network analysis with scRNA-seq data. It

detects differences in the cell population’s state between two

samples in a sensitive and scalable manner. It provides the func-

tion of DR analysis, which can be used to reveal subtle regulatory

shifts of genes.

Today, DE analysis is still the primary method for the purpose

of comparative analysis between scRNA-seq samples (see Avey

et al., Hagai et al., Ximerakis et al.).36,58,68 As scRNA-seq data-

sets are becoming widely available, there will be more and

more interest in comparing samples. The scTenifoldNet-based

DR analysis is expected to be adapted in more scenarios wher-

ever DE analysis is applicable. scTenifoldNet learns and

contrasts high-dimensional features of genes in scGRNs by

examining global interactions between the genes. scTenifoldNet

is more suitable for comparing highly similar samples, such as

two populations of cells of the same type. scTenifoldNet is built

as a robust, sensitive tool that can capture signals that are even

confined to rare cell types.

To achieve technical requirements, we overcome several

analytical barriers in developing scTenifoldNet. First, construct-

ing scGRN from scRNA-seq data, which consists of cells in

many different states, is challenging at present. It is also difficult

to control for technical noise in the data. To address these is-

sues, we let scTenifoldNet begin with random cell subsampling.

It is worth noting that not only can random cell subsampling help

in dealing with the problem of cell heterogeneity, but additional

information of cells can be incorporated into subsampling

schema. More specifically, in addition to the random subsam-

pling using jackknife and bootstrap methods, we can adapt a

semirandom subsampling schema, if cells in an input matrix

are sorted according to pseudotime.[69] These cells can be sub-

sampled using a pseudotime-guided method, with which sorted

cells are sampled along the pseudotime trajectory. In such a

way, the subsamples contain pseudotime information, and the

multilayer scGRN constructed from these subsamples will

contain the pseudotime-series information. In machine learning,

many multilayer network analysis algorithms have been pro-

posed.70–72 With our pseudotime-series scGRN data, these al-

gorithms will be relevant and applicable. Second, regulatory re-

lationships between genes from scRNA-seq data are difficult to

establish, even though the datamay theoretically capture a com-

plete picture of the regulatory gene landscape. We consider PC

regression to stand out as a crucial method of building scGRNs.

PC regression significantly outperforms the other GRN construc-

tion algorithms in all aspects of methodology metrics, including

specificity, sensitivity, computational efficiency, and the required

minimum number of cells. Importantly, PC regression explicitly

projects thousands of gene expression measurements into a

low-dimensional space to capture much of the observed varia-

tion. PC regression, therefore, establishes the relationship for

each pair of genes after controlling for the most important back-

ground interactions. Third, in scTenifoldNet, the tensor denois-

ing procedure effectively smooths edge weights across all net-

works in multilayer scGRNs. Fourth, scTenifoldNet performs



Figure 7. Analysis of Transcriptional Responses of Neurons to Ab Peptides in 5xFAD Mice, a Model of Alzheimer Disease
(A) Illustration of experimental design and data collection of the 5xFAD mouse study.64 (B) t-SNE plot of neurons of the 5xFAD (red) and WT (blue) mice.

(C) Violin plots showing the log-normalized expression levels of selected differentially regulated genes in neurons of the 5xFAD (red) and WT (blue) mice.

(D) Q-Q plot for observed and expected p values of tested genes. Genes (n = 18) with FDR <0.05 are labeled with an asterisk. Inset shows the results of the GSEA

for genes ranked by their distances in manifold aligned scGRNs.

(E) Comparison of a representative module that contains top-ranked differentially regulated genes between the two scGRNs. The colors, edges, and marks are

presented as in Figure 3E.
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nonlinear manifold alignment to align two networks. As such, two

networks can be contrasted directly, and differentially regulated

genes could be detected using distance in new coordinates of

data in a low-dimensional space.

We validate the power of scTenifoldNet using real datasets

coming from various studies and demonstrate that scTenifold-

Net is sensitive to signals. Five real scRNA-seq datasets are

involved (Table 1). These five datasets have one thing in com-

mon: they all have two sets of scRNA-seq data: one from a

treated group and the other from a control/untreated group.

More importantly, in all five cases, we have sufficient prior

knowledge about the biological system from which the data

were collected. Therefore, we have hypotheses about what

transcriptional changes we are expected to see before doing

the analysis. For example, in the morphine response

analysis, the causal factor of transcriptional responses, i.e.,
the morphine stimulus, is known, and thus, we know what

should be recovered through the analysis. Similarly, we had

some clues in the examples of cetuximab and fibroblasts about

what transcriptional changes we might be able to retrieve. By

compiling all the findings from scTenifoldNet applications, we

tested scTenifoldNet and showed that scTenifoldNet provides

findings that are precise, specific, and relevant to the biological

systems and questions in the test. This is of significance to

building a specific and sensitive tool like scTenifoldNet for the

purpose of molecular mechanism studies using scRNA-seq.

This is because causal factors and their target genes remain

unknown in many biological systems studied. If this is the

case, it is crucial to apply a sensitive approach like scTenifold-

Net, which may be in addition to the DE analysis, to unveil more

gene candidates. Only then will we be able to scrutinize identi-

fied genes further to learn the mechanisms behind their actions
Patterns 1, 100139, December 11, 2020 13



Table 1. Summary of Real-Data Applications of scTenifoldNet Analysis

Study Reference Species Cell Type

Perturbation

Type

Number of

Genes

Included

in Analysis

Number of

Cells in

Two Groups

Number of

Differentially

Regulated

Genes

Enriched Functions of

Differentially Regulated

Genes

1 Avey et al.36 mouse neurons morphine 8,138 mock-treated

8,912; morphine-

treated, 7,972

56 opioid signaling; signaling

by G-protein-coupled

receptors; reduction of

cytosolic calcium levels;

morphine addiction

2 Kagohara

et al.48
human carcinoma

cell line

cetuximab 11,140 untreated,

5,217;

treated, 4,507

125 EGFR1 pathway; regulation

of apoptosis; cell-cycle

checkpoints; G1 cell-cycle

arrest, regulation of

apoptosis

3 Little et al.54 mouse lung

alveolar

cells

Nkx2-1

gene KO

7,842 WT, 638; KO,

2,397

29 gastrointestinal marker

genes; Sox2 target genes

4 Hagai et al.58 human dermal

fibroblasts

dsRNA

immune

stimulus

7,904 unstimulated,

2,553; stimulated,

2,130

29 interferon signaling; immune

system; interleukin-1

regulation of extracellular

matrix

5 Zhou et al.64 mouse neurons Alzheimer

disease

2,869 WT, 4,561;

5xFAD, 2,423

18 Apoe and Bin1; regulation

of neuron projection

development; positive

regulation of cell projection

organization; phosphatidylserine

metabolic process; protein

acylation; potassium channel

activity; methylation-dependent

protein binding; integrin

signaling pathway; serotonin

HTR1 group and FOS pathway;

glutamate neurotransmitter

release cycle
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in the whole system. We face such a challenge in many studies

from unknown factors that cause a disorder. It is therefore crit-

ical that we adopt tools such as scTenifoldNet, instead of

relying solely on conventional DE analysis, to tackle this big

data analysis problem.

In summary, scRNA-seq enables the study of cellular and mo-

lecular components and the dynamics of complex biological

systems at single-cell resolution. To unravel the regulatory

mechanisms underlying cell behaviors, novel computational

methods are essential for understanding the complexity in

scRNA-seq data (e.g., scGRNs) that surpasses human interpre-

tative ability. We anticipate that, when applied to real scRNA-seq

data, our machine learning workflow implemented in scTenifold-

Net can help achieve breakthroughs by deciphering the full

cellular and molecular complexity of the data by constructing

and comparing scGRNs.
EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, James J. Cai (jcai@

tamu.edu).
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Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

scTenifoldNet has been implemented in R. The source code is available at

https://github.com/cailab-tamu/scTenifoldNet, which also includes the code

of the benchmarking method, auxiliary functions, and example datasets

(including the simulated data used to generate Figure 2). The scTenifoldNet

R package is available at the CRAN repository: https://cran.r-project.org/

web/packages/scTenifoldNet/.

The scTenifoldNet Workflow

The scTenifoldNet workflow takes two scRNA-seq expression matrices as in-

puts. The two matrices are supposed to be obtained from two samples of the

same type of cell, such as those of different treatments or from diseased and

healthy subjects. The purpose of the analysis is to identify genes whose tran-

scriptional regulation is shifted between the two samples. The whole workflow

consists of five steps: cell subsampling, network construction, network

denoising, manifold alignment, and module detection.

Cell Subsampling

Instead of using all cells of each sample to construct a single GRN, we

randomly subsample cells multiple times to obtain a set of subsampled cell

populations. This subsampling strategy is to ensure the robustness of results

against cell heterogeneity in samples. Subsampling of each sample is per-

formed as follows: assuming the sample has M cells, m cells (m < M) are

randomly selected to form a subsampled cell population. The process is

repeated with cell replacement t times to produce a set of t subsampled cell

populations.

mailto:jcai@tamu.edu
mailto:jcai@tamu.edu
https://github.com/cailab-tamu/scTenifoldNet
https://cran.r-project.org/web/packages/scTenifoldNet/
https://cran.r-project.org/web/packages/scTenifoldNet/
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Network Construction

For a given expression matrix, a PC-regression network construction method5

is adopted to construct scGRN. PC regression is a popular multiple regression

method, where the original explanatory variables are first subjected to a PC

analysis (PCA) and then the response variable is regressed on the few leading

PCs. By regressing onM PCs (M << n, where n is the total number of genes in

the expressionmatrix), PC regression mitigates the overfitting and reduces the

computation time. To build an scGRN, each time we focus on one gene

(referred to as the target gene) and apply the PC-regression method, treating

the expression level of the target gene as the response variable and the

expression levels of other genes as the explanatory variables. The regression

coefficients from PC regression are then used to measure the strength of the

association of the target gene and other genes and to construct the scGRN.

We repeat this process n times, each time with one gene as the target gene.

At the end, the interaction strengths between all possible gene pairs are ob-

tained and an adjacency matrix is formed. The details of applying the PC-

regression method to a scRNA-seq expression data matrix are described as

follows.

More specifically, suppose X˛Rn3p is the gene expression matrix with n

genes and p cells. The ith row of X, denoted by Xi˛Rp
, represents the gene

expression level of the ith gene in p cells. We construct a data matrix, X�i˛
Rðn�1Þ3p

, by deleting Xi from X. To estimate the effects of the other n� 1 genes

to the ith gene, we build a PC-regression model for Xi. First, we apply PCA to

XT
�i and take the first M leading PCs to construct Z i = ðZi

1;/; Zi
MÞ˛ Rp3M,

where Zi
m˛R

p is the mth PC of XT
�i ; m = 1; 2; .; M. Mathematically, Z i =

XT
�iV

i , where V i˛Rðn�1Þ3M is the PC loading matrix for the first M leading

PCs, satisfying ðV iÞTV i = IM. Second, the PC-regression method regresses

Xi on Zi and solves the following optimization problem:

bb i
= arg minbi˛RMX i � Z i

bi2

2:

Then, ba i =V ibb i
˛Rn�1 quantifies the effects of the other n� 1 genes to the ith

gene. After performing PC regression on each gene, we collect fbaigni = 1

together and construct an n 3 n weighted adjacency matrix W of the gene-

gene interaction network. The ith row of W is ba i , and the diagonal entries of

W are all 0. Then we retain interactions with the top a% (= 5% by default) ab-

solute value in the matrix to obtain the scGRN adjacency matrix.

Tensor Decomposition

For each of the t subsamples of cells obtained in the cell subsampling step, we

construct a network using PC regression, as described above. Each network is

represented as an n3n adjacency matrix; the adjacency matrices of the t net-

works can be stacked to form a third-order tensor, T˛Rðn3n3tÞ. To remove the

noise in the adjacency matrices and extract important latent factors, the CP

tensor decomposition is applied. Similar to the truncated SVD of a matrix,

the CP decomposition approximates the tensor by a summation of multiple

rank 1 tensors.11 More specifically, for our problem:

TzTd =
Xd
r =1

lrar+br+cr ;

where +denotes the outer product, ar˛Rn;br˛Rn and cr˛Rt are unit-norm

vectors, and lr is a scalar. In the CP decomposition, Td is the denoised tensor

of T, which assumes that the valid information of T can be described by d rank

1 tensors, and the remaining part T� Td is mostly noise.

We use the function cp in the R package ‘‘rTensor’’ to do the CP decompo-

sition. For each sample, the reconstructed tensor Td includes t denoised

scGRNs. We then calculate the average of associated t denoised networks

to obtain the overall stable network. We further normalize entries by dividing

them by their maximum absolute value to obtain the final scGRNs for the given

sample. For later use, we denote the denoised adjacency matrices for the two

samples as Wx
d and Wy

d .

Manifold Alignment

Wx
d and Wy

d are then compared to identify changes in regulatory relationships

among genes and identify significantly affected genes. Instead of directly

comparing these two n3 n adjacency matrices, manifold alignment is applied

to match the local and non-linear structures among the data points ofWx
d and

Wy
d , project them to the same low-dimensional space, and build comparable

low-dimensional features. These features between two samples can then be
compared while maintaining the structural information of the two scGRNs.

Specifically,Wx
d andWy

d serve as the input for a manifold alignment algorithm

to find the low-dimensional projections Fx˛Rn3d and Fy˛Rn3d of genes from

each sample, where d << n. In terms of the underlying matrix representation,

we use Fx
i ˛R

d and Fy
i ˛R

d to denote the ith row of Fx and Fy that reflect the

features of the ith gene in X and Y, respectively.

We note that Wx
d and Wy

d may include negative values, which means genes

are negatively correlated. When an adjacency matrix contains negative edge

weights, the properties of the corresponding Laplacian are not entirely well un-

derstood.73 To mitigate this problem, we add 1 to all entries in Wx
d and Wy

d;

transforming the range of Wx
d and Wy

d from [�1,1] to [0,2]. As a result, all orig-

inal negative relationships have a transformed value in [0,1) and all original pos-

itive relationships have a transformed value in (1,2]. The projected features of

two genes with a positive correlation will be closer than those with a negative

correlation. For convenience, we still use Wx
d and Wy

d to denote the trans-

formed similarity matrices of two datasets.

Now we propose a specific manifold alignment method to find appropriate

low-dimensional projections of each gene. Our manifold alignment should

trade off the following two requirements: (1) the projections of the same ith

gene in two samples should be relatively close in the projected space and

(2) if the ith gene and jth gene in sample 1 are functionally related, their projec-

tions Fx
i and Fx

j should be close in the projected space, and the same is true for

sample 2. We minimize the following loss function:

LossðFx ;FyÞ = l
Xn

i =1

kFx
i � Fy

i k22 +
Xn

i;j =1

kFx
i � Fx

j k22Wx
i;j +

Xn

i;j =1

kFy
i � Fy

j k22W
y
i;j ;

where Wx
i;j and Wy

i;j denote the (i, j) entry of Wx
d and Wy

d , respectively. The first

term of the loss function requires the similarity between corresponding genes

across two samples; the second and third terms are regularizers preserving

the local similarity of genes in each of the two networks. l is an allocation

parameter to balance the effects of two requirements.

Oneway tominimize the loss function is by using an algorithm similar to Lap-

lacian eigenmaps,74 which requires the adjacency matrix to be symmetry, but

in our case bothWx
d andWy

d are asymmetric. Notice that if we symmetrizeWx
d

andWy
d byW

x = 1
2

�
ðWx

dÞT +Wx
d

�
andWy = 1

2 ððWy
dÞ

T
+Wy

dÞ, and again denote

Wx
i;j and Wy

i;j as the (i, j) entry of Wx andWy , then the value of the loss function

will not be changed. Thus, minimizing the loss function based on the symme-

trized adjacency matrices, Wx andWy , is equivalent to using the original adja-

cency matrices, Wx
d andWy

d. Based on this observation, using linear algebra,

we can write the loss function into the matrix form as LossðFx ; FyÞ =

2traceðFTLFÞ, where F =

�
Fx

Fy

�
, L = 1

2 ðD � WÞ, W =

2
4Wx l

2
I

l

2
I Wy

3
5, and D

is a diagonal matrix with Dii =
P
i

Wij . L is called a graph Laplacian matrix.

The default selection of l is 0.9 times the mean value of the row sums of Wx

andWy . By further adding the constraint FTF = I to remove the arbitrary scaling

factor, minimizing LossðFx;FyÞ is equivalent to solving an eigenvalue problem.

The solution for F = ½f1; f2;/; fd � is given by d eigenvectors corresponding to

the d smallest nonzero eigenvalues of L.75
Determination of the p Value of Differentially Regulated Genes

With F =

�
Fx

Fy

�
= ½f1; f2;/; fd � obtained in manifold alignment, we calculate the

distance dj between projected data points of two samples for each gene. One

may declare significant genes according to the ranking of dj’s. To avoid arbi-

trariness in deciding the number of selected genes, we propose to use c2 dis-

tribution to determine the significance of genes.76 Specifically, d2
j is derived

from the summation of squares of differences of projected representations

of gene j for two samples, whose distribution could be approximately c2. To

adjust the scale of the distribution, we compute the scaled fold change defined

as df,d2
j =d

2 for each gene j, where f denotes the average of d2
j among all the

tested genes. The scaled fold change approximately follows c2 distribution

with the degree of freedom df if the gene does not perform differently in the
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two samples. By using the upper tail (P[X > x]) of the c2 distribution, we assign p

values for genes and adjust them for multiple testing using B-H FDR correc-

tion.77 To determine df, since the number of the significant genes will increase

as df increases, we use df = 1 to make a conservative selection of genes with

high precision.

Functional Enrichment Analyses

Functional enrichment analysis of gene sets was performed using Enrichr,78,79

which is a web-based, integrative enrichment analysis application based on

more than 100 curated gene set libraries. The test of enriched TF targets

was performed using the ChIP-X enrichment analysis40 based on comprehen-

sive results from ChIP-seq studies. Finally, predefined gene sets from the

REACTOME, BioPlanet, and KEGG databases were tested for enriched func-

tions using the pre-ranked GSEA.26

Simulations of scRNA-Seq Data and Benchmarking of Network

Methods

A systematic evaluation of state-of-the-art algorithms for inferring scGRNs

was performed using BEELINE.10 We applied scTenifoldNet/PC regression

and other scGRN inference algorithms to a dataset called GSD, which is

derived from a curated Boolean model.80 These methods include PIDC,27

PPCOR,81 LEAP,82 GRNBOOST2,83 GENIE3,2 SCINGE,84 SINCERITIES,85

GRISLI,86 SCODE,87 GRNVBEM,88 and SCNS.89 Due to compatibility issues,

Scribe90 was not included in the comparison. We processed the dataset

through the uniform pipeline provided by BEELINE, including (1) data pre-pro-

cessing, (2) generation of Docker containers for scTenifoldNet/PC regression

and the 11 above-mentioned algorithms, (3) parameter estimation, and (4)

post-processing and evaluation. Throughout the analysis, no information on

TF-target relationships was given to any tested algorithm. We compared algo-

rithms based on their average performance among three different metrics:

AUROC, AUPRC, and time of computing. AUROC shows the performance of

a tested algorithm by presenting the trade-off between true positive rate

TP/(TP + FN) and false positive rate FP/(FP + TN) across different decision

thresholds, while AUPRC shows the area under the precision TP/(TP + FP)-

recall TP/(TP + FN) curve computed for different decision thresholds between

1 and 0 using
P
i

ðRi � Ri�1ÞPi, where Pi and Ri are the precision and recall at

the ith threshold, summarizing a weighted mean of precisions achieved at

each threshold with the increase in recall from the previous threshold used

as the weight. TP stands for true positive, TN true negative, FP false positive,

and FN false negative.

We generated our own synthetic datasets using SERGIO, a single-cell

expression simulator guided by GRNs.28 SERGIO allows for the simulation

of scRNA-seq data while considering the linear and non-linear influences of

regulatory interactions between genes. SERGIO takes a user-provided GRN

to define the interactions and generates expression profiles of genes in steady

state using systems of stochastic differential equations derived from the

chemical Langevin equation. The time course of mRNA concentration of

gene i is modeled by:

vXi

vt
= PiðtÞ � lixiðtÞ+qi

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
PiðtÞa

p �
;

where xi is the expression of gene i; Pi is its production rate, which reflects the

influence of its regulators as identified by the given GRN; li is the decay rate; qi
is the noise amplitude in the transcription of gene i; and a is an independent

Gaussian white noise process. To obtain the mRNA concentrations as a func-

tion of time, the above stochastic differential equation is integrated for all

genes as follows:

ðXiÞt = ðXiÞt0 +
Z t

to

ðPiðtÞ� lixiðtÞÞvt +
Z t

t0

qi

� ffiffiffiffiffiffiffiffiffiffi
PiðtÞ

p �
vWa:

The simulation was focused on testing and comparing the performance of

PC regression and several other methods (SCC, MI, GENIE3) using sparse

data without imputation. The relationships between 100 genes were simulated

as they belong to twomajor modules containing 40 and 60 genes, respectively.

Each module is under the influence of one TF. We used the steady-state sim-

ulations to synthesize data to generate expression profiles of 100 genes, ac-

cording to the parameter setting for two modules.
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For each of the tested methods, we randomly selected n = {10, 50, 100, 500,

1,000, 2,000, 3,000} cells from the simulated data 10 times and built 10

scGRNs. For each n, relevance measurements (accuracy and recall) were

evaluated for each of the 10 networks using the match of the sign of the rela-

tionships between genes to compute the following formulas: accuracy = (TP +

TN)/(TP + TN + FP + FN) and recall = TP/(TP + FN). For the MI and GENIE3

methods that provide only positive values, the median value was used as

the center point, and then the values were scaled to [�1,1] by dividing them

over the maximum absolute value.
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