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Abstract: Consciousness is a central issue in neuroscience, however, we still lack a formal framework
that can address the nature of the relationship between consciousness and its physical substrates.
In this review, we provide a novel mathematical framework of category theory (CT), in which we
can define and study the sameness between different domains of phenomena such as consciousness
and its neural substrates. CT was designed and developed to deal with the relationships between
various domains of phenomena. We introduce three concepts of CT which include (i) category;
(ii) inclusion functor and expansion functor; and, most importantly, (iii) natural transformation
between the functors. Each of these mathematical concepts is related to specific features in the neural
correlates of consciousness (NCC). In this novel framework, we will examine two of the major theories
of consciousness, integrated information theory (IIT) of consciousness and temporospatial theory
of consciousness (TTC). We conclude that CT, especially the application of the notion of natural
transformation, highlights that we need to go beyond NCC and unravels questions that need to be
addressed by any future neuroscientific theory of consciousness.

Keywords: consciousness; mathematics; category theory; neural correlates of consciousness;
integrated information theory; temporospatial theory of consciousness

1. Introduction

“There is no certainty in sciences where mathematics cannot be applied”

(Leonardo da Vinci)

Consciousness has long been regarded as a mysterious phenomenon, and it has been mainly
dealt with in philosophy. Past philosophers such as Descartes argued that consciousness is only
accessible from the first-person perspective and cannot be explained from the third-person perspective.
This tradition is followed by present philosophers who speak of an unbridgeable gap between the
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third-person physical objects of brain and first-person consciousness, formulated as the “explanatory
gap problem” [1] or the “hard problem” [2] (see Part IV in [3] for a general overview). However, recent
neuroscientific research postulates that consciousness is a biological phenomenon and the first-person
perspective and phenomenal experience needs to be explained in a scientific framework [3–7].

The assumption of consciousness as a biological phenomenon has led neuroscience to search
for the neural correlates of consciousness (NCC) [3,8–12]. The NCC has been defined as the
minimum neuronal mechanisms jointly sufficient for any one specific conscious percept [11]. Recent
progress in consciousness research introduces the following two refined interpretations of the NCC:
(1) content-specific NCC, which determines a particular phenomenal distinction within an experience
and (2) full NCC, which supports conscious experiences in their entirety, irrespective of the contents [13].

Major neuroscientific theories of consciousness, based on the empirical neuroscientific findings
around the NCC, include the integrated information theory (IIT) [14,15], the global neuronal workspace
theory (GNWT) [16–19] and most recently, the temporospatial theory of consciousness (TTC) [3,5,20,21].
Others include the higher order theories of consciousness [22,23], recurrent processing theory [24],
operational space and time [25], neural synchrony [26], and social and attention schema theory [27].
Because the discussion of all these approaches is beyond the scope of this paper, we focus on two of the
major theories, the integrated information theory (IIT) and temporospatial theory of consciousness (TTC).

The essential problem in our search for the NCC consists in bridging two domains of relationships,
that is, relationships among the contents in conscious experience in the mental domain and relationships
among neurons in the physical domain. One can thus speak of ”neurophenomenal relationship”
connecting the brain’s neuronal states and the phenomenal features of consciousness [3,6]. One of the
theories, IIT, for example, proposes the identity, which is one of the possible ontological relationships,
“between experiences and conceptual structures” ([15], p. 11). Independent of how one frames the
relationship in conceptual terms, theories about the NCC must address this fundamental problem about
the relationships between physical and mental domains [28]. Transcending the empirical investigation
of the neuronal states themselves, this requires mathematical tools to formalize the relationships
between the two domains.

In consciousness research, there have been sporadic attempts to apply mathematical tools to
bridge the gap between the physical and the mental domains [29–35]. However, tools such as graph
theory, topology, algebra, and set theory are not sufficient to deal with the problem of consciousness.
What is lacking in these mathematical tools is a strong mathematical formalization of relationships.
Because the relationships are so fundamental in the physical and the mental domains, the mathematical
tools that are built to deal with the relationships is the ideal tool for the studies of the NCC. In this
review, we introduce a mathematical formalism, called category theory (CT). CT provides us with rich
and mathematically well-developed classes of relationships, with natural transformation being the
most important in this review.

Historically, CT was developed to establish and formalize relationships between different domains
of knowledge that seem to differ in a fundamental way (for example, the mathematical fields of algebra
and geometry) [36]. Such relationship could be established by introducing the notion of natural
equivalence. Recently, CT has been proven extremely successful in connecting distinct domains of
knowledge such as when unifying physics, topology, logic, and computation [37]. That renders CT a
suitable mathematical candidate for consciousness research in its quest to formalize the relationship
between two distinct domains, the physical and the phenomenal.

In fact, CT has been applied in neuroscience to memory [38–40] neural networks [41], perception [8],
and cognition [42,43]. Going beyond a previous more general first attempt [28], in this review we
propose that CT provides a useful mathematical framework for formalizing the neurophenomenal [3,6]
relationship that underlies consciousness. For that purpose, we introduce three core concepts of CT
including (i) category, (ii) inclusion functor and expansion functor, and (iii) natural transformation
between them. Strategically, however, we will focus on dissecting the neuronal relationships, rather
than address the neurophenomenal relationship directly.
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One of the objectives of our paper is to provide a first step towards developing a mathematical
formalization of the relationship between neuronal and phenomenal domains in the NCC. This will
first be explicated on mathematical grounds and then applied to the NCC with IIT and TTC serving
as paradigmatic test cases. Another objective is, through this exercise, to gain new insight into
consciousness research, in particular, on the NCC, IIT, and TTC. We conclude that these CT-based
concepts highlight similarities and complementarities in IIT and TTC. In particular, successful
application of a natural transformation to IIT may open up a possible pathway to infer patterns of
integrated information of a large system based on the patterns of integrated information of a subsystem
that is a part of the larger system, which we tentatively term “reverse reductionism”. Furthermore,
CT unravels and highlights several conceptual problems associated with content-specific NCC and
full NCC, especially the consideration of essential roles played by natural transformation. In short,
we point out that an exclusive focus on the relationship between one neuronal and one phenomenal
state is unlikely to yield further fundamental progress in neuroscience of consciousness. Rather,
we suggest that the focus should be on the relationships between different neuronal states and different
phenomenal states. Such a shift of the focus will naturally lead to future neuroscientific theories of
consciousness, which extend and go beyond the traditional concept of the NCC.

2. Category and Consciousness

2.1. Definition of Category

A category is a system consisting of objects and arrows and satisfying the four conditions as
shown in Figure 1.
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Figure 1. (a) Objects, arrows, domain, codomain: Each arrow f is associated with two objects, dom(f) and
cod(f), which are called the domain and the codomain of (f). When dom(f) = X and cod(f) = Y, we denote
f: X→Y, as shown in Figure 1a. (The direction of the arrow can be in any direction, from left to right or
reverse, whichever is convenient.) A system with arrows and objects is called a diagram. (b) Composition:
If there are two arrows f and g, such that cod(f) = dom(g), there is a unique arrow, (c) g ◦ f, called the
composition of f and g. A diagram is called commutative when any compositions of arrows having the
common codomain and domain are equal. (d) Associative law: (h ◦ g) ◦ f = h ◦ (g ◦ f). In other words, the
diagram is commutative. (e) Unit law: For any object X there exists an arrow 1X: X→X, such that the diagram
is commutative for any f: X→Y. In other words, f ◦ 1X = f = 1Y ◦ f for any f. 1X is called the identity of X.
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By the natural correspondence from objects to their identities, we can identify an object (e.g., X) as
its identity (e.g., 1X). In other words, we may consider objects are just special cases of arrows. This is
one exemplar case where arrows play a more important role than objects in CT. In the following we
sometimes adopt this viewpoint.

To sum up, the formal definition of a category is the following:

Definition 1. A category is a system composed of two kinds of entities called objects and arrows, which are
interrelated through the notion of domain and codomain, equipped with composition and identity, satisfying the
associative and the unit law.

One of the strengths of the category theory is that it provides a unified formulation of sameness
between different things, based on the notion of isomorphism, which is invertible arrows. More precisely:

Definition 2. An arrow f: X→Y in a category C is called an isomorphism in C if there exists some arrow g: Y→X
such that g ◦ f = 1X and f ◦ g = 1Y. Two objects are called isomorphic if there is some isomorphism between them.

Two isomorphic objects are essentially the same within the category. If X and Y are isomorphic
and X are linked to some other objects through some arrow, then composition with the isomorphism
provides the arrow from Y as well. Then Y can be considered as a version of X, which is the same as X,
even when Y is completely different from X.

A famous isomorphism is the sameness between a donut and a coffee cup in topology. It actually
means that they are isomorphic in a category Top, whose objects are topological spaces (a vast
generalization of the notion of figures) and arrows are continuous maps, i.e., continuous transformations.
We will use this notion of isomorphism in the following sections.

2.2. Category and Consciousness

One of the most fundamental problems in consciousness research is to clarify the relationship
between the neuronal and the phenomenal domains, the neurophenomenal relationship as stated by
TTC [3,21].

From the CT viewpoint, the phenomenal domain can be formulated as a category whose objects
are contents of consciousness as experienced and arrows are relationships between them as experienced.
Let us call this category the phenomenal category and denote it as P.

The formulation of the neuronal category turns out to be problematic, which is the reason why we
focus on the NCC in this paper. To see the nature of the problem, consider the representative
neuroscientific approach to the problem of consciousness, to identify the neural correlates of
consciousness (NCC). Content-specific NCC are usually defined as “the minimum neuronal mechanisms
jointly sufficient for any one specific conscious percept” [13]. This definition is vague as to whether
”neuronal mechanisms” mean either the anatomical structure or the activity states of the neurons in the
relevant mechanisms. Typically, the anatomical structure is assumed to be one that is usually found in
the healthy brains of adult humans who can introspectively report their contents of consciousness with
accuracy. Under such an anatomical assumption, a pattern of neural activity in a specific anatomical
location over a certain temporal period is usually considered to be content-specific NCC. An example of
a face-related NCC is the extended neural activation infusiform gyrus in the right hemisphere [44–47].
If the activity in this area is transiently lost due to electrical stimulation, face perception gets disrupted
without affecting other types of percept [48].

A traditional NCC approach can be described as a research paradigm, where a snapshot of
the pattern of neural activity, N, is minimally sufficient for a specific conscious phenomenology
P. For example, Chalmers (2000) wrote, as one potential way to define the NCC for an arbitrary
phenomenal property P, as follows:
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“A neural correlate of a phenomenal family S is a neural system N such that the state of N
directly correlates with the subject’s phenomenal property in S.”

From the CT perspective, this approach can be rephrased as the following: First, it tries to identify
the neuronal category N as the category whose objects are patterns of neuronal activities in a specific
region of the brain and whose arrows are transitional relationships between the patterns of neuronal
activities. The phenomenal category P can be considered with its objects content of consciousness
and with arrows transitional relationships. Second, it tries to find a sufficiently strong correlational
relationship between the regions’ neuronal activities, for example, its neuronal state, and the category
of consciousness, regarding it as the NCC.

While this approach seems quite natural, it has several difficulties, as pointed out by others (e.g.,
see [49]). One of the fundamental issues is that the neural activity pattern, N, needs to be defined
within some anatomical reference frame. For example, face perception is typically correlated with
the neural activity in fusiform face area (FFA) in normal healthy subjects. However, brain-damaged
patients, whose damage spares a more or less normal level of neural activity in FFA, can be impaired
in face perception [50]. Considering even more extreme cases, almost nobody would argue that a
conscious face phenomenology, p, arises from the neural activity pattern N within FFA, which are
artificially cut from the rest of the brain and kept alive and functional in a jar. Even if such an entity
were to experience consciousness, unlike normal healthy humans, it would not experience it as a
visual face phenomenology because it does not have any capabilities to experience other possible
phenomenologies to compare with [51,52].

To summarize, most traditional NCC approaches implicitly require that the NCC is embedded in
some anatomical reference frame that extends beyond a single region as the NCC. This entails that
the neuronal activities of two, if not more, regions will serve as the NCC, which renders problematic
the assumption of a single neuronal state, N, serving as the NCC. We must consequently raise the
question of the exact relationship between the anatomical reference frame, for example, different
regions and the neural activity patterns, for example, the neuronal states. In this paper, to address this
issue, we propose to consider the “relationship” between at least two neuronal categories, N0 and N1,
instead of one single category N. In short, we consider N0 as the actual state of the neural activity of the
actual network, and N1 as all possible states of the neural activity of all possible networks. (To clarify,
when we say that N0 is actual at a given moment, we are considering the actual anatomical structure,
which includes strength of stochastic connections between elements (e.g., synaptic connections among
neurons), which determines the transition probability matrix and the momentary dynamics of the
system. Furthermore, N0 also specifies the actual activity pattern that the network is in at that given
moment. While N1 includes all possible anatomical structures with all possible activity patterns, the
ones that directly determine the NCC are those that ae related to N0 (actual). Note also that we do
not refer to NCC as either actual or possible. Rather, we argue that the NCC should be considered
as the relationship between N0 AND N1. The relationship between N0 AND N1 jointly determines
its relationship to the phenomenal domain, P.) As we argue, considering how the actual network
state and structure (N0) is embedded in a larger context of all possible network states and structures
(N1) [52], in turn, that will allow us to clarify why we need to consider the anatomical reference
frame to consider the NCC. This allows us to reconsider the relationship between the neural and
the phenomenal categories in a more nuanced way and consequently to account for the phenomenal
features of consciousness in a more comprehensive way. In the next section we will give a more
detailed explanation of the way to conceive how the two categories, N0 and N1, are related to the
phenomenal category, P, in the context of IIT and TTC.

2.3. Categories in IIT and TTC

IIT and TTC theories conceive a more complex notion of content-specific NCC that extends
and goes beyond the assumption of a single neuronal state, for example, category N, serving as
content-specific NCC. Thus, these theories agree that we need to introduce at least two neuronal



Entropy 2019, 21, 1234 6 of 21

categories (e.g., N0 and N1) to explain content-specific NCC, however, IIT and TTC differ in the exact
formulation of the two neuronal categories. Note, here, we do not go into details of IIT and TTC and
instead we focus on those aspects that are relevant within the present category theoretical approach.

2.3.1. Categories in IIT

For the full description of IIT, see [14,15,53] (We note that CT analysis of IIT, in and of itself alone,
is highly unlikely to help solve many known difficulties in the calculation of integrated information in
IIT (e.g., finding the minimum partition of a system which is composed of many elements). For this
type of specific problem, specific mathematical analysis and invention is necessary (e.g., [54,55]).
Instead, what CT offers are more abstract, yet potentially more widespread and high-impact, problem
solutions, as we elaborate later on (e.g., the reverse reductionistic approach)). Briefly, IIT starts from
identifying the essential properties of phenomenology (existence, composition, information, integration,
and exclusion [53]) and then claim phenomenology is “identical” to the conceptual structures. Then IIT
proposes several postulates based on which types of physical mechanisms could potentially support
such conceptual structures.

One essential aspect of IIT is that rather than focusing on only the actual state of a set of neurons,
it considers the relationship between all possible states and an actual state of the set. Any conscious
experience is informative in the sense that it specifies one of many possible experiences. Furthermore,
IIT considers how a system (or a mechanism) is potentially affected when the system is disconnected
in all possible ways. In other words, IIT considers the relationship between all possible network
configurations and an actual network configuration.

The original IIT can be regarded to propose a relationship between conscious experience
(or phenomenal category, P), conceptual structure (or informational structure category, I), and physical
substrates (or neural category, N), where P is “identical” to I [14,53]. One way to view IIT is a functor
from N to I (see Functors and natural transformations in IIT and TTC, Section 3.3). So far, IIT just
assumes that I is “identical” to P. (IIT starts with the assumption that I, which is called maximally
irreducible conceptual structure (MICS) in IIT, and P are identical [53]. In CT, the term “identity” has a
very strict and well-defined meaning, and an “identity” relationship in CT sense is highly unlikely to
be applicable between MICS and P. Mathematically, the assumption of the identity is way too strong.
We believe the existence of functor from MICS to P, and from P to MICS as well, are reasonable to
expect (and can be empirically tested through experiment [56]. In addition, adjunction is likely to
exist between them (for those other concepts in CT, see [57]). With another advanced concept of
categorical equivalence (which we will not go into the details in this paper), P may be shown to be
categorically equivalent with MICS. As a possibly most strong relationship, we can expect P and
MICS to be categorically isomorphic [58], where starting from MICS to go to P, we can always come
back to the same MICS (and also starting from P to MICS and then back to P), but above and beyond
this (e.g., identity) is not possible to test scientifically and mathematically. Isomorphic categories are
usually “not” identical.) Future work is needed to investigate the detailed formulation and analysis
on the structure of I or P (Tsuchiya and Saigo, in preparation). Thus, in this paper, we will focus on
how IIT treats the category of N through an IIT functor and a possible IIT natural transformation
(as we introduce in functor, natural transformation, and consciousness) and demonstrate that rigorous,
yet complex, operations of IIT [53] can be reinterpreted through CT, which eventually offers a fresh
and interesting insight on a potential reverse reductionistic approach in IIT.

Let us start considering what are the essential categories in IIT and what corresponds to objects
and arrows in category N0 and N1 in IIT. (Note that we grossed over various details that are important
for IIT3.0 (e.g., distinction between past and future). In particular, how decomposed subnetwork
should be embedded with the original network requires careful consideration of so-called “purview”
in IIT3.0. Within the IIT’s algorithm, what we call “decomposition” corresponds to a step where one
evaluates all potential candidate ϕ or small phi. For example, for a system ABC, its power set, A, B, C,
AB, BC, AC, and ABC needs to be evaluated. In some cases, decomposed candidate small phis may not
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exist, and thus it may better be called “potential decomposition”. However, for simplicity, we prefer to
call it “decomposition”.) We propose that in IIT category an object is a stochastic causal network with
transition probability matrix (TPM) to describe its state transition and an arrow is a manipulation on
the network with the TPM (Figure 2). IIT considers various rules for the types of manipulations and
selections of arrows, however, these manipulations can be relaxed or compared with various other
types which could be an informative research direction in its own. For our purpose, it is important to
note that IIT considers configurations of causal relationships by quantifying how each powerset of
mechanism contributes to the whole. IIT does this by introducing an arrow that we call decomposition.
Decomposition operation can be considered as something similar to marginalization. The purpose
of the decomposition operation is to consider and quantify how much a neuron, A, contributes to
a system of neurons, A and B. Thus, given an object AB, we have at least three arrows as follows:
AB→AB (identity), AB→A, and AB→B. Decomposition arrows capture one of the central properties of
IIT, that is, axiom and postulate of “composition” in consciousness.
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TPM (Note that we grossed over various details that are important for IIT3.0 (e.g., distinction between
past and future). In particular, how decomposed subnetwork should be embedded with the original
network requires careful consideration of so-called “purview” in IIT3.0. Within the IIT’s algorithm, what
we call “decomposition” corresponds to a step where one evaluates all potential candidate ϕor small
phi. For example, for a system ABC, its power set, A, B, C, AB, BC, AC, ABC needs to be evaluated.
In some cases, decomposed candidate small phis may not exist, thus it may better be called as “potential
decomposition”. However, for simplicity, we prefer to call it as “decomposition”.). Decomposition allows
IIT to quantify the causal contribution of a part of the system to the whole. (b) Disconnection arrows find
the minimally disconnected network, which captures the concept of the amount of integration in IIT.

Note, N0 satisfies all the requirement to be a category (identity, associativity, and compositionality
are all satisfied).

Next, consider a category, N1, in which objects are all possible networks associated with TPM. N1’s
arrows are decomposition as in N0 and also disconnection. Disconnection operation can be considered
as transformation of TPM to another TPM through (virtual) disconnection of the network, such that
subsets of the network are statistically independent [59,60]. Disconnection arrows capture another
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central property of IIT, that is, axiom and postulate of “integration” in consciousness. The disconnection
arrow can be related to the amount of integrated information.

Again, note that N1 also satisfies all the requirements to be a category. In functor, natural
transformation, and consciousness, we will discuss how these categories are related through functors.

2.3.2. Categories in TTC

Unlike IIT, the TTC does not consider different neurons’ or regions’ activities as starting point
to distinguish different neuronal states. Instead, TTC stresses the temporal dimension, and thus the
dynamics of neuronal activity as it operates across different regions and points in time (for details,
see [3,5,6,12,20,21,61,62]). Specifically, for the TTC, N0 and N1 are the temporal dynamics of neural
systems (extending possibly across all brain areas). N0 precedes N1 in time. In other words, N0 can be
regarded as prestimulus (which ultimately can be traced to the continuously ongoing dynamics of the
spontaneous activity) and N1 as poststimulus neural activity.

Note, we operationally distinguish pre- (N0) and poststimulus (N1) activity in order to empirically
consider a case where some stimulus is consciously perceived by someone. Here, prestimulus
activity refers to the ongoing dynamics prior to its modulation by any specific stimulus. In contrast,
poststimulus activity describes the activity following the onset of a specific stimulus, this activity
contains the activity evoked by the stimulus itself and the ongoing dynamics, with the latter overlapping
from the pre- into the poststimulus interval. Importantly, both components, internal prepoststimulus
ongoing dynamics and poststimulus evoked activity related to the external stimulus interact in a
dynamical, for example, non-additive, way (see below, [63–65]). To support the claim of the dynamical
interaction of internal pre and post ongoing dynamics and external stimulus, we consider the empirical
data in fMRI [66–69] and EEG and MEG [70–73]. These data show that the amplitude and variance of
prestimulus activity plays a major role in whether the subsequent stimulus and its respective contents
becomes conscious or not. Typically, high prestimulus activity levels, e.g., high amplitude or variance,
are more likely to allow for associating contents with consciousness than low prestimulus activity levels.
Baria and colleagues [72] showed that the prestimulus activity level, up to 1.8 s prior to stimulus onset,
can predict (on a single trial level, above chance) whether a visual content will be consciously seen
or not. Moreover, prestimulus activity levels are not only relevant in the region typically processing
the respective stimulus, for example, similar to FFA for face stimuli and auditory cortex for auditory
stimuli, etc. Additionally, the prestimulus activity level in other more distant regions like parietal and
prefrontal cortex have also been shown to be relevant for impacting conscious perception of an object
during the poststimulus period [66–69].

Together, these data suggest that both prestimulus activity levels, for example, amplitude and
variance, and poststimulus activity level may need to be included in content-specific NCC. Specifically,
as emphasized by TTC, it is the temporal and spatial dynamics of the prestimulus activity, for example,
its variance being present in different regions, that is central for associating poststimulus activity and
its contents with consciousness (see below for more details on the pre- and poststimulus dynamics and
how it allows for a particular visual stimulus to be consciously perceived).

Accordingly, the TTC entails a more complex notion in content-specific NCC, which extends
and goes beyond a single neuronal state (and thus also beyond the neural prerequisites of
consciousness, [8,10]) when assuming the temporospatial dynamics of two distinct neuronal states to
underlie consciousness. Mathematically, that requires two distinct neuronal categories, i.e., N0 and N1
in order to formalize content-specific NCC of TTC within the context of CT.

To be more explicit, for TTC, objects of N0 and N1 are neural activity over time and space, and
arrows are explicitly defined only for identity. This guarantees that N0 and N1 are both categories.

As a critical component to consider consciousness, TTC considers temporal dynamics of pre- (N0)
and poststimulus (N1) neural activities as objects of these categories. Therefore, TTC is compatible
with a dynamic systems approach that emphasizes attractor and “dynamical activity space trajectories”
as distinguished from single points in time and space (as we perceive and cognize them) [35,74].
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Such dynamical structure, for example, “dynamical trajectory space” [34], is assumed to account for
consciousness and, more specifically, the phenomenal features of consciousness [21,30,74]. Framed in
the context of CT and its focus on natural transformation, TTC claims that temporospatial dynamic is
central for transforming neural activity, e.g., N0 and N1, into phenomenal features, for example, P.

In summary, although the specifics are different, IIT and TTC are clearly going beyond a traditional
NCC conceptualization, a particular neural state at a given time N to correspond to a particular
phenomenal state, P. Rather, IIT and TTC both point to it as a relationship between N0 and N1 that
corresponds to a particular phenomenal state, P. In the next section, we will introduce a mathematical
tool to consider a relationship between the two categories, that is, functor.

3. Functor, Natural Transformation, and Consciousness

3.1. Definition of Functor and Natural Transformation

A functor is defined as a structure-preserving transformation between two categories. In fact,
a functor is defined as an arrow in “the category of categories”, shown in Figure 3 below.

Definition 3. A correspondence F from a category C to another category D which maps each object and arrow
in C to a corresponding object and arrow in D is called a functor if it satisfies the following 3 conditions:

1. It maps f: X→Y in C to F(f): F(X)→F(Y) in D;
2. F(f ◦ g) = F(f) ◦ F(g) for any (composable) pair of f and g in C;
3. For each X in C, F(1X) = 1F(X).
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Figure 3. Schematic depiction of a functor: a structure-preserving mapping from one category to
another category.

In short, a functor is a correspondence which preserves categorical structure. Through a functor,
one category and its associated structure is related to those in another category and its associated
structure. A functor allows us to consider the possibility to relate obviously different domains (e.g., the
phenomenal and the neuronal) to each other.

One of the most important notions that we introduce in the present paper is what we describe as
an “inclusion functor” (Figure 4a). Let us consider two categories C and D. A functor F from C to D is
called an inclusion functor if:

For any pair of object X, Y in C and arrows f, g in C from X to Y, i.e., dom(f) = dom(g) = X and
cod(f) = cod(g) = Y, F(f) = F(g) implies f = g. (Functors satisfying this condition are called “faithful”.)

For any pair of objects X and Y in C, F(X) = F(Y) implies X = Y.
When there is an inclusion functor from C to D, C is called a subcategory of D. (From a more

radically category theoretical viewpoint, the inclusion functor F itself is called subcategory.)
The intuition for the terms can be explained as follows (also see Figure 3): Let us consider the

situation that any object and arrow in C has a corresponding object and arrow in D, and the notion of
dom and cod, composition, and identity for C are in common with those for D. Then it is quite natural
to think of C as a subsystem of D, and thus to call C a subcategory of D. In this situation, we can define
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an inclusion functor F as a map sending each object and arrow in C as an object and arrow in D, i.e.,
F(X) = X and F(f) = f for any object X and arrow f (Here X and f in the left hand side are an object and
an arrow in C and those in the right hand side are those considered in D).Entropy 2019, 21  10 
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Figure 4. (a) Definition of “inclusion functor”. (b) Subcategory C is included by category D if inclusion
functor F: C->D exists. Note that C does not need to be “a part of” D to be “included” (unlike a
commonsense definition of “inclusion”).

Let us briefly summarize the meaning of the inclusion functor. The existence of the inclusion
functor from N0 to N1 essentially means that N0 is a “subcategory” of N1. An inclusion functor i plays
a fundamental role in this paper. i is defined by i(X) = X and i(f) = f (Figure 5). It works as the “basis”
of the consciousness phenomena.
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Figure 5. (a) Inclusion Functor i: N0→N1. N0 is included in N1 through Inclusion Functor i.
(b) Expansion Functor e: N0→N1. e is a different structure preserving mapping from N0 to N1 (i.e., a
functor from N0 to N1), but there is “natural transformation” from i to e.

To define the notion of expansion functor, which is a functor different from inclusion functor
but closely related to it, we need to define the notion of “natural transformation” as a relation
between functors.
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A functor is an “arrow” between two categories, but a functor can also be considered an object in
CT (as an arrow can be considered an object, see definition of category, Section 2.1). When we consider
functors themselves as “objects”, we call “arrows” between functors “natural transformations”.

The definition of natural transformations is the following (Figure 6):

Definition 4. Let F, G be functors from category C to category D, a correspondence t is called a natural
transformation from F to G if it satisfies the following two conditions:

1. t maps each object X in C to corresponding arrow tX: F(X)→G(X) in D;
2. For any f: X→Y in C, tY ◦ F(f) = G(f) ◦ tX.

Entropy 2019, 21  11 

 

Figure  5.  (a)  Inclusion Functor  i: N0→N1. N0  is  included  in N1  through  Inclusion Functor  i.  (b) 

Expansion Functor e: N0→N1. e is a different structure preserving mapping from N0 to N1 (i.e., a 

functor from N0 to N1), but there is “natural transformation” from i to e. 

To define the notion of expansion functor, which is a functor different from inclusion functor 

but closely related to it, we need to define the notion of “natural transformation” as a relation between 

functors. 

A functor is an “arrow” between two categories, but a functor can also be considered an object 

in CT  (as an arrow can be considered an object, see definition of category, Section 2.1). When we 

consider  functors  themselves  as  “objects”,  we  call  “arrows”  between  functors  “natural 

transformations”. 

The definition of natural transformations is the following (Figure 6): 

 

Figure 6. Definition 4: Let F, G be functors from category C to category D, a correspondence t is called 

a natural transformation from F to G if it satisfies the following two conditions: 

1. t maps each object X in C to corresponding arrow tX: F(X)→G(X) in D; 

2. For any f: X→Y in C, tY ∘ F(f) = G(f) ∘ tX. 

For the natural transformation, we use the notation such as t: F⇒G. In Figure 6, the upper‐right 

part denotes the arrow in C (f: X→Y). The lower‐left part denotes the natural transformation from F 

to G  (t:  F⇒G).  The  second  condition  in  the  definition  of  natural  transformation means  that  the 

diagram in the lower‐right part commutes. 

Intuitively speaking, a natural transformation from functor F to functor G is the system of arrows 

indexed by objects, which satisfies certain consistency conditions. This is an interesting property of 

CT and it is one of the most important concepts we introduce to consciousness research in this paper. 

A meta‐level and abstract concept of a natural transformation is represented as a set of lower‐level 

and concrete concept of arrows in a category. (We believe this nested mathematical structure of CT 

is particularly  suited  to  capture  some  structural properties of  the domain of phenomenology, P, 

which we will describe elsewhere.) 

Now,  equipped with  this notion  of  a natural  transformation, we  can  talk  about  a  structure 

preserving map between two functors. Now, we introduce the notion of an expansion functor, as a 

functor towards which there is a natural transformation from inclusion functor. (Note, an expanding 

functor  is not  the  standard  term  in CT. We name  it  for  the  importance  in  consciousness  studies, 

however, inclusion functor is a standard term in mathematics.) That is to say, an expansion functor, 

e, is an expanded form, or a version of the inclusion functor, i, transformed through some natural 

transformation. 

3.2. Functor, Natural Transformation, and Consciousness 

With the concepts of inclusion and expansion functors and natural transformation, we can now 

propose  to provide  a more  explicit  relationship between  the neural  activity N  to  the  anatomical 
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functor to another functor.

For the natural transformation, we use the notation such as t: F⇒G. In Figure 6, the upper-right
part denotes the arrow in C (f: X→Y). The lower-left part denotes the natural transformation from F to
G (t: F⇒G). The second condition in the definition of natural transformation means that the diagram
in the lower-right part commutes.

Intuitively speaking, a natural transformation from functor F to functor G is the system of arrows
indexed by objects, which satisfies certain consistency conditions. This is an interesting property of
CT and it is one of the most important concepts we introduce to consciousness research in this paper.
A meta-level and abstract concept of a natural transformation is represented as a set of lower-level
and concrete concept of arrows in a category. (We believe this nested mathematical structure of CT is
particularly suited to capture some structural properties of the domain of phenomenology, P, which we
will describe elsewhere.)

Now, equipped with this notion of a natural transformation, we can talk about a structure preserving
map between two functors. Now, we introduce the notion of an expansion functor, as a functor towards
which there is a natural transformation from inclusion functor. (Note, an expanding functor is not the
standard term in CT. We name it for the importance in consciousness studies, however, inclusion functor
is a standard term in mathematics.) That is to say, an expansion functor, e, is an expanded form, or a
version of the inclusion functor, i, transformed through some natural transformation.

3.2. Functor, Natural Transformation, and Consciousness

With the concepts of inclusion and expansion functors and natural transformation, we can now
propose to provide a more explicit relationship between the neural activity N to the anatomical
structure, where N is embedded, which is a necessary step to go beyond the traditional NCC approach.
In this paper, we use the inclusion functor, i, as the basis and expansion functors as its expanded
version, to stress the importance of the idea that expansion functors are the variations from the functor,
i, as the basis through some natural transformation.
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In the next section, we point out that some essential aspects of IIT and TTC can be captured by a
considering different versions of expanding functors generated from the inclusion functor. We show
that IIT and TTC distinguish between inclusion and expansion functor. As in the case of N0 and N1,
interestingly, we will see that IIT and TTC can possibly incorporate inclusion functors, expansion
functors, and natural transformations between them in different manners. Regardless of the specifics
of the theories, we argue that these concepts of functor and natural transformation are some of the
missing components of traditional NCC research.

3.3. Functors and Natural Transformations in IIT and TTC

3.3.1. Functors and Natural Transformations in IIT

Let us first reinterpret some aspects of IIT in CT, especially with the concepts of inclusion functor,
expansion functors, and natural transformations between them. A critical concept in IIT, the amount of
integrated information, ϕ or small phi, can be interpreted as the “difference” between the actual and
the (minimally) disconnected network [59,60,75]. This can be captured by CT concepts of inclusion
and expansion functors. The compositional aspects of IIT, or a set of small phis corresponds to a set
of objects captured by these functors. The big phi, Φ, which corresponds to quantity (e.g., level) of
consciousness, or system level integration, can now be interpreted as a natural transformation.

Let us unpack the above statements. As we explained in Figure 1 for IIT category, we consider
category, N0, composed of objects (the actual network with TPM) and arrows, which decompose the
system. We also consider another category, N1, composed of all possible networks with TPM and arrows.
In addition to decomposition arrows, N1 is equipped with disconnection arrows. Obviously, N0 is
included by N1. Inclusion functor, i, finds the objects and arrows in N1 that correspond to those in N0.

Now, we define an expansion functor, e, as the one that finds the minimally disconnected version
of the original network in N1 (Figure 7a).
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Figure 7. (a) Inclusion functor, i, expansion functor, e, in the IIT category N0 (actual) and N1 (all possible).
Objects in N0 and N1 (e.g., [AB]) are a network with TPM, and arrows in N0 and N1 are manipulation of
network/TPM that is allowed in IIT. Within N0, we consider only decomposition arrows. N1 is enriched
by additional disconnection arrows that represent an operation that finds a “minimally disconnected”
network with TPM within N1. An expansion functor, e, finds the minimally disconnected network (e.g.,
[AB]’) of the original network (e.g., [AB]), as well e also preserves the structure of N0, and qualifies as
a functor. A red arrow within N1 that goes from the actual to the minimally disconnected network
corresponds to integrated information, ϕ. (b) Considering decomposition arrows in N0 allows N0 to
consist of a powerset of the network. If natural transformation, t, from the inclusion to the expansion
functor exists, t gives us a power set of ϕ’s, the original and the minimally disconnected network with
TPMs. This corresponds to system level integration, Φ.
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Together with the inclusion functor, the expansion functor from the original network and TPM
now gives us a set of small phis. Not only the original network (e.g., ABC) but also its subnetwork
components (e.g., AB and BC) have corresponding small phi, which is derived by corresponding
disconnection arrows in N1.

Now, we assume there is a natural transformation between inclusion and expansion functors.
Then, a set of small phis is obtained by a natural transformation, t, between the inclusion and the
expansion functors. This set can quantify integration at the system level, which corresponds to what
IIT calls Φ or big phi. The concept of natural transformation clarifies the essence of IIT. IIT is a theory
that proposes a set of small phis and a big phi, which corresponds to quality (e.g., qualia, contents) and
quantity (e.g., level) of consciousness, respectively. (Here, what we propose is a mapping from a set of
small phis (with their structural relation taken into account) into a scalar value of a big phi. This can
include further operation of system-level disconnection, which we will not introduce here (See [53] for
details). The nature of this mapping cannot be captured by a standard notion of multivariate function,
which maps structure-less objects into a single object. What we need is a more flexible notion that
takes the structure of small phis to relate it to a big phi (which involves system-level disconnection).
All of these computational steps can be simply represented as an arrow in CT.)

Does a natural transformation, t, really exist? We consider it in Figure 8. If t qualifies as a natural
transformation, f, that is, a decomposition arrow from AB to A in N0 (or i(f) from i(AB) to i(A) in
N1) has to correspond to a decomposition arrow in N1 from AB’ = e(AB) to A’ = e(A). As far as we
know (including our personal communication with Dr. Masafumi Oizumi), IIT has never considered a
precise mathematical formulation between the disconnected networks such as this. Thus, while we
know that some kind of relationship exists between e(AB) and e(A), at this point, we believe that the
operations that are used to decompose AB into A (i.e., f) cannot be directly applied to the disconnected
AB’ into A’, at least under the IIT 3.0.
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Here, let us briefly remark a potential consequence of the existence of a natural transformation.
If one can describe the decomposition arrow between the disconnected networks in a formal
mathematical relationship, which parallels the decomposition arrow between the original networks,
then we can prove the existence of a natural transformation between inclusion and expansion functor.
Mathematically, this guarantees the possibility of building up a larger network by considering a larger
context (say, adding C into AB) in IIT. IIT papers, according to our understanding, have been so far mute
on the possibility or limitation of this “reverse-reductionism” approach. Intuitively, however, the role
of AB among ABC should be similar to the role of AB among ABCD (to some extent). Our preliminary
results indeed suggest this may be the case, when integrated information is computed from the neural
recording data [76]. If it is indeed the case that we can reverse-reductionistically understand the whole
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by building up and pasting many parts of the systems (potentially using presheaf theory [77]), then
this approach may make IIT more mathematically tractable.

Nevertheless, it is totally possible that there is no formal arrow like e(f). If that is the case,
it practically means that the integrated information of a part of the system can completely and
unpredictably change based on the way it is embedded in the context. This may reveal an extreme
holistic property of the IIT. Given the phenomenological axiom of compositionality in IIT, however,
we surmise that such a result probably requires a revision of the postulate of the IIT. This conjecture,
a necessity and potential consequence of consideration between the disconnected networks, is a
direct consequence of considering IIT from the CT perspective, which may prove useful in future
mathematical examinations of IIT.

In summary, the category theoretic reinterpretation of IIT tells us that to construct quantitative
theory of consciousness, consideration of the relation between actual and possible is necessary. More
precisely, expanding functor, e (as a mapping towards a set of disconnected networks), in relation to
inclusion functor needs to be considered. In terms of category theory, natural transformation from i to e
provides us a set of small phis, or integrated information, which characterize quality of consciousness,
and a big phi, the system level integration or quantity of consciousness. Quality and quantity of
consciousness in IIT amounts to the quantitative evaluation on the natural transformation from i to e
(if it exists). (We do not foresee that CT will directly prescribe or improve the detailed computational
steps of IIT in this step as well. That will require different mathematical tools.) As we have defined, a
natural transformation is a system of arrows indexed by objects which satisfies certain consistency
condition, which requires further investigation.

3.3.2. Functor and Natural Transformations in TTC

Now, TTC is compatible with the concepts of inclusion and expansion functors and a natural
transformation, as TTC also emphasizes the need for conceiving the relationship between prestimulus
activity (N0) and poststimulus activity (N1) in terms of integration (but not in the sense used in IIT).
However, unlike IIT, TTC again emphasizes the dynamic, for example, temporospatial mechanisms
that are supposedly underlying the relationship between pre- and poststimulus activity including
their integration.

To be more specific, an inclusion functor, i, from N0 to N1 would correspond to a mapping from the
pre- to poststimulus neural activity without sensory input (or any other perturbation). An expansion
functor, e, would correspond to a mapping from the pre- to poststimulus neural activity with a specific
sensory input (or any other perturbation). Expansion functors, therefore, are a family of functors.
Natural transformation between i and e describes relationships among all possible consequences
of perturbations.

Traditional models presuppose that stimulus-induced activity as related to external stimuli is simply
added to, and thus supervenes on the ongoing internal neuronal activity and this amounts to additive
rest-stimulus interaction [78–83]. In contrast, recent findings suggest nonadditive interaction between pre-
and poststimulus activity levels as based on EEG [63], fMRI [65,68,84,85], and computational modeling [86].

In the case of nonadditive interaction, the poststimulus activity is not simply added on or
supervenes upon the prestimulus activity level. Instead, the level of prestimulus activity exerts a
strong impact on the level of subsequent poststimulus activity. In terms of the response amplitude,
low prestimulus activity levels lead to relatively higher poststimulus activity levels than high
prestimulus activity levels [84,85,87]. Importantly, recent studies in MEG [72,73] and fMRI [87]
demonstrate that prestimulus variance and its nonadditive impact on poststimulus amplitude and
variance are related to conscious contents [70,72,73,88] and the level and state of consciousness [87].
Most interestingly, a recent study demonstrated that prepoststimulus variance changes are accompanied
by the Lempel–Zev complexity (LZC) in the prestimulus interval [89,90]. LZC is used to compute the
perturbational complexity index in a TMS-EEG experiment [91]. PCI is inspired by IIT as a proxy of
integrated information and as a measure of level of consciousness. While how integrated information
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relates to PCI is unclear at this point, it raises a possible link between the nonadditive dynamics of
prepoststimulus interaction, as pointed outed in TTC, with integrated information in IIT.

Another point on the importance of inclusion functor, exclusion functor, and natural transformation
between them in the context of TTC is the importance of N1 (poststimulus activity) in relation to N0
(prestimulus activity) (N1 includes a larger set of activities as it refers to poststimulus activity which
includes the prestimulus activity and, more specifically, how the prestimulus shapes or constrains the
possible poststimulus activity. Moreover, N1 includes all potential poststimulus activity, which would
include an actual prestimulus activity.). As the reviewed empirical evidence suggests, poststimulus
activity (N1), reflecting the processing of the contents themselves, is not sufficient to explain any
particular phenomenology, p, on its own. In addition to poststimulus activity (N1), prestimulus activity
(N0) and its dynamics is necessary as N0 strongly affects and modulates how the subsequent N1 is
processed. As such, TTC claims “consciousness does not come with the contents themselves” [6].
Instead, TTC suggests that consciousness is associated with the contents rather than coming with the
contents themselves [3,21]. Empirically, this means that the focus shifts from the neural activity in the
poststimulus period to the prestimulus activity and how it interacts with the stimulus, for example,
the nonadditive dynamics of pre- and poststimulus interaction. Mathematically, that very same
dynamic of nonadditive prepoststimulus interaction can be well formalized by the, here, assumed
natural transformation from inclusion functor to expansion functor.

Our mathematical approach to especially TTC is compatible with the dynamic system accounts
of the phenomenal features of consciousness. In a nutshell, TTC claims the need to extend the
objects in order for them to be associated with consciousness [62] which is possible within the context
of a dynamical activity space as characterized by a multitude of possible trajectories exhibiting
temporospatial dynamics [30,34,35]. The TTC now claims that such dynamical extension is mediated
by the interaction of the temporospatial features between neural states, for example, N0 and N1,
and the respective object. Due to nonadditive prepoststimulus interaction, the object is thereby
temporospatially extended in a virtual way, for example, temporospatial extension, by means of which
the object can become consciously experienced [62]. Accordingly, the temporospatial extension of
the temporospatial features of the object (e.g., N0 and N1) allows transforming neural states into
phenomenal states, for example, natural transformation in the terms of CT. The temporospatial features
(e.g., dynamical features), then, provide what has recently been described as “common currency” of
neural and phenomenal features [62].

Moreover, in the context of TTC, natural transformation is a core issue. The TTC raises the
question of how neuronal activity is transformed into phenomenology. For that, the TTC assumes
that the interaction between prestimulus activity, as reflecting the brain’s ongoing dynamics, impacts
and constrains its interaction with the external stimulus that may form the object of consciousness.
Mechanistically, the TTC assumes that the way prestimulus activity constrains poststimulus activity
is central for associating the external stimulus with consciousness. That leaves open though how
neuronal activity of stimulus-induced activity transforms into phenomenology. This is the moment
where TTC turns to CT and, more specifically, its concept of natural transformation. By formalizing
the interaction between pre- and poststimulus activity in terms of the inclusion functor, CT links the
neuronal mechanisms of prepoststimulus interaction with natural transformation. More generally,
we assume that natural transformation is not just a matter specific to TTC but a more general and basic
problem and a question that neuroscience needs to raise (i.e., How does neuronal activity transform
into phenomenology?). As we elaborate in this paper, different answers can be given to that question,
that is, either by integration of information (IIT) temporospatial dynamic (TTC).

4. Conclusions

In this paper, we introduced category theory (CT) to account and formalize the relationship
between the neuronal (N0 and N1) and phenomenal (P) domains in the neuroscience of consciousness.
Specifically, we introduced four fundamental concepts in CT (category, inclusion, expansion functors,
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and, most importantly, natural transformation) in the context of two major neuroscientific theories of
consciousness, for example, IIT and TTC. Now, we briefly review some major implications for our
search of the NCC in general in the future neuroscientific studies of consciousness.

The first point we made was that we need to distinguish between two different neuronal categories,
N0 and N1, which IIT and TTC implicitly have proposed. This approach seems to solve a difficulty
in traditional NCC research, which implicitly assumes the anatomical frame when it considers one
specific neuronal state and its corresponding one specific phenomenal state. By explicitly considering
two neural categories, both IIT and TTS consider N0 (a particular neural state) as embedded with N1
(all possible states), which is constrained by the anatomical reference frame.

The second point, which is even more important, was a shift of focus from the relationship between
neuronal and phenomenal states, as promoted by the traditional NCC approach, to the relationship
and, specifically, a particular form of relationship or interaction between two neuronal category (N0
and N1) as central for yielding consciousness. This emphasis of the relationship can be framed as
natural transformation between inclusion and expansion functors. Addressing the same question, IIT
and TTC provide different answers, for example, a set of small phis or integrated information in IIT
and a nonadditive interaction in TTC. Through the lens of natural transformation, our reanalysis of
IIT suggests a pathway to a novel reverse reductionistic approach in the empirical computation of an
integrated information structure for a whole large system based on its subsystem. IIT (as formulated
by [53]), PLoS Comp in particular, does not allow any inference of how a subset of neurons and
mechanisms would contribute to the whole without IIT analyses on the whole (including appropriate
search for so-called “complex”, decomposition, and disconnection at all levels), which makes the
analysis intractable, empirically. Our reverse reductionism idea, however, is to allow such inference,
by starting the analysis of the local subset of the neurons without any context, and to extend it to
the case where it is embedded in the larger network. If a natural transformation exists, the small
phi structures should be retained in some form. While the current IIT3.0 prohibits the existence of
natural transformation and reverse reductionism, this does not mean that our approach is wrong,
and possibly IIT can be modified to allow natural transformation to exist. Yet another possibility is
that while a natural transformation does not exist at a strict sense, some types of approximation (e.g.,
atomic partition rather than MIP, mutual information rather than integrated information) may allow a
natural transformation to exist. With such an approximation, the reverse reductionistic approximation
may turn out to be powerful (see a similar idea on submodularity to approximate MIP in [54]).

Taken together, we conclude that CT provides the mathematical tools to formalize the relationship
between the neuronal and the phenomenal domains and to give a blueprint on how to extend it
beyond the traditional NCC approaches. In the context of IIT, a mathematical investigation on the
existence of natural transformation between inclusion and expansion functors can be a potentially
fruitful investigation, as it may allow a reverse reductionistic approach to understand a large network
to overcome the fundamental difficulty in IIT. In the context of TTC, CT can extend the concept of
nonadditivity into temporospatial dynamics.

As such, we conclude that the introduction of CT in the study of neural correlates of consciousness
awaits further fruitful theoretical development, with its potential to connect or translate across different
theories of consciousness, which we could not mention in this paper (e.g., the global neuronal workspace
theory (GNWT) [16–19], higher order theories of consciousness [22,23], recurrent processing theory [24],
operational space and time [25], neural synchrony [26], and social and attention schema theory [27]).
Comparison of the theories through CT, as we did for IIT and TTC here, may inspire development of an
entirely novel approach to connect neuronal and phenomenal domains in a formal and mathematical
way. (We also note that our program is a practical and yet mathematically well-founded formalism to
disprove IIT (if IIT is wrong), unlike other types of criticisms of IIT on philosophical or other unclear
grounds. Rather than starting from “identity” between MICS and P, as the original IIT assumes,
we propose to leave the relationship between MICS and P as something to be tested and established.
Our program will provide two concrete strategy. First, to test if there exists a functor from phenomenal
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(P) to neural (N0, N1) or MICS, and second, to test if there exists a functor from neural (N0, N1) or
MICS to phenomenal (P). Note that this program does not have to start from the entire conscious
experience, which makes the research program intractable. Unlike the IIT program, our program can
be applied to a subset of phenomenal domain.)

Importantly, the implications of our approach extend beyond the merely theoretical understanding
of neurophenomenal relationship [74] to practical and clinical application. First, based on mathematical
formalization in the terms of CT with a focus on possible (rather than actual) states operating as
inclusion and exclusion functors, our approach opens the door for engineers to reverse-engineer
conscious artifacts. For example, if a reverse reductionistic approach can work in IIT, it can prescribe
a recipe for how to generate a potentially large integrated information system by combining locally
highly integrated information systems (but also see Aaronson’s blog and Tononi’s reply on this type of
argument https://www.scottaaronson.com/blog/?p=1823). Secondly, assuming TTC is the right way
to understand consciousness, then knowledge of how expansion functor is supported by neuronal
mechanisms to realize nonadditive rest–stimulus interaction may point to novel therapeutic techniques
and anatomical targets for brain stimulation. Such stimulation techniques may be able to restore the brain
functions underlying loss of consciousness in coma patients and altered consciousness in psychiatric
patients suffering from schizophrenia [92,93], bipolar disorder (with mania and depression) [6,94],
and major depressive disorder [5]. These patients show changes in their spontaneous activity which,
according to TTC, may be related to the integration between inclusion and expansion functor. An exact
mathematical description may allow development of computational models of that interaction which
could serve as basis for developing individualized mechanism-based stimulation therapy such as with
either deep brain stimulation or transcranial magnetic stimulation.
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