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Abstract

The metagenome embedded in urban sewage is an attractive new data source to under-

stand urban ecology and assess human health status at scales beyond a single host. Ana-

lyzing the viral fraction of wastewater in the ongoing COVID-19 pandemic has shown the

potential of wastewater as aggregated samples for early detection, prevalence monitoring,

and variant identification of human diseases in large populations. However, using census-

based population size instead of real-time population estimates can mislead the interpreta-

tion of data acquired from sewage, hindering assessment of representativeness, inference

of prevalence, or comparisons of taxa across sites. Here, we show that taxon abundance

and sub-species diversisty in gut-associated microbiomes are new feature space to utilize

for human population estimation. Using a population-scale human gut microbiome sample

of over 1,100 people, we found that taxon-abundance distributions of gut-associated multi-

person microbiomes exhibited generalizable relationships with respect to human population

size. Here and throughout this paper, the human population size is essentially the sample

size from the wastewater sample. We present a new algorithm, MicrobiomeCensus, for esti-

mating human population size from sewage samples. MicrobiomeCensus harnesses the

inter-individual variability in human gut microbiomes and performs maximum likelihood esti-

mation based on simultaneous deviation of multiple taxa’s relative abundances from their

population means. MicrobiomeCensus outperformed generic algorithms in data-driven
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simulation benchmarks and detected population size differences in field data. New theo-

rems are provided to justify our approach. This research provides a mathematical frame-

work for inferring population sizes in real time from sewage samples, paving the way for

more accurate ecological and public health studies utilizing the sewage metagenome.

Author summary

Wastewater-based epidemiology (WBE) is an emerging field that employs sewage as

aggregated samples of human populations. This approach is particularly promising for

tracking diseases that can spread asymptomatically in large populations, such as the

COVID-19. As a new type of biological data, sewage has its own unique challenges to uti-

lize. While wastewater samples are usually assumed to represent large populations, the

assumption is not guaranteed at locations closer to residences due to stochasticity in toilet

flushes; thus, unlike epidemiological experiments collecting data from individuals, sample

size, herein the human population size represented by a wastewater sample, is a funda-

mental yet difficult-to-characterize parameter for sewage samples. Researchers would

need to aggregate data from large areas and week-long collection to stabilize data, during

which, important spikes in small areas or short time scales may be lost. It also remains

challenging to turn viral titers into case prevalences, evaluating representativeness, or

comparing measurements across sites/studies.

This study provides a framework to estimate human population size from sewage uti-

lizing human gut-associated microorganisms. Through analysis, we demonstrate that var-

iance of taxon abundances and single-nucleotide polymorphism as two variables that

change with population size. We provide a new tool MicrobiomeCensus that performs

population size estimation from microbial taxon abundances. MicrobiomeCensus outper-

forms generic algorithms in terms of computational efficiency while at comparable or bet-

ter accuracy. Using MicrobiomeCensus, we detected population size differences in sewage

samples taken in Cambridge, MA, under two sampling approaches, i.e., “grab” or “com-

posite” sampling. This study provides a framework to utilize individual-level microbiomes

to learn from sewage, paving the way to prevalence estimation and improved spatio-tem-

poral resolutions in WBE.

Introduction

The metagenome embedded in urban sewage is an attractive new data source to understand

urban ecology and assess human health status at scales beyond a single host [1–3]. Sewage

microbiomes are found to share a variety of taxa with human gut microbiomes, where the

baseline communities are characterized by a dominance of human-associated commensal

organisms from the Bacteroidetes and Firmicutes phyla [1, 3, 4]. Human viruses like SARS-

CoV-2 and polioviruses were detected in sewage samples during the pandemic and silent

spreads, respectively, and found to correlate to reported cases, suggesting that sewage samples

could be useful for understanding the dynamics in the human-associated symbionts at a popu-

lation level [5, 6]. Sewage has several advantages as samples of the population’s collective sym-

bionts. For instance, sewage samples are naturally aggregated, wastewater infrastructures are

highly accessible, and data on human symbionts can be collected without visits to clinics, thus

utilizing sewage samples can reduce costs and avoid biases associated with stigma and
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accessibility [2, 7]. Consequently, SARS-CoV-2 surveillance utilizing sewage samples are

underway globally and incorporated into the U.S. Centers for Disease Control and Prevention

surveillance framework [8].

A pressing challenge in utilizing sewage for ecological and public health studies is the lack

of methods to directly estimate human population size from sewage. Specifically, virus moni-

toring at finer spatial granularity, e.g., single university dorms and nursing homes, are infor-

mative for guiding contact tracing and protecting populations at higher risk, but real-time

population size estimations at such fine granularity are not yet available. For a given area, the

census population (de jure population) can be larger than the number of people who contrib-

uted feces to sewage at a given time (de facto population)[9]. Conversely, the de jure population

can also be smaller than the de facto population due to the presence of undocumented individ-

uals [10]. Population proxies that are currently used for monitoring at wastewater-treatment

plants, such as the loading of pepper mild mottle viruses, likely have high error at the neigh-

borhood level because of their large variability in human fecal viromes (106-109 virions per

gram of dry weight fecal matter)[11]. Consequently, it is difficult to assess the representative-

ness of a sewage sample, infer the taxon abundance differences across time and space, or inter-

pret errors. Lack of population size information could lead to false negatives in assessing virus

eradication, because an absence of biomarkers might be caused by a sewage sample that

under-represents the population size. Despite its importance, few studies have explicitly

explored ways to estimate real-time human population size from sewage samples independent

from census estimates [12].

Macroecological theories of biodiversity may offer clues to decipher and even enumerate the

sources of a sewage microbiome. While we are only beginning to view sewage as samples of

human symbionts beyond one person, generating multi-host microbiomes resembles a funda-

mental random additive process. Sizling et al. showed that lognormal species abundance distri-

butions (SADs) can be generated solely from summing the abundances from multiple non-

overlapping sub-assemblages to form new assemblages [13]. Likewise, adding multiple sub-

assemblages can also give rise to common Species-Area Relationships [13]. For microbial ecosys-

tems, Shoemaker et al. examined the abilities of widely known and successful models of SADs in

predicting microbial SADs and found that Poisson Lognormal distributions outperformed other

distributions across environmental, engineered, and host-associated microbial communities,

highlighting the underpinning role of lognormal processes in shaping microbial diversity [14].

In this study, we conceptualize a sewage microbiome as a multi-person microbiome, where

the number of human contributors can vary. We hypothesize that the species abundance dis-

tribution in the multi-person microbiome will vary as a function of the human population

size, which would arise from summing taxon abundances from multiple hosts analogous to the

Central Limit Theorem. We use human gut microbiome data comprising over a thousand

human subjects and machine learning algorithms to explore these relationships. Upon discov-

ering a generalizable relationship, we develop MicrobiomeCensus, a nonparametric model

that utilizes relative taxon abundances in the microbiome to predict the number of people con-

tributing to a sewage sample. MicrobiomeCensus utilizes a multivariate T statistic to capture

the simultaneous deviation of multiple taxa’s abundances from their means in a human popu-

lation and performs maximum likelihood estimation. We provide proof on the validity of our

approach. Next, we examine model performance through a simulation benchmark

using human microbiome data. Last, we apply our model to data derived from real-world

sewage. Our nonparametric method does not assume any underlying distributions of micro-

bial abundances and can make inferences with just the computational power of a laptop

computer.
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Results

Species abundance distributions of multi-person microbiomes vary by

population size

We consider the fraction of microorganisms observed in sewage that are human-associated

anaerobes as an “average gut microbiome” sampled from residents of a catchment area.

Hence, our task becomes to find the underlying relationship between the number of contribu-

tors and the observed microbiome profiles in sewage samples. We define an “ideal sewage mix-

ture” scenario to illustrate our case, where the sewage sample consists only of gut-associated

microorganisms and is an even mix of n different individuals’ feces (Fig 1). We denote the gut

microbiome profile of an individual as Xi = (Xi,1, Xi,2, . . ., Xi,p)>, where each Xi,j represents the

Fig 1. An ideal sewage mixture simulation shows the potential of microbiome taxon abundance profiles as population census information

sources. (A) We generated an “ideal sewage mixture” consisting of gut microbiomes from different numbers of people. (B) Ranked abundance curves

for gut microbiomes of one person and mixtures of multiple people exhibit different levels of dominance and diversity. Blue lines show the rank

abundance curves in stool samples (one person), red lines show 10-person mixtures, and saffron lines show 100-person mixtures. In each scenario, ten

examples are shown. All samples were rarefied to the same sequencing depths (4,000 seqs/sample). (C) The probability density function of the relative

abundance of one taxon for different population sizes. OTU-2379, a Bifidobacterium taxon, was used as an example. Maroon dashed lines indicate the

sample means. (D) Multiple taxa’s abundance variances in one-person samples and 100-person samples. The dominant taxa are shown (top100) and are

sorted by their ranks in variance. (E) The ratios of the variances of one-person samples and 100-person samples across dominant gut microbial taxa.

https://doi.org/10.1371/journal.pcbi.1010472.g001
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relative abundance of operational taxonomic unit (OTU) j from individual i. Hence our ideal

sewage mixture can be represented as

�Xn ¼
Xn

i¼1

Xi=n ð1Þ

where vectors X1;X2; . . .;Xn 2 R
p

are microbiome profiles from individuals 1; . . .; n. Under

the ideal sewage mixture scenario, if we can quantitatively capture the departure of the sewage

microbiome profile from the population mean of the human gut microbiomes of people con-

stituting the catchment area, we will be able to estimate the population size.

Using a dataset comprised of 1,100 individuals’ gut microbiome taxonomic profiles [15],

we created synthetic mixture samples of different numbers of contributors through bootstrap-

ping (Fig 1A). First, examined from an ecological perspective, the shape of the ranked abun-

dance curves of the gut microbiomes differed when the means of multiple individuals were

examined: when the number of contributors increased, a normal distribution appeared

(Fig 1B). For the single-person microbiomes, log-series and lognormal distributions explained

94% and 93% of the variations in the SADs, respectively, compared with 89% for Poisson log-

normal, 87% for Zipf multinomial and 80% for the broken-stick model. Multi-person micro-

biomes were best predicted by log-series or lognormal models, but as the population increased

to over a hundred, the multi-person SADs were best described by only lognormal SADs (S1

Table).

We explored the distributions of the relative abundances of gut bacteria as a function of

population size. As expected, the distribution of a taxon’s relative abundance changes with

population size (Fig 1C). For instance, for OTU-2397, a Bifidobacterium taxon, the relative

abundance distribution was approximately log-normal when the relative abundance in single-

host samples was considered, yet converged to a Normal distribution when mixtures of multi-

ple hosts were considered. Although the means of the distributions of the same taxon under

different population sizes were close, the variation in the data changed. A smaller variance was

observed when the number of contributors increased (Fig 1D). Notably, different taxa varied

in the rates at which their variances decreased with population size (Fig 1E), suggesting that a

model that considers multiple features would be useful in predicting the number of

contributors.

Classifiers utilizing microbial taxon abundance features alone detects

single-person and multi-person microbiomes

Inspired by the distinct shapes of SADs in multi-person gut-microbiomes from those of sin-

gle-person microbiomes, we set up a classification task using the taxon relative abundances to

separate synthetic communities constituting one, ten, and a hundred people. With algorithms

of varying complexity, namely Logistic Regression (LR), Support Vector Machine (SVM), and

Random Forest (RF) classifier, classification accuracies of 29.6%, 97.2%, and 100% were

achieved (Fig 2). Between RF and SVM, RF showed higher sensitivity and specificity in classi-

fying all population groups (S2 Table). This experiment suggests the usefulness of microbiome

features in predicting human population counts from mixture samples.

MicrobiomeCensus is a statistical model that estimates population size

from microbial taxon abundances

While the classification tasks described above demonstrated the usefulness of taxa’s relative

abundances in predicting the population size, a complex model like RF provided little
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explanatory power. We then ask, since the variance in the relative abundance of a given taxon

decreases with population size, can we devise a statistic that captures the simultaneous devia-

tion of several taxa’s abundances from their means, and estimate population size utilizing the

statistic? Further, will this new method perform well despite inter-personal variation in gut

microbiomes?

Our new method, MicrobiomeCensus, involves a statistic Tn to capture the simultaneous

deviation of multiple taxa’s abundances from their means in relation to the variance of those

taxa in the population (Fig 3A). We denote S0 = (σij)1 � i, j � p as the covariance matrix for the

individual microbiome profile and let Λ0 be a diagonal matrix with L0 ¼

diagðs1=2

11 ; s
1=2

22 ; . . . ; s1=2
pp Þ: Then the statistic takes form

Tn ¼ kL̂ � 1
0
ð�Xn � m̂Þk

2

2
; ð2Þ

where �Xn ¼
Pn

i¼1
Xi=n denotes the observed microbiome profile in ideal sewage, μ represents

the population mean for the catchment area and m̂ is an estimator, L̂0 is an estimator of Λ0

and kvk
2

:¼ ð
Pp

i¼1
v2
i Þ

1=2
for any vector v 2 Rp

: This statistic is enlightened by the classical

Hotelling T2 statistic [16] ~Tn ¼ nð�Xn � mÞŜ
� 1
0
ð�Xn � mÞ, where Ŝ0 is the sample covariance

matrix, an estimator of S0. Actually if we assume the covariance matrix is diagonal (no correla-

tions between different taxa), then they are essentially the same statistic in view of ~Tn ¼ nTn.
The reason we replace covariance matrix S0 by its diagonal Λ0 is because for high dimensional

situations, it would be very difficult to estimate the covariance matrix. In cases when p> n, the

sample covariance matrix is singular and thus ~Tn is not even well defined. Studies accommo-

dating the Hotelling T2 type statistic into the high-dimensional situation can be found, for

example, in Bai and Saranadasa [17], Chen and Qi [18], Xu et al [19], etc. Our proposed statis-

tic can handle the high dimensional cases as well, since the diagonal entities Λ0 can be well

Fig 2. Classifier performance of models utilizing gut microbiome taxon abundances.

https://doi.org/10.1371/journal.pcbi.1010472.g002
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estimated even when p is large. And we extend its application beyond the problem of the sig-

nificance of the multivariate means.

In developing this new method, we utilize the variance change by population, but without

any priori assumption about the gut bacterium species taxon abundance distributions and the

covariance between species. Our analysis showed that the statistic Tn changed monotonically

with increasing population size, indicating the promise of a population estimation model

(Fig 3B).

Leveraging our statistic Tn, we constructed an asymptotic maximum likelihood estimator

to estimate size of the sample without the information of each individual, that is, we do not

Fig 3. MicrobiomeCensus statistic definition, model training, validation, and application. (A) Example of computing the T statistic. (B) Simulation

results for T with different population sizes. Grey points are simulation results. Red bars are means of 10,000 repeats performed for each population

size. (C) Model training and tuning. We built the MicrobiomeCensus model using our T statistic and a maximum likelihood procedure. The training

set consisted of 10,000 samples for population sizes ranging from 1–300, and 50% of the data were used to train and validate the model. Training and

validation errors from different feature subsets are shown. Training errors are shown as blue lines, and validation errors are shown as red lines. (D)

Model performance on simulation benchmark. After training and validation, the model utilized the top 120 abundant features. Model performance was

tested on synthetic data generated from 550 different subjects not previously seen by the model. The training set consisted of 10,000 samples with

population sizes from 1–300, and the testing set consisted of 10,000 repeats at the evaluated population sizes. The training error, testing error, and the

error of the final model are shown. (E) Model performance evaluated using a testing set. Black solid dots indicate the means of the predicted values, and

error bars indicate the standard deviations of the predicted values. (F) Application of the microbiome population model in sewage. Seventy-six

composite samples (blue) were taken from three manholes on the MIT campus, and each sample was taken over 3 hours during the morning peak water

usage hours. Twenty-five snapshot samples (grey) were taken using a peristaltic pump for 5 minutes at 1-hour intervals throughout a day.

https://doi.org/10.1371/journal.pcbi.1010472.g003
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observe X1, . . ., Xn but only their mixture �Xn ¼
Pn

i¼1
Xi=n. Here, the parameter of interest is

the population size n, the test statistic is Tn, and a point estimate is made by maximizing the

estimated likelihood of Tn with respect to n. We performed training and validation using 50%

of the human microbiome data and held out the rest of the data for testing. Our model

achieved a training error as low as 13% (mean absolute percentage error, MAPE) when up to

250 features are included. The model’s training performance increased when more features

were included, yet the validation error did not profoundly change with an increasing number

of features (Fig 3C). Cross-validation on top 40, 80, 120, 150, 180, 210, and 240 abundant

OTUs led to validation errors at 32.4%, 32.3%, 31.4%, 32.3%, 30.9%, 32.3%, and 33.1%, respec-

tively. Upon training and validation, we chose the top 120 OTUs and tested the performance

of the tuned model on a test set held out during training/validation. The model’s MAPE was

21% (Fig 3D and 3E, testing errors at each population size evaluated are provided in S3 Table),

indicating that our model generalized well across different hosts. We then used all data and

tuned hyperparameter to acquire a final model. When applying the final model on the same

testing data, our model achieved a testing error of 16.2% (Fig 3D).

It is worth noting that in this algorithm, for each size n, we only need to estimate the sam-

pling distribution of the statistic Tn once. Hence it is not time-consuming regardless of the

true population size. We also note that an RF regression model could not be trained in a rea-

sonable time on the same dataset, even with high-performance computing (Methods). Our

model performed remarkably better than a ten-fold cross-validated RF regression model utiliz-

ing a reduced dataset, which gave an MAPE of 32%, while the training time for our model was

only a fraction of that of the RF regression model (S1 Fig).

MicrobiomeCensus detects human population size differences in sewage

samples

With the newly developed population model, we set out to apply our model to sewage samples.

Ideally, we would like to apply the model to samples generated from a fully controlled experi-

ment with known human hosts contributing at a given time, yet such an experiment presents

logistic challenges. Instead, we applied our model to sewage samples taken using one of two

methods, either a snapshot (grab sample) sample taken from the sewage stream over 5 min-

utes, or an accumulative (composite sample) taken at a constant rate over 3 hours during

morning peak human defecation [20] (S2 Fig). We hypothesized that the composite samples

would represent more people than snapshot samples. Taking grab samples, we sampled at 1-hr

intervals at one manhole (n = 25); using the accumulative method, we sampled at three campus

buildings (classroom, dormitory, and family housing) multiple times over three months

(n = 76). To remove sequences possibly contributed by the water, we applied a taxonomic filter

to retain families associated with the gut microbiome and normalized the species abundance

by the retained sequencing reads (Methods, S4 Table). We applied our final model to the sew-

age data set. Our model estimated 1–9 people’s waste was captured by the snapshot samples

(mean = 3, s.d.=3), and 3–27 people were represented by the composite samples (mean = 9, s.

d.=7), where the composite samples represented significantly more people (p< 0.0001)

(Fig 3F). The hypothesis that composite samples represent more people is well supported by

our model results.

Sub-species diversity in sewage samples reflects adding microbiomes from

multiple people

Independent from our MicrobiomeCensus model, we found that certain human gut-associ-

ated species were frequently detected in sewage samples by using shotgun metagenomics, e.g.,
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Bacteroides vulgatus, Provotella copri, and Eubacterium rectale. Further, their sub-species

diversity, as indicated by nucleotide diversity and the number of polymorphic sites in house-

keeping genes, was dramatically higher in sewage samples than in the gut microbiomes of indi-

vidual human subjects (Fig 4A–4F and Text A in S1 Text).

To examine the effect of increasing population size on sub-species genetic variation in rep-

resentative gut-associated microbial species, we simulated aggregate human gut samples using

a sample without replacement procedure and computed the nucleotide diversity and numbers

of polymorphic sites for the aggregate samples at different population sizes. This resulted in

single nucleotide variant (SNV) profiles from 64 species. Our simulation showed increases in

both nucleotide diversity and the number of polymorphic sites as more human gut samples

were aggregated (Fig 4G and 4H). For instance, the nucleotide diversity and number of poly-

morphic sites in Eubacterium rectale increased from 0.029 (s.d. 0.026) to 0.149 (s.d. 0.002) and

64 (s.d. 54.33) to 1274 (s.d. 18.41), respectively, when the population size increased from 1 to

300. Further, the number of polymorphic sites strongly correlated with the population size

(Pearson correlation coefficient >0.8) in 49 of the 64 species (S5 Table), suggesting the poten-

tial that the SNV profiles of a wide range of gut species could be developed into feature space

for population size estimation. Our simulation further shows that the number of polymorphic

sites increased with population size more slowly than nucleotide diversity, indicating its poten-

tial to reflect more subtle changes in population size (Fig 4G and 4H). Despite the need for fur-

ther model developments, the analysis here shows the potential of the sub-species diversity of

gut anaerobes as a feature space to be developed into a population size estimation model, inde-

pendent from the taxon abundance-based model described here.

Discussion

The MicrobiomeCensus method we present here can, in theory, estimate the population size

contributing to a sewage sample from the taxon abundance of multiple human gut micro-

biome taxa, using our T statistic and associated maximum likelihood estimation and applica-

tion procedures. While the model is trained to perform accurate population estimation on a

neighborhood scale, we expect the population range it can estimate to expand with increasing

training gut microbiome data availability. We propose the MicrobiomeCensus model as a tool

to drive further developments in quantitative sewage-based epidemiology. We have provided

mathematical proof of the validity of our approach.

MicrobiomeCensus showed excellent performance in our simulation benchmark. In partic-

ular, the study subjects that we utilized in the training and testing sets are random samples out

of 1,100 men and women across a wide range of age without any stratification, hence the mod-

el’s testing performance indicates its generalizability. Our study is founded on the observations

that healthy gut microbiomes are resilient, with inter-individual variability outweighing vari-

ability within individuals over time [21–23]. There are caveats to our approach; potentially,

diets and regional effects on human microbiome composition could introduce noises to the

prediction [24, 25]. In applications to sewage, future studies on water matrix effects should be

performed to understand and further account for noises from the sewage collection network.

It should be mentioned that while our model is trained on microbiome data, it is not limited to

microbiome features because we did not impose any assumptions on the distribution of fea-

tures. Other features, e.g., crAssphage titers, may also be incorporated once individual level

data at a large population size become available to allow model validation.

Utilizing sewage to understand population-level dynamics of human symbionts presents

a new scenario of sampling meta-communities. The gut microbiomes of humans can be

viewed as local communities, and gut microbiomes of people living in a neighborhood
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Fig 4. Sub-species diversity in gut-associated bacterial species as a potential marker for human population size.

(A-F) Comparison of sub-species diversity of gut-associated bacteria in human gut microbiome samples

(LifelinesDeep) and MIT sewage samples. Nucleotide diversity and numbers of polymorphic sites were computed from

ten phylogenetic marker genes. (G) and (H) Simulation results showing intra-species diversity in response to

increasing population size, as represented by the number of polymorphic sites (G) and nucleotide diversity (H).

https://doi.org/10.1371/journal.pcbi.1010472.g004
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could be viewed as a kind of regional meta-communities, because these communities are

linked by dispersal that can take place among people connected by social networks and

through a shared built environment. The meta-community framework is considered to pro-

vide useful new conceptual tools to understand the largely unexplained inter-personal vari-

ability in gut microbiomes, with expansions of the theory to consider biotic interactions

suggested by Miller, Svanbäck, and Bohannan [26]. In considering a sample of meta-com-

munities, Leibold and Chase asked provocatively “what is a community?” and observed that

the definition of a community is usually “user-defined and could be context-dependent”

–“one community ecologist might explore the patterns of coexistence and species interac-

tions among species within a delimited area, the other might ask the same question but

define a community that encompasses more area and thus types of species, as well as differ-

ent degrees of movements and heterogeneity patterns” [27]. The ambiguity between samples

of meta-communities and local communities is particularly challenging for samples of

microbial communities, because dispersal boundaries are difficult to delineate. Despite the

conceptual importance, empirical methods that explicitly test whether a microbiome sample

is a sample of a meta-community or a local community have not been available. Microbio-

meCensus directly distinguishes samples of meta-communities and local communities by

enumerating the number of hosts contributing to a microbiome. While MicrobiomeCensus

is trained on gut microbiome data, the procedure may have wide applications in other

microbial ecosystems.

There are several limitations of this study. First, our approach requires a sizable set of indi-

vidual gut microbiome data to generate the empirical distributions employed in maximum

likelihood estimation. Second, accurate estimations of population sizes will depend on good

estimations of the population means and variances of relative abundances in individual gut

microbiomes. Future studies generating data of individual-level gut microbiome of residents

in specific cities, as well as model training based on those data, will help bridge the applications

to sewage samples at the corresponding areas. Third, our current application procedures

require minimal decays of gut-associated bacteria, thus are suitable for applications at catch-

ments near residential buildings (e.g., sentinel monitoring). Better understandings of the

growth/death dynamics of human gut-associated microbial taxa in the sewer environment and

feature selection leveraging that information will help bridge the applications to larger

catchments.

In response to the COVID-19 pandemic now affecting the human population globally, sew-

age-based virus monitoring is underway [28]. Our analysis calls for attention to the denomina-

tor used in normalizing the biomarker measurements. While in practice, loading-based

population proxies such as the copy numbers of pepper mild mottle viruses are used to nor-

malize data generated from sewage, such proxies would likely have high error at the neighbor-

hood level because of their variability in human fecal viromes (106-109 virions per gram of dry

weight in fecal matters)[11], while they likely have reasonable performance when the popula-

tion size is sufficiently large and the means of biomarker loadings converge under the Central

Limit Theorem. Thus, the relationships between sewage measurements and true viral preva-

lence in small populations are hard to establish despite the need for sentinel population stud-

ies. Our model has immediate application in detecting false negatives, because it alerts us to

the possibility that an absence of biomarkers might be caused by a sewage sample that under-

represents a population. With further developments incorporating local training data, the

model can potentially generate a denominator that can help turn biomarker measurements

into estimates of prevalence and enable the application of epidemiology models at finer spatio-

temporal resolutions.
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Methods

Rationales

If the distribution of Xi is known, then the distribution Tn is known and one can easily use

maximum likelihood estimator (MLE) to estimate the human population size. Here the

human population size is essentially the sample size n from the wastewater sample. However

for generality, we do not want to impose any specific distribution assumptions on taxon abun-

dance distributions, thus, we need to rely on asymptotic results to estimate the distribution of

our statistic. Unlike the univariate case where the asymptotic distribution of the statistic Tn
can be simply derived by central limit theorem, we are dealing with a much more challenging

situation due to high dimensionality.

In the following, we shall firstly introduce some notations and assumptions that will be

needed for the theorems. Then, in Theorem 1, we derive the Gaussian approximation for the

test statistic Tn, which implies that we can use simulated Gaussian vectors to approximate the

distribution of our statistic. To apply this approximation, one needs to further estimate the

covariance matrix which is highly non-trivial due to high dimensionality. To get around this

difficulty, we further propose a sub-sampling approach. Theorem 2 provides the theoretical

foundation for this sub-sampling scheme.

Notation

Recall that vectors X1, X2, . . ., Xn are microbiome profiles from individuals 1, 2, . . ., n. Assume

that they are independent and identically distributed (i.i.d) random vectors in Rp
with mean

m 2 Rp and variance VarðXiÞ ¼ S0 2 R
p�p. Denote S0 = (σij)1 � i, j � p and

si ¼ s
1=2

ii ; 1 � i � p. Let the diagonal matrix Λ0 = diag(σi, 1� i� p).

To construct the Gaussian approximation, we shall firstly work with cases when both Λ0

and μ are given, that is, consider the statistic

T�n ¼ kL
� 1

0
ð�Xn � mÞk

2

2
:

We will later extend all the results to cases when those parameters are unknown. For notation’s

simplicity, consider the normalized version of Xi:

Yi ¼ L
� 1

0
ðXi � mÞ:

Then T�n ¼ k�Ynk
2

2
; where �Yn ¼

Pn
i¼1
Yi=n; and the covariance matrix SY of Yi is the correla-

tion matrix of Xi, with expression SY ¼ L
� 1

0
S0L

� 1

0
:

We need the following condition on Yi for the main theorem.

ASSUMPTION 1 Let s> 2. Assume

Ks
s ¼ E

�
�
�
�
�

kY1k
2

2
� p

kSYkF

�
�
�
�
�

s

<1; and Ds
s ¼ E

�
�
�
�
�

Y>
1
Y2

kSYkF

�
�
�
�
�

s

<1; ð3Þ

where k � kF is the matrix Frobenius norm.

REMARK 1 Above conditions naturally hold if Y1i, 1� i� p, are independent and
max1�i�pðEjY1ij

s
Þ

1=s
<1: Actually under this setting, SY = Ip and thus kSYkF = p1/2. By Ber-

kholder [29]’s inequality,

E
��
�kY1k

2

2
� p
�
�s
�
� ðs � 1Þ

s
�Xp

i¼1

ðEjY2

1i � 1j
s
Þ

2=s
�s=2

� c1p
s=2;
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where c1 > 0 is independent of p. This justifies Ks part in condition (3). Again by Berkholder
[29]’s inequality,

Eð
�
�Y>

1
Y2

�
�sÞ � ðs � 1Þ

s
�Xp

i¼1

ðEjY1iY2ij
s
Þ

2=s
�s=2

� c2p
s=2;

where c2 > 0 is independent of p. And thus Ds part in condition (3) holds.
Now we are ready to introduce the first asymptotic result. The following theorem essentially

states that under certain regularity conditions, the distribution of our test statistic can be

approximated by the distribution of some function of a Gaussian vector.

THEOREM 1 (THEOREM 2.2 IN XU ET AL. [19]) Assume Assumption 1 holds with some s> 2, also
assume

K2
2
=nþ Ks

s=n
s� 1 þ Ds

s=n
s=2� 1 ! 0: ð4Þ

Then for Z* N(0, SY), we have

sup
t2R

�
�
�PðnT�n � tÞ � PðkZk

2

2
� tÞ

�
�
�! 0: ð5Þ

If Ks and Ds in (3) are bounded, then we can get a crude bound O(n−s/(10 + 4s)) for (5). It is

worth noticing that under settings in Remark 1, condition (4) holds. Based on the above theo-

rem, if we can estimate the covariance matrix SY, then kZk2

2
can be generated and used for

approximation of our statistic. However the estimation of SY is difficult due to high

dimensionality unless some additional conditions are imposed on the covariance matrix. To

get around this difficulty, we shall consider a bootstrap approach. The main idea is that for

each n, we randomly generate n samples from the reference data Xi, 1� i� n0, and construct

some generated statistic. Using the empirical distribution of the generated statistic to approxi-

mate the distribution of our statistic. In the following, we shall provide the theoretical justifica-

tion for this procedure.

For some integer J> 0, let A1, A2, . . ., AJ be i.i.d uniformly sampled from the class

An ¼ fA : A � f1; 2; . . . ; n0g; jAj ¼ ng. Assume the sampling process are independent from

our data (Xi)i. Then for each 1� k� J, the set {Xi, i 2 Ak} is of size n and can be used to

construct one test statistic nkL� 1

0
ð�XAj
� �Xn0

Þk
2

2
; where �XAj

¼
P

i2Aj
Xi=jAjj: After repeating

this procedure J times, we would have J realizations of our test statistic which can be used to

construct the empirical distribution F̂nðtÞ:

F̂nðtÞ ¼ J � 1
XJ

j¼1

1fnkL� 1
0
ð�XAj �

�Xn0
Þk2

2
�tð1� n=n0Þg

:

We shall later show that this empirical distribution can be adopted for approximating the dis-

tribution of the target statistic T�n : Following result can be derived based on Theorem 3.5 in Xu

et al.[19] and Theorem 1.

THEOREM 2 Assume conditions in Theorem 1 hold, and moreover assume that n!1,

n = o(n0) and (4) holds. Then for J!1, we have

sup
t2R
jF̂nðtÞ � PðnT�n � tÞj ! 0: ð6Þ

Theorem 2 implies that we can use the empirical distribution generated from our sub-sam-

ples to estimate the distribution of our target. As mentioned previously, so far, we are assum-

ing that we know the value of Λ0 which is not realistic in applications. Therefore we need to

PLOS COMPUTATIONAL BIOLOGY Human population size estimation from microbiomes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010472 September 23, 2022 13 / 20

https://doi.org/10.1371/journal.pcbi.1010472


further estimate Λ0, that is, we need to estimate the standard deviation for each coordinate.

This can be easily accomplished by considering the estimator

L̂2

0;j ¼
Xn0

i¼1

ðXi;j � �Xn0 ;j
Þ

2
=n0;

where Xi,j represents the jth coordinate of Xi, and Λ0,j is the jth diagonal entity of Λ0 and n0 is

the size of the reference data. Also one can use the average of the reference data to replace μ. If

Xi,j has heavy tail, we can also consider a robust m-estimator for S0 and μ, see for example,

Catoni [30].

Bootstrap procedure

Below we describe the bootstrap procedure we use to approximate the distribution of Tn for

different census counts. Recall that X1, . . ., Xn represent arrays of taxon relative abundances in

the gut microbiome of human subject 1, . . ., n, and Tn is defined in (Eq 2).

Step 1. Estimate the population mean m̂, and the diagonal matrix L̂0, from a reference sample

human gut microbiome data.

Step 2. For each census count n, generate X�
1
; . . . ;X�n from the reference data to compute T�

1
.

Step 3. Repeat Step 2 B times (herein 10,000 times) to get T�
1
; . . . ;T�B.

Step 4. Obtain the density function f̂ n of Tn based on T�
1
; . . . ;T�B using a Gaussian kernel.

Step 5. Repeat Steps 2–4 for all the census counts n = 1, 2, . . ., N considered, herein N = 300. It

should be noted that per Theorem 2 we require bootstrap sample size nmuch smaller than

total reference sample size n0, thus up to 300-person samples were simulated here because

the gut microbiome reference dataset we utilized consisted of a total of 1,100 people. The

range can be expanded if a larger dataset is available.

Maximum likelihood estimation

We use a maximum likelihood estimation (MLE) procedure to achieve point estimates of the

population size from a new mixture sample, W. The MLE procedure firstly computes T0 by

replacing the sample average byW, that is

T0 ¼ kL̂
� 1
0
ðW � m̂Þk2

2
: ð7Þ

And then computes the likelihoods that T0 was drawn from population sizes from 1 to N,

respectively, using the estimated distributions generated from the bootstrap procedures

described above. Next, the population size n̂ that yields the highest likelihood is chosen.

Confidence interval

Due to Theorem 1, the asymptotic distribution of nTn is the same as kZk2

2
and is therefore

independent of the parameter n. Hence for any confidence level 1 − α, we can firstly estimate

the 1 − α quantile of nTn based on the simulated data described above, denoted as q̂1� a: Then

for any new mixtureW and the corresponding T0 as in (8), our 1 − α confidence interval is

½1; q̂1� a=T0�:
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Model training, validation, and testing

We synthesized a mixed data set from a gut microbiome dataset of 1,135 healthy human hosts

from the Lifelines Deep study [15], which was the largest single-center study of population-

level human microbiome variations from a single sequencing center at the time of this study.

The data set consisted of 661 women and 474 men. We considered OTUs defined by 99% simi-

larity of partial ribosomal RNA gene sequences (Methods of OTU clustering are described in

detail in Text B in S1 Text). After quality filtering, we retained 1,100 samples that had more

than 4,000 sequencing reads/sample. We split the entire dataset approximately in half, using

550 subjects to generate the training/validation set and the other 550 subjects to generate the

test set. We then used the aforementioned ideal sewage mixture approach to generate synthetic

populations of up to 300 individuals, which is the relevant range for population estimation in

upstream sewage. The training error was computed using the entire training data set. Five

repeated holdout validations using a 50–50 split in the training set were performed to tune the

hyperparameter for feature selection. The training and cross-validation errors were evaluated

at integers from 1 to 100, using the error definition:

d ¼

�
�
�
�
�

Npredicted � Nactual

Nactual

�
�
�
�
�
� 100% ð8Þ

and the model’s performance across all the population sizes was characterized by the mean

absolute percentage error (MAPE):

MAPE ¼
1

n

X100

n¼1

�
�
�
�
�

Npredicted � Nactual

Nactual

�
�
�
�
�
� 100%: ð9Þ

We chose to use MAPE because for a problem of population estimation, the error relative to

the true value is important to consider for performance evaluation. After training and valida-

tion, the hyperparameter (in this case, the top k abundant OTUs) that yielded the best perfor-

mance in the validation step was used in the model. The tuned model was then tested on the

test set. Our synthetic sewage microbiome approach captured the actual microbiome variation

among individual hosts and demonstrated the model’s generalizability.

Human gut microbiome 16S rRNA amplicon data source

The single-person and multi-person microbiome data were drawn from a gut microbiome

dataset of 1,135 healthy human hosts from the Lifelines Deep study [15], which was the largest

study of population-level human microbiome variations from a single sequencing center at the

time of this study. The data set consisted of 661 women and 474 men. We considered opera-

tional taxonomic units defined by 99% similarity of partial ribosomal RNA gene sequences.

After quality filtering, we retained 1,100 samples that had more than 4,000 sequencing reads/

sample. The rarefaction depth was chosen to balance sample size and sequencing depth.

16S rRNA gene amplicon sequencing data analysis

Operational taxonomic units defined at 99% sequencing similarity were generated from the

combined dataset by first denoising the samples with DADA2 [31], and then clustering the

outputted exact sequence variants with the q2-vsearch plugin of QIIME2 [32]. Taxonomic

assignments were performed using a multinomial naïve Bayes classifier against SILVA 132 [33,

34]. All 16S rRNA gene amplicon analyses were performed in the QIIME2 platform (QIIME

2019.10) [35].
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Species abundance distribution

We examined the relationships between the performances of several widely used SAD models

and the number of contributors (population size) to a multi-person microbiome. Multi-person

microbiomes were generated by sampling N individuals from the quality-filtered gut micro-

biome 16S rRNA dataset and summing the abundances of the same taxa. At each population

size, 10,000 repeats were performed. The repeats were chosen according to the constraints of

computational efficiency. The SADs evaluated included the Lognormal, Poisson Lognormal,

Broken-stick, Log series and the Zipf model, which were shown to have varied successes in

predicting microbial SADs [14]. We examined the fit using a rank-by-rank approach as previ-

ously described by Shoemaker et al. [14]. First, maximum-likelihood coefficients for each of

the SADs described above were estimated using the R package sads [36]. Next, SADs were pre-

dicted using each model, and tabulated as RADs. Then, we used a least-squares regression to

assess the relationship between the performance of the predicted SADs against the observa-

tions and recorded the coefficient of determination (R-squared). Last, R-squared values from

model fits of each SAD model were summarized as the means, and the models that resulted in

the highest R-squared values for each simulated community were recorded.

Field data

We conducted a field sampling campaign, collecting sewage samples daily at manholes near

three buildings (two dormitory buildings and one office building) on the campus of Massachu-

setts Institute of Technology. Seventy-six sewage samples were collected through a continuous

peristaltic pump sampler operated at the morning peak (7–10 a.m. near the dormitory build-

ings and 8–11 a.m. near the office building) at 4 mL/min for 3 hours. This composite sampling

approach was intended to capture the morning water usage peak. Wastewater was filtered

through sterile 0.22-µm mixed cellulose filters to collect microbial biomass. Environmental

DNA was extracted with a Qiagen PowerSoil DNA extraction kit according to the manufactur-

er’s protocol. The DNA was amplified for the V4 region of the 16S rRNA gene and sequenced

in a Miseq paired-end format at the MIT BioMicro Center, according to a previously published

protocol [37]. Included as a comparison are a set of snapshot sewage samples taken using a

peristaltic pump sampler at 100 mL/min for 5 minutes over a day (10 a.m. on Wednesday

April 8, 2015, to 9 a.m. on Thursday April 9, 2015). The sampling methods for snapshot sam-

ples are described in detail by Matus et al. [4]

Application to sewage data

The 16S rRNA gene amplicon sequencing data from the field sewage samples were trimmed to

the same region, 16S V4 (534–786) with the LifeLines Deep data using Cutadapt 1.12 [38]. For-

ward reads were trimmed to 175bps, and reverse reads were first trimmed to 175bps and then

further trimmed to 155bps during quality screening. We created a taxonomic filter based on

the composition of the gut microbiome data set, which consisted of the abundant family-level

taxa that accounted for 99% of the sequencing reads in the human gut microbiome data set,

and excluded those that might have an ecological niche in tap water (Enterobacteriaceae and

Burkholderiaceae). This exclusion resulted in 25 bacterial families and one archaeal family in

our taxonomic filter, including Lachnospiraceae, Ruminococcaceae, Bifidobacteriaceae, Erysipe-
lotrichaceae, Bacteroidaceae, and others (S4 Table). We applied our taxonomic filter to the sew-

age sequencing data, which retained 73.9% of the sequencing reads. This retention rate is

consistent with our previous report of the human microbiome fraction in residential sewage

samples [4]. We then normalized the relative abundance of taxa against the remaining

sequencing reads in each sample. Welch’s two-sample t-tests were performed to retain the
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OTUs whose means did not differ significantly from the human microbiome data set

(p> 0.05).

Deployment of generic machine learning models

Logistic regression, support vector machine, and random forest classifiers were employed to

perform the classification task for population sizes of 1, 10, and 100. Model training, cross-vali-

dation, and testing were performed using the R Caret platform with the default setting [39].

For the support vector machine, the radial basis function kernel was employed. Ten-fold

cross-validation and five repeats were performed for all the models considered. Model perfor-

mance was evaluated using accuracy, sensitivity, and specificity. Based on the classifier perfor-

mance, the RF regression model was used for comparison with our new model’s performance.

Initially, we trained the model using the same training data set used in training our maximum

likelihood model, however, the computation was infeasible, even with a 36-thread, 3TB-mem-

ory computing cluster. We then introduced gaps in the population size range, using popula-

tions from the vector (1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 150, 180, 240, 300)>

while maintaining the same sample size at each population size (10,000 samples). The training

was performed in R Caret, using 10-fold cross-validation. Ten variables were randomly sam-

pled as candidates at each split, mtry = 10. The performance was evaluated using the same test-

ing set that was used to evaluate the maximum likelihood model.
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