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1  | INTRODUC TION

Savannas and savanna-like ecosystems occupy a fifth of the 
earth’s land surface and almost 40% of southern Africa. As habitat 

for wildlife and rangelands, they are of high value for conserva-
tion, tourism, and pastoral production and ensure peoples liveli-
hood in this region (Safriel et al., 2005). Apart from the common 
coexistence of grasses and trees, savannas cover a wide range of 
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Abstract
The characteristic vegetation structure of arid savannas with a dominant layer of 
perennial grass is maintained by the putative competitive superiority of the C4 
grasses. When this competitive balance is disturbed by weakening the grasses or fa-
voring the recruitment of other species, trees, shrubs, single grass, or forb species 
can increase and initiate sudden dominance shifts. Such shifts involving woody spe-
cies, often termed “shrub encroachment”, or the mass spreading of so-called in-
creaser species have been extensively researched, but studies on similar processes 
without obvious preceding disturbance are rare. In Namibia, the native herbaceous 
legume Crotalaria podocarpa has recently encroached parts of the escarpment region, 
seriously affecting the productivity of local fodder grasses. Here, we studied the in-
teraction between seedlings of the legume and the dominant local fodder grass 
(Stipagrostis ciliata). We used a pot experiment to test seedling survival and to inves-
tigate the growth of Crotalaria in competition with Stipagrostis. Additional field ob-
servations were conducted to quantify the interactive effect. We found germination 
and growth of the legume seedlings to be facilitated by inactive (dead or dormant) 
grass tussocks and unhindered by active ones. Seedling survival was three times 
higher in inactive tussocks and Crotalaria grew taller. In the field, high densities of the 
legume had a clear negative effect on productivity of the grass. The C4 grass was un-
able to limit the recruitment and spread of the legume, and Crotalaria did outcompete 
the putative more competitive grass. Hence, the legume is able to spread and estab-
lish itself in large numbers and initiate a dominance shift in savannas, similar to shrub 
encroachment.
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climatic conditions and hence they vary considerably. The major-
ity of southern African savannas are semiarid or arid and receive 
less than 600 mm mean annual precipitation (MAP; Sankaran 
et al., 2005). Water is a limiting factor, and tree density is decreas-
ing with lower MAP (D’Onofrio, Baudena, D’Andrea, Rietkerk, 
& Provenzale, 2015; Sankaran et al., 2005). Whereas at higher 
rainfalls trees are still abundant, the woody cover of the dryer 
savannas such as the thornbush savannas of Namibia is sparse. 
There the vegetation is determined by a dominant layer of tufted 
perennial C4 grasses in which trees and shrubs, mostly legumes, 
are sparsely interspersed. Annual grasses and forbs only occur 
during the rainy period in low abundances.

The characteristic vegetation structure in these water- and 
nitrogen-limited environments is regulated and adjusted by com-
petitive processes, mainly between grasses and trees (Bond, 2008; 
Cramer, Van Cauter, & Bond, 2010; Donzelli, De Michele, & Scholes, 
2013; Ward, Wiegand, & Getzin, 2013) but also other species (Sasaki 
& Lauenroth, 2011). Thereby, it is generally assumed that the liv-
ing grasses use their superior competitive abilities (Cech, Edwards, 
& Olde Venterink, 2010) to maintain their dominance by suppress-
ing the germination, reducing the growth, and thus regulating the 
establishment of trees and other competing species (Bond, 2008; 
D’Odorico, Okin, & Bestelmeyer, 2012; Sankaran, Ratnam, & Hanan, 
2004). However, some studies contradict these findings and found, 
for example, seedlings of Acacia mellifera to grow and establish even 
when growing within grass tussocks (Joubert, Smit, & Hoffman, 
2012; Rothauge, 2011). Furthermore, under water- and nutrient 
scarcity, facilitative interactions between grass tussocks and le-
gumes gain in importance (Brooker et al., 2008; Maestre, Callaway, 
Valladares, & Lortie, 2009), as the tussocks store humidity and pro-
vide nutrients in form of litter (Maestre, Bautista, Cortina, & Bellot, 
2001). Consequently, dead or dormant grass tussocks have even 
been found to support the germination and growth of other spe-
cies seedlings (de Dios, Weltzin, Sun, Huxman, & Williams, 2014; 
Synodinos, Tietjen, & Jeltsch, 2015). These facilitative and com-
petitive processes are modulated by the intensity and distribution 
of rainfall and the availability of water within the growing period. 
Water availability does not only govern the germination of annuals 
and the rejuvenation of perennials but also influences the competi-
tive balance between grasses and trees (Archer, Anderson, Predick, 
Schwinning, & Steidl, 2017; Joubert, Smit, & Hoffman, 2013; 
Kulmatiski & Beard, 2013; Woods, Archer, & Schwinning, 2014). If 
this well-balanced equilibrium is disturbed, sudden dominance shift 
can occur. Seedling of native shrubs or trees can gain the upper hand 
and lead to shrub encroachment (Sankaran et al., 2004; Scholes 
& Archer, 1997; Walter, 1953) or an “increaser” forb or grass can 
prevail and start a massive spreading (Smet & Ward, 2005; Vesk & 
Westoby, 2002). Both types of dominance shift in savannas are often 
associated with disturbances such as overgrazing or frequent fires. 
Generally, such dominance shifts are induced by any process or fac-
tor that either weakens the grass’s competitive abilities (e.g., through 
overgrazing; Ward, 2005), increases germination and recruitment 
rates of the competing species (Synodinos et al., 2015; Van Auken, 

2009), or strengthens their seedlings (e.g., higher rainfalls, elevated 
CO2; Bond & Midgley, 2000; Kulmatiski & Beard, 2013).

In particular, shrub encroachment has become more frequent 
throughout the last decades (Higgins & Scheiter, 2012; O’Connor, 
Puttick, & Hoffman, 2014). Among disturbances such as land man-
agement changes and altered fire or grazing regimes, this increase 
is also attributed to higher atmospheric CO2-levels (du Toit & 
O’Connor, 2014), as elevated CO2 concentrations decrease the pho-
tosynthetic disadvantage of C3 plants or even favor them against 
the generally better performing C4 grasses in hot environments 
(Bond & Midgley, 2000). In nutrient-limited savannas, increased CO2 
particularly favors legumes, as they are able to fix atmospheric ni-
trogen, strengthening their competitive abilities and affecting the 
competitive balance between grasses and legumes (Ward, Hoffman, 
& Collocott, 2014).

Although most dominance shifts in savannas known today 
are disturbance induced and the majority involve woody species 
(Eldridge et al., 2011; Sankaran et al., 2004; Scholes & Archer, 1997), 
there are a growing number of reports from farming communities 
in southern Africa about recent increases of native forbs obviously 
unrelated to disturbances. Likewise, the native herbaceous legume 
Crotalaria podocarpa has encroached parts of Namibia’s escarpment 
region with considerable impact on fodder grass production and the 
lands carrying capacity (Wagner, Hane, Joubert, & Fischer, 2016). 
With our study, we investigate the competitive balance between 
this legume and the dominant local fodder grass Stipagrostis ciliata 
and try to establish the causes for this recent spread of Crotalaria 
podocarpa. We carried out a controlled pot experiment to character-
ize the interaction between the C4 grass Stipagrostis and the legume 
Crotalaria and supplemented this experiment with long-term field 
observations. We thereby hypothesize that:

1.	 Crotalaria is facilitated by Stipagrostis tussocks;
2.	 once Crotalaria is established, it has a negative effect on 

Stipagrostis;
3.	 a negative effect on Stipagrostis is dependent on the Crotalaria 

density and independent of rainfall.

2  | MATERIAL AND METHODS

2.1 | Study area

The collection of soil and plant material for our interaction experi-
ment and the field study took place on the farm Rooiklip, Khomas 
(S 23°24′23.29′′, E 016°03′37.35′′), situated 1,000 m a.s.l. in 
Namibia’s lower great escarpment. Soils are predominantly shallow, 
nutrient-poor calcisols with a coarse texture and a high proportion 
of stones and sand (Wagner et al., 2016). The climate is hot-arid 
(Mendelsohn, Jarvis, Robertson, & Roberts, 2009). The scarce rainfall 
occurs predominantly between October and April with a pronounced 
precipitation maximum in February and March that defines the main 
growing season. Mean annual precipitation is 120 mm, while the 
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mean precipitation during the growing season is 80 mm (Wagner and 
Fischer, unpublished data). The last decade (2005-2014) was char-
acterized by above-average rainfall and prolonged humid periods 
(Appendix, Figure S1), with a mean annual rainfall of 242 ± 57 mm 
and a mean February to March precipitation of 170 ± 42 mm. The 
vegetation is dominated by tufted perennial C4 grasses of the genus 
Stipagrostis, mainly Stipagrostis ciliata (nomenclature according to De 
Winter, 1962; hereafter referred to as Stipagrostis). Together with 
the related S. uniplumis, it constitutes the main source of forage in 
Namibia’s escarpment region (Juergens, Oldeland, Hachfeld, Erb, & 
Schultz, 2013; Müller, 2007). On the study site, Stipagrostis forms a 
light matrix of 1.5–2 tussocks/m2 (Wagner et al., 2016) and its cover 
is considerably varying with seasonal rainfall. Loosely interspersed 
are perennial shrubs and occasionally trees. With sufficient rainfall, 
these perennials are complemented by annual grasses and forbs, in-
cluding Crotalaria podocarpa. The area has not been used for farming 
or livestock-keeping for over two decades, but the area is used by 
free-roaming grazing wildlife such as zebra or gemsbok.

2.2 | Study species

Crotalaria podocarpa DC (hereafter referred to as Crotalaria) is an 
annual, herbaceous legume that is widespread in southern Africa 
(Polhill, 1968). It occurs on both sandy and stony soils, is well adapted 
to arid conditions, and has the capability to fix nitrogen (Jourand 
et al., 2005). Due to its content of pyrrolizidine alkaloids and fla-
vonoids, Crotalaria is unpalatable to livestock (Wanjala & Majinda, 
1999). The growth, number of flowers, and seed set of Crotalaria 
vary considerably with the amount of rainfall, and the plant pro-
duces a high number of seeds that are viable for more than 7 years. 
Its comparatively large and heavy seeds are primarily dispersed by 
explosive dehiscence and reach a distance of about 5 m around the 
mother plant. Secondary long-distance dispersal is rare and prob-
ably related to scatter hoarding by ants and small mammals (Fischer, 
Kollmann, & Wagner, 2015). Crotalaria is part of the local plant com-
munity of Namibia’s escarpment region where it normally occurs in 
moderate numbers. Starting in 2008, in the course of several years 
of above-average rainfall, a considerable proliferation of Crotalaria 
has been observed in Namibia’s escarpment region (Wagner et al., 
2016).

2.3 | Interaction experiment: competition and 
facilitation

To characterize the interaction between active and inactive (dead 
or dormant) Stipagrostis tussocks and Crotalaria seedlings, we 
carried out a greenhouse experiment under natural temperature 
regime and simulated natural rainfall conditions in March 2015. 
In this pot experiment, we tested the following treatments, each 
with 15 replicates: (1) Crotalaria seedlings, (2) Crotalaria seedlings 
within inactive Stipagrostis tussocks, (3) Crotalaria seedlings within 
active Stipagrostis tussocks, and (4) active Stipagrostis tussocks. 
Both inactive and active grass tussocks had approximately 5 cm 

basal diameter each and were clipped to 5 cm to ensure similar 
starting conditions and avoid shading. Three Stipagrostis tussocks 
each were planted in one pot (size 220 × 150 × 150 mm) to en-
sure intraspecific competition. Soil material and Stipagrostis tus-
socks were taken from an area of the farm that was unaffected 
by Crotalaria encroachment and free of Crotalaria seeds. Crotalaria 
seeds were collected in 2014 in Crotalaria-affected areas. Seeds 
were mechanically scarified with a scalpel and left for 24 h in petri 
dishes with 1 mm water to soak. Afterward, 10 swollen seeds with 
emerged radicle were evenly spaced 1 cm into the soil or the or-
ganic base of the grass tussock. Immediately after sowing, all pots 
were watered with a watering can equivalent to a rainfall event of 
10 mm (equates to 330 ml/pot) for 3 subsequent days, and again 
after 5, 10, and 20 days. As Crotalaria typically reaches its flow-
ering stage between 20 and 40 days (Wagner, unpublished data), 
we measured the number of surviving Crotalaria seedlings, maxi-
mum height of the emerging plants, and the maximum length of 
Stipagrostis culms for 34 consecutive days. Seedlings, which did 
not yet have cotyledons, were wilting, or damaged were excluded 
from the measurement. Complementary to this, we characterized 
the water retention capacity of the respective substrates bare 
soil, soil with inactive grass tussocks, and soil with active tussocks 
using time-domain reflectometry (Ledieu, De Ridder, De Clerck, 
& Dautrebande, 1986; Robinson, Jones, Wraith, Or, & Friedman, 
2002). Each pot was measured at 7 hr in the morning with three 
repeats over 10 days after a simulated rain event of 10 mm.

2.4 | Field observations: Stipagrostis 
productivity and density

We used complementary field data to characterize the interaction 
between Crotalaria and Stipagrostis tussocks. Our field observation 
was carried out on 20 long-term observation plots of 10 × 10 m half 
of which were affected by Crotalaria encroachment (Wagner et al., 
2016). All plots had identical soil types, similar soil texture, and ini-
tially the same vegetation composition and structure (Table S1) with 
a Stipagrostis tussock density of about 2 tussocks/m². All plots were 
within a 2 km range to ensure similar rainfall conditions. Sampling 
took place at the end of the growing season in April each year be-
tween 2009 and 2015. The number of individuals of Crotalaria and 
Stipagrostis was counted and the area covered per individual (m²) 
was calculated from plant diameter. Stipagrostis tussocks were par-
titioned into active tussocks (showing green culms) and inactive 
(dead or dormant) tussocks. Crotalaria individuals were included if 
at least one pinna was developed and differentiated into individuals 
growing within or outside Stipagrostis tussocks of the two activ-
ity states. Individual cover was used as proxy for seasonal biomass 
production (Carlyle, Fraser, & Turkington, 2014; Henschel, Burke, 
& Seely, 2005). To verify the facilitation of Crotalaria seedlings by 
Stipagrostis tussocks under field conditions, we compared the ratio 
of seedlings growing within tussocks to seedlings growing on open 
soil with the ratio of area occupied by tussocks to area taken up by 
open soil.
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2.5 | Data analysis

Statistical analysis was performed with R 3.2.1 (R Core Team, 2015). 
Daily growth of Stipagrostis and Crotalaria during the interaction 
experiment was modeled using a linear mixed-effects model (lme; 
library nlme version 3.1–120, Pinheiro, Bates, DebRoy, & Sarkar, 
2015) with day and treatment as explanatory variables, including 
interactions. Pots were used as a random factor. Stipagrostis growth 
was modeled calculating two separate models for Days 3–7, and for 
Days 8–34, as growth rates of both treatments characteristically 
changed on Day 8 (see Figure 1). Comparison of seedling survival 
and final growth was made by permutational t tests (perm.t.test, li-
brary RVAideMemoire version 0.9–64; Hervé, 2015).

Data obtained from the field experiment were used to determine 
the direction and intensity of the interaction between Crotalaria and 
Stipagrostis and to elucidate the effect of Crotalaria density on it. 
Fisher’s exact test was used to compare the proportion of Crotalaria 
seedlings growing within or outside tussocks with the respective 
ratio of area taken up by tussocks and open soil. To quantify the 
interaction between Crotalaria and Stipagrostis, we calculated the 
Neighbor-Effect Intensity Index (NIntA) introduced by Díaz-Sierra, 
Verwijmeren, Rietkerk, de Dios, and Baudena (2017) based on the 
average tussock area of Stipagrostis for each year. NIntA is defined as 
2 *(dB)/(B0+|dB|), with B0 = tussock area of Stipagrostis growing alone 
and dB = B0–tussock area of Stipagrostis growing with Crotalaria as 
competitor. Thus, a negative value of NIntA indicates a competitive 
effect of Crotalaria on the Stipagrostis, whereas a positive value in-
dicates facilitative effects. Possible correlation between NIntA and 
annual rainfall was rejected using Spearman’s correlation coefficient 
(r = 0.31, p = 0.54; Figure S2). We further quantified the effect of 
Crotalaria density on the productivity of Stipagrostis tussocks in 
relation to rainfall (average tussock area/seasonal rainfall) using a 
linear mixed-effects model with plot as a random factor to ensure 
independence of errors with respect to temporal autocorrelations 
(Pinheiro & Bates, 2000). Rainfall lower than 40 mm was excluded in 
this model, as here the area covered by grass tussocks was reduced 
to their basal area and due to a high frequency of outliers. To obtain 
normality of variances, response, and explanatory, variables were 
log-transformed.

3  | RESULTS

3.1 | Results of the interaction experiment

In our interaction experiment, seedling survival and growth of 
Crotalaria were clearly facilitated by inactive Stipagrostis tussocks. 
Grass tussocks were able to maintain soil humidity longer than bare 
soil. The moisture content of bare soil dropped below the permanent 
wilting point of coarse sand (~2%) three days after the rain event. 
Active tussocks maintained a moisture level above the permanent 
wilting point for 5 days and inactive tussocks even for 6 days (Figure 
S3). All grass tussocks maintained their initial activity state during 
the whole experiment.

Time and maximum number of germinated Crotalaria seeds that 
did reach a measurable seedling stage (at least cotyledons devel-
oped, size >20 mm) varied considerably between the treatments. 
From 150 seeds planted on bare soil, only 40 reached this stage after 
10 days. Seeds planted in Stipagrostis tussocks reached this stage 
2 days earlier and survived in higher numbers, with 70 seedlings in 
active tussocks and even 109 seedlings in inactive tussocks (Table 
S2). Overall seedling survival was three times higher when growing 
in inactive tussocks (mean ± SE: 62.7 ± 8.1%) than when growing 
alone (18.7 ± 6.0%) or in active Stipagrostis tussocks (19.3 ± 7.6%). 
After 34 days, Crotalaria growing in inactive Stipagrostis tussocks 
was taller (16.2 ± 0.4 cm) than when growing alone (14.1 ± 0.7 cm; 
t = −2.57, p < 0.05) or together with active Stipagrostis (14.3 ± 0.6 cm; 

F IGURE  1  Interaction between Crotalaria and Stipagrostis. (a) 
Growth of Crotalaria growing alone, facilitated by inactive (dormant 
or dead) Stipagrostis tussocks and under competition with active 
Stipagrostis. (b) Growth of Stipagrostis alone and under competition 
with Crotalaria. Bars indicate standard error
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t = 1.74, p = 0.09). Crotalaria growth rates (Figure 1a) were similar 
for all treatments, with a constant rate of 0.46 ± 0.01 cm/day for 
Crotalaria growing alone, a slightly lower growth rate when grow-
ing in inactive grass tussocks (0.40 ± 0.01 cm/day), and a somewhat 
lower growth rate when growing in active tussocks (0.35 ± 0.01 cm/
day; Table S3).

Stipagrostis showed no growth for the first 2 days. Between Day 
3 and Day 7, Stipagrostis growing without Crotalaria and Stipagrostis 
under competition with Crotalaria both had the same high growth rate 
of 1.55 ± 0.26 cm/day, but from Day 8 on, growth rates slowed con-
siderably and exhibited significant differences between Stipagrostis 
without competition with 0.28 ± 0.05 cm/day and Stipagrostis under 
Crotalaria competition with 0.16 ± 0.03 cm/day (Figure 1b, Table S4). 
At Day 34, Stipagrostis growing alone was with 20.67 ± 4.47 cm sig-
nificantly (t = 3.08; p < 0.01) taller than Stipagrostis growing together 
with Crotalaria which reached only 15.97 ± 4.07 cm.

3.2 | Results of the field observations

During the whole study, only moderate grazing through zebra oc-
curred, but no exceptional herbivory event, for example, through 
arthropods, was recorded. The number of Crotalaria seedlings grow-
ing within Stipagrostis tussocks was disproportionally high compared 
to the number of seedlings growing outside grass tussocks: On av-
erage, 60.0 ± 1.7% of all Crotalaria seedlings were found to grow 
within grass tussocks, which covered only 3% of the plot area. The 
Neighbor-Effect Intensity Index NIntA of Crotalaria on Stipagrostis 
was consistently negative over the whole study period, indicating a 
pronounced competitive effect of Crotalaria on Stipagrostis (Table 1).

The area covered by active Stipagrostis tussock relative to sea-
sonal rainfall exhibited a significant negative relationship with 
Crotalaria density (Estimate ± SE: −0.04 ± 0.00, t29 = −14.58, 
p < 0.001; Figure 2).

4  | DISCUSSION

We found neutral or even facilitative effects of Stipagrostis on 
Crotalaria. Inactive (dead or dormant) grass tussocks clearly in-
creased growth and survival of Crotalaria seedlings, whereas 

active grass tussocks did not affect seedling survival and growth of 
Crotalaria. Contrastingly, the effect of Crotalaria on Stipagrostis was 
consistently negative and increased with Crotalaria density, inde-
pendent of rainfall.

Our interaction experiment covered the crucial early stages that 
are decisive for the successful recruitment of the legume (Bond, 
2008; Harper, 1977; Wiegand, Saltz, & Ward, 2006). The interaction 
between Stipagrostis and Crotalaria was both facilitative and com-
petitive, but clearly to the benefit of Crotalaria and to the detriment 
of the grass. During the growth of the legume, the interaction be-
tween Crotalaria and Stipagrostis undergoes a shift, and, while seed-
lings are facilitated by the grass, the legume later outcompetes or 
at least restricts (growth reduction) its former nurse plant. Similar 
ontogenetic shifts under arid conditions involving a grass as nurse 
plant have only been described for shrubs, such as Stipa tenacissima 
and Lepidium subulatum (Soliveres, Desoto, Maestre, & Olano, 2010) 
or Agrostis magellanica and Azorella selago (Roux, Shaw, & Chown, 

TABLE  1 Rainfall, Stipagrostis tussock area and Neighbor-Effect Intensity Index NIntA of Crotalaria on Stipagrostis productivity (tussock 
area) between 2009 and 2015 based on the average individual cover of tussocks on affected and unaffected field sites

Year Rainfall [mm]
Stipagrostis tussock area on 
affected sites [m2]

Stipagrostis tussock area on 
unaffected sites [m2]

Ratio affected/
unaffected [%] NIntA

2009 273 0.177 ± 0.006 0.253 ± 0.019 70.0 −0.462

2011 405 0.182 ± 0.006 0.285 ± 0.015 63.9 −0.535

2012 92 0.099 ± 0.007 0.173 ± 0.006 57.2 −0.599

2013 20 0.010 ± 0.002 0.018 ± 0.003 55.6 −0.615

2014 162 0.034 ± 0.009 0.115 ± 0.010 29.6 −0.827

2015 39 0.027 ± 0.004 0.039 ± 0.006 69.3 −0.471

F IGURE  2 Effect of Crotalaria density on Stipagrostis: area/
rainfall of active tussocks decreases with increasing Crotalaria 
abundance. The predicted line from the linear mixed-effects 
models is shown

Crotalaria abundance [plants/100 m2] 
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2013). In our case, the effect of inactive Stipagrostis tussocks on 
Crotalaria seedlings was solely positive. Consistent with a study on 
the passive facilitation of saplings of Prosopis velutina by the C4 grass 
Heteropogon contortus (de Dios et al., 2014), seedling survival was 
clearly facilitated by inactive grass tussocks. During the early stages, 
Crotalaria seedlings growing in active or inactive grass tussocks de-
veloped more quickly and survived better than those on bare soil. 
This positive effect is probably due to the prolonged higher soil hu-
midity that is maintained within the grass tussocks. After the eighth 
day, when the active Stipagrostis tussocks have finished their initial 
rapid growth phase, the number of Crotalarias growing in active tus-
socks is reduced and at the end of the experiment matches those of 
Crotalarias growing on bare soil.

The facilitation by grass tussocks was further corroborated by 
our field observations, where the density of Crotalaria seedlings in 
grass tussocks was up to 20 times higher than on bare soil. However, 
the growth of surviving Crotalarias was not affected. Even when 
growing in competition with active Stipagrostis, no negative effect 
on Crotalaria could be shown. Seedling survival and growth rate 
of Crotalaria growing within tussocks were not significantly differ-
ent from those when growing alone (cf. Joubert, 2014 for Acacia 
reficiens). Nonetheless, at least at the early recruitment stages of 
Crotalaria, the active grass tussocks were able to exert some con-
trol on the recruitment of Crotalaria and thereby compensate for 
the facilitative effects. The impact of Crotalaria on Stipagrostis in 
contrast was consistently negative. Contrary to other studies on 
seedling competition (February, Higgins, Bond, & Swemmer, 2013), 
Crotalaria significantly reduced the growth rate of Stipagrostis. This 
negative effect of Crotalaria on Stipagrostis extends over the later 
growth stages of Crotalaria, increases with higher legume density, 
and is, other than the recruitment of Crotalaria, not compensated 
for by higher rainfalls and water availability. Thereby, our interaction 
experiments support the findings of Maestre, Bautista, and Cortina 
(2003) who found seedlings of legumes to grow largely unaffected 
in living grass tussocks under stressful conditions similar to those of 
our study region. In the case of Crotalaria, the C4 grass Stipagrostis 
is not, or probably no longer able to exert its supposed dominance 
(February et al., 2013; Riginos, 2009; Sankaran et al., 2004; Scholes 
& Archer, 1997) over the legume and suppress its recruitment. This 
clearly contradicts the widespread opinion that grasses are able 
to outcompete legumes and encroachers due to their competitive 
advantage in water-limited environments (O’Connor et al., 2014; 
Riginos, 2009).

This raises the question why such a dominance shift involving 
Crotalaria has not been observed before. As classic disturbances 
such as increased grazing, herbivory events, or fire can be ruled 
out, we propose two possible explanations: Either the competi-
tive capabilities of Crotalaria have recently gained in strength 
due to more favorable conditions or they are still unchanged but 
the incidence of competition has changed. In the latter case, the 
elevated rainfalls between 2007 and 2011 (Figure S1) might be 
a trigger. Higher rainfall is associated with higher seed produc-
tion and generally better seedling survival of encroaching species 

(Kraaij & Ward, 2006; Oldeland, Dreber, & Wesuls, 2010; Roques, 
O’Connor, & Watkinson, 2001). Taking into account Crotalarias 
high seed production, its extended seed viability, and disper-
sal by explosive dehiscence (Fischer et al., 2015), above-average 
rainfall will automatically be linked to a higher probability and 
number of seeds ending up in grass tussocks after dispersal. Our 
pot experiment has shown that the grass tussocks facilitate early 
establishment of Crotalaria and that the grass is unable to outcom-
pete 3–4 Crotalaria seedlings per tussock. Our field data clearly 
demonstrate that the negative effect of Crotalaria on Stipagrostis 
increases with Crotalaria density. Consequently, there is now 
not only a higher probability of grass tussocks being faced with 
competing Crotalaria, but the affected tussocks may also have to 
compete with a higher number of Crotalarias, as more seedlings 
survive. This effect is further intensified as the perennial grass 
tussocks may already be weakened by competition during the pre-
ceding season.

Regarding a strengthening of Crotalarias competitive abilities, we 
may also speculate about a possible role of elevated atmospheric 
CO2 levels. Increased atmospheric CO2 has been recently identified 
to be an important determinant of encroachment processes (Higgins 
& Scheiter, 2012; Kulmatiski & Beard, 2013; O’Connor et al., 2014; 
Ward et al., 2014) as it favors C3 over C4 plants. Possible nutrient 
deficiencies can be compensated for by nitrogen fixation, provided 
temperatures are not too high, and there is sufficient water available 
(Sita et al., 2017). Once the seedlings have survived the early stages, 
they might then be able to grow more quickly and eventually over-
grow the grasses. Already impaired by competing with a number of 
Crotalaria seedlings, the light-sensitive grass tussocks (Zimmermann, 
Higgins, Grimm, Hoffmann, & Linstädter, 2010) later are addition-
ally affected by shading and might be weakened even more, further 
contributing to a vicious circle at the end of which the dominance 
shift occurs.

5  | CONCLUSION

The native herbaceous legume Crotalaria podocarpa does not only 
withstand the competition from the perennial C4 grass Stipagrostis 
ciliata but also has a pronounced negative effect on the grass. Likely 
due to the high number of seeds produced after higher rainfall, 
Crotalaria is able to prevail over the grass and initiate a dominance 
shift in the arid savanna of Namibia’s escarpment region. The ramifi-
cations of this shift resemble those of shrub encroachment or inva-
sion, but it involves a native and herbaceous legume and is obviously 
not triggered by disturbance.
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