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Abstract
This article presents an overview of fundamental statistical principles of clinical trials of pain treatments. Statistical considerations
relevant to phase 2 proof of concept and phase 3 confirmatory randomized trials investigating efficacy and safety are discussed,
including (1) research design; (2) endpoints and analyses; (3) sample size determination and statistical power; (4) missing data and
trial estimands; (5) data monitoring and interim analyses; and (6) interpretation of results. Although clinical trials of pharmacologic
treatments are emphasized, the key issues raised by these trials are also directly applicable to clinical trials of other types of
treatments, including biologics, devices, nonpharmacologic therapies (eg, physical therapy and cognitive-behavior therapy), and
complementary and integrative health interventions.

Keywords: Clinical trials, Statistical analysis, Research design, Endpoints, Outcomes, Missing data, Chronic pain, Acute pain

1. Introduction

This article presents an overview for clinician investigators of
fundamental statistical principles of randomized clinical trials
(RCTs). Our primary objective is to help nonstatisticians un-
derstand essential statistical concepts relevant to the design,
analysis, and interpretation of clinical trials of pain treatments so
that they can collaborate more effectively with their biostatistician
colleagues. This article may also be of interest to clinicians
seeking to improve their ability to understand and interpret
published clinical trials. It is important to emphasize that the
information we provide does not substitute for the need to
collaborate with biostatisticians when conducting a clinical trial.
Indeed, effective collaboration with biostatisticians addresses

ethical requirements for data integrity and for clinical trial results to
be as informative as possible.2,4,101

We discuss 6 sets of issues that we believe are critically
important for investigators conducting clinical trials and for others
seeking to translate clinical trial results to clinical practice: (1)
research design; (2) endpoints and analyses; (3) sample size
determination and statistical power; (4) missing data and trial
estimands; (5) data monitoring and interim analyses; and (6)
interpretation of results. For readers whowould like more detailed
information about these issues and about other statistical
considerations, there are multiple textbooks avail-
able.31,57,66,133,163,170,179 In addition, documents from the
European Medicines Agency and the US Food and Drug
Administration (FDA) present regulatory perspectives on evaluat-
ing the efficacy and safety of treatments for acute and chronic
pain.51,203

We focus on phase 2 proof of concept andphase 3 confirmatory
randomized trials investigating the efficacy and safety of pharma-
cologic treatments for chronic pain (we use Arabic numerals when
referring to clinical trial phases, as does the FDA; although Roman
numerals are also used, the characteristics of these trial phases are
the same irrespective of how they are denoted). It is important to
emphasize, however, that the key issues raised by clinical trials of
medications are also directly applicable to clinical trials of other
types of treatments, including biologics, devices, nonpharmaco-
logic therapies (eg, physical therapy and cognitive-behavior
therapy), and complementary and integrative health interventions
(eg, acupuncture andmeditation). In addition, althoughmuch of the
followingmaterial is relevant to prevention and diseasemodification
clinical trials, these types of studies also have specific methodo-
logic and statistical considerations that are beyond the scope of
this article.75,134

We devote relatively limited attention to the analysis and
interpretation of adverse events and to benefit–risk assessments,
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both of which involve challenging issues and require considerable
biostatistical and clinical expertise. Although most treatments for
acute and chronic pain are generally safe, almost all have rela-
tively small risks of serious adverse events or poor tolerability in
substantial percentages of patients. The difficulty of studying
adverse events, unless they are relatively common, is well known.
In addition, the relatively brief treatment exposures in almost all
RCTs of analgesic medications—typically, several days to a few
weeks for acute pain and almost never more than 3 months for
chronic pain—further limit the conclusions that can be drawn
about safety. In the community, patients with chronic pain can be
taking analgesic medications on a daily or intermittent basis for
years, possibly increasing the risk of rare but serious adverse
outcomes if such events are associated with the treatment.

Before proceeding further, the importance of registering
clinical trials on authoritative websites such as www.clinical-
trials.govmust be emphasized. Prospective registration of clinical
trials before the beginning of enrollment—with updating of
information if protocols or prespecified analysis plans are revised
and when results become available—has multiple benefits.
Perhaps most importantly from a statistical perspective, these
include reducing selective reporting of analyses and outcomes
and preventing publication bias from failure to report the results of
clinical trial.

2. Research design

2.1. Identifying the objectives of the clinical trial

The first step indesigning a clinical trial is to identify the objectives of
the trial. In considering the approval of medications, the FDA
emphasizes that the beneficial effects of a medication involve how
patients feel, function, or survive. Many RCTs examine the effects
of a treatment on at least 1 of these 3 types of outcomes. Because
clinical trials involve a substantial amount of effort and can require
appreciable financial and other resources, most are designed to
obtain data relevant to several objectives, for example, to evaluate
the effect of a treatment on pain and on physical function aswell as
to determine its safety and tolerability. When there are multiple
objectives, they should be prioritized and accompanied by
statistical formulations of the questions. This often involves
prespecified hypothesis testing, although some studies, particu-
larly early-phase trials,may not involve tests of specific hypotheses.

Clinical trials are often categorized as phase 1, 2, 3, or 4
studies. Various guidelines and definitions exist for these trial
phases (eg, www.fda.gov/ForPatients/Approvals/Drugs/
ucm405622.htm), but the boundaries between them are not
rigid and available definitions are not completely consistent;
indeed, the characteristics and application of these phases can
be somewhat different depending on whether the terminology is
being used by regulatory agencies, government or foundation
funding organizations, or academic investigators. In general,
phase 1 trials are “first-in-human” studies that are designed to
provide an initial evaluation of safety and drug pharmacokinetics,
often conducted in healthy volunteers. Phase 2 trials are typically
the first studies conducted in patients with the specific condition
for which the treatment is intended, and they provide further
information regarding safety, target engagement, route of
administration, and dosage, as well as preliminary evidence of
efficacy. Studies that seek preliminary evidence of efficacy are
sometimes referred to as “proof of concept” clinical trials, and
most phase 2 trials of analgesics for acute or chronic pain
examine multiple dosages and have total sample sizes of
between 50 and no more than 300 patients.

Phase 3 trials, also referred to as “confirmatory trials,” are
designed to determine whether there is convincing evidence of
efficacy; such trials include the types of studies required for
regulatory approval by, for example, the FDA or European
Medicines Agency. These trials also provide information address-
ing longer-term safety and tolerability in larger samples, typically
300 to 800 patients for acute and chronic pain conditions. In
certain circumstances, phase 3 trials of pain treatments could
have sample sizes substantially larger than this. For example, a
trial designed to evaluate cardiovascular risks associated with a
novel nonsteroidal anti-inflammatory drug might require thou-
sands of patients.147

Phase 4 trials are usually conducted after a treatment is
available to patients in the community. They are often intended to
provide additional evidence of efficacy or safety, for example,
using different outcomemeasures, examining specific subgroups
of patients such as the elderly, evaluating longer treatment
durations, or assessing cost-effectiveness. Randomized clinical
trials conducted in different conditions than those for which
regulatory approval has been granted are sometimes referred to
as phase 4 trials; for example, a study of an analgesic medication
in patients with pain associated with multiple sclerosis after it has
been approved for painful diabetic peripheral neuropathy.
However, depending on their objectives, such studies could also
be considered phase 2 or 3 trials.

In discussing these clinical trial phases, we focus on the extent
to which efficacy and safety are examined. The efficacy of an
investigational treatment is typically evaluated by examining
whether it provides statistically significantly greater benefit when
compared with a comparison intervention. For RCTs of analgesic
medications, the comparison intervention is usually matching
placebo (typically inert, but sometimes a medication that mimics
the side effects of the active treatment to mitigate unblinding from
side effects or their absence). For studies of devices and other
invasive treatments, the comparator could be a “sham” device or
intervention. Comparison interventions can also be another active
treatment. For example, efficacy can be demonstrated by
showing that an investigational treatment is associated with
greater benefit than an existing treatment with well-established
efficacy.

The term “effectiveness” is also widely used, but we will use it
only when referring to studies that attempt to evaluate how
beneficial the treatment would be when administered in clinical
practice. Such trials include samples of patients who are more
heterogeneous than those typically examined in phase 2 and 3
trials and are more likely to allow patients to initiate or continue
other treatments for their condition. For example, a trial could be
designed to examine the effectiveness of an analgesicmedication
in a large sample of patients with chronic low back pain that
includes those who have other pain conditions and psychiatric
comorbidities, receive workers’ compensation benefits, or are
involved in litigation, all of which are very often exclusion criteria in
phase 2 and 3 trials examining the efficacy of chronic pain
treatments. The results of effectiveness trials often have greater
generalizability (ie, external validity) than the results of trials
evaluating efficacy, which typically seek to reduce variability and
bias to the greatest extent possible.

Our discussion of clinical trials to this point has assumed that
evaluations of efficacy will be tests of the scientific hypothesis that
one treatment is associated with a greater reduction in pain than
another, which is generally referred to as a test of “superiority.” It is
important to note that what is actually being tested, when
formulated as a statistical hypothesis, is a null hypothesis of no
difference between the 2 treatments in, say, their mean pain
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intensity at the end of the trial. When, on the basis of the observed
data, the null hypothesis is rejected at a prespecified significance
level a, it can be concluded that the data provide support for the
alternative hypothesis of a difference in mean pain intensity at the
end of the trial between the 2 treatments.

When treatments with very well-established efficacy exist, a
noninferiority trial64,204—or less commonly, an equivalence
trial103—may be conducted. A noninferiority trial design can be
used to show that a new treatment is not worse by more than a
prespecified amount than an established treatment for a specific
endpoint and is designed to test the null hypothesis that the
difference between the 2 treatments (established 2 new) is
greater than a prespecified noninferioritymargin, which is typically
selected on the basis of clinical considerations and historical
data. Rejection of the null hypothesis on the basis of the observed
data implies that the data provide support for the alternative
hypothesis that the difference between the 2 treatments
(established 2 new) is no greater than the noninferiority margin.
Noninferiority designs can negate the need for placebo groups,
which cannot be used when evaluating treatments for life-
threatening or rapidly progressive conditions for which efficacious
interventions already exist. By contrast, an equivalence trial is
used to determine whether a new treatment is “no better and no
worse” than an established treatment; such trials are commonly
used to establish bioequivalence between, for example, a brand-
name product and a generic version with respect to pharmaco-
kinetic parameters.178,179

Because any shortcomings in the design, execution, and
analysis of equivalence and noninferiority trials will tend to bias the
results toward showing equivalence or noninferiority, these types
of trials must be asmethodologically rigorous as possible.64,204 In
addition, there is a major issue associated with these clinical trial
designs that may limit their use for studying analgesic medica-
tions and other types of pain treatments. Because a noninferiority
or equivalence clinical trial typically does not include a placebo
group, the conclusion of noninferiority relies on an important
assumption, namely that both the new treatment and the
established treatment would have been shown to be superior to
placebo had a placebo group been included. This assumption
would be supported by consistent demonstration of the
superiority of the established treatment to placebo in multiple
trials. However, some conditions, such as pain and many
psychiatric disorders, are prone to variable and sometimes
prominent placebo effects, making the results of noninferiority
trials difficult to interpret. It could be, for example, that neither
treatment would have been shown to be efficacious if a placebo
group had been included in the trial.122 Indeed, although there are
many analgesic medications with well-established efficacy, few if
any demonstrate efficacy consistently.40,43,62

One solution to this problem is to include a placebo group in
these trials to establish “assay sensitivity,” that is, the ability of a
clinical trial “to distinguish an effective treatment from a less
effective or ineffective treatment.”50 If efficacy of the established
treatment vs placebo is shown, it can be assumed that the trial
has adequate assay sensitivity to conduct an informative test of
the noninferiority or equivalence of the investigational treatment
vs the established treatment.14

2.2. Addressing major sources of bias

2.2.1. Randomization

Randomization makes it possible to draw causal inferences on
the basis of the results of an RCT and to conclude that outcome

differences between, for example, an active treatment and a
placebo group have been caused by the active treatment. The
major goal of randomization is to create groups of patients who
are as similar as possible except for the intervention assignment.
In a parallel group RCTwith a sufficiently large sample of patients,
randomization is expected to result in similar distributions of
patient characteristics among the groups, including those
measured and unmeasured, as well as known and unknown.
Randomization of smaller groups of patients is less likely to result
in comparability of the groups, which could potentially explain
group differences in the outcome of treatment. For example, if
patients in an active treatment group have, on average, a milder
conditionwith a better prognosis than those in the placebo group,
differences in outcomes that are explained by patient character-
istics could be erroneously attributed to the treatment.

Randomizing patients in a clinical trial also eliminates both
intentional and unintentional bias in the allocation of treatments to
patients, which could compromise the validity of clinical trial
results by, for example, allocating patients expected to improve to
the investigational treatment rather than placebo. Indeed, in
meta-regression analyses of 234 meta-analyses of almost 2,000
trials, treatment effect estimates appeared to be exaggerated in
RCTs with inadequate or unclear random-sequence generation,
and this effect occurred primarily in trials with subjective
outcomes.175 Bias in the allocation of patients to treatments is
eliminated by prespecifying a randomization protocol and by
preventing study staff from having any information about the
specific treatment group to which patients in a trial will be
assigned. Allocation concealment is intended to prevent selection
bias—that is, the assignment of certain patients to specific
treatments—and can be used even in trials in which other
aspects of blinding might be difficult to implement, such as a trial
comparing pharmacologic and nonpharmacologic
treatments.177

Two additional aspects of randomization that are commonly
used are blocking and stratification. Blocking is a method for
limiting imbalances in the number of participants assigned to
each group after a certain number of participants have been
enrolled. For example, in a study with treatment groups A and B,
the first 4 patients could be randomized in any potential
combination that would produce an equal number of patients in
each of the 2 groups (eg, ABAB and BBAA). After the first block is
complete, the next 4 patients would be assigned to the 2
treatments using a newly randomized sequence of length 4 (block
size) and so on. Although in this example the block size is 4, it can
be any number that is a multiple of the number of treatment
groups. Use of a small block size is advantageous in terms of
promoting equal allocation over short periods of time, but it may
make it easier for trial staff to correctly guess the treatment
assignments. One can use block sizes that vary randomly (eg, a
combination of blocks of 4 and 6 treatment assignments). If
blocking is incorporated in the randomization plan, to avoid any
compromise of the blind, it is important to not reveal the block
size(s) in the protocol.

Stratified allocation can be used to promote comparability of
the treatment groups with respect to factors that are known to be
associated with outcome. For example, if depression is thought
to be associated with outcome, patients can be separated into
those who are and are not depressed and randomized within
each stratum. In multicenter trials, center is commonly chosen to
be a stratification factor to prevent the chance occurrence ofmost
of the participants at that center being randomized to one of the
treatment groups. It is generally recommended that the number
of stratification variables be small and limited only to those known
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to have important associations with outcome. In particular, it is
important to avoid small strata because chance imbalances in
treatment group allocation within a stratum are more likely in that
case, and stratification can be self-defeating if such imbalances
accumulate across strata.165 Combining stratification with block-
ing, that is, using blocking within strata, can be especially helpful
in this case.

2.2.2. Blinding

Blinding in clinical trials refers to when one or more parties,
including patients, clinicians, or research staff, are unaware of the
treatment arm to which study subjects are assigned. In a single-
blind trial, either the patients or the clinicians/research staff are
unaware of treatment assignment, whereas in a double-blind trial,
both the patients and the clinicians/research staff are unaware of
treatment assignment. It is well established that expectations can
have a powerful effect on human behavior and be a major source
of bias in clinical trials; thismay be especially true in clinical trials of
pain treatments given the prominent role of subjective outcome
measures. In one meta-analysis, treatment effect estimates were
on average 13% greater in trials in which there was no or
inadequate blinding compared with double-blind trials.175 The
bias associated with a lack of adequate blinding was greater with
subjective outcomes such as pain, mood, and quality of life than it
was with objective outcomes and mortality.175 The results of
double-blind RCTs are typically less subject to bias and more
informative than the results of unblinded studies.

The results of a single-blind trial are more subject to bias than
those of a double-blind trial because unblinded research staff
could unintentionally or intentionally communicate their expecta-
tions to patients or influence treatment outcomes in other ways,
thereby making a treatment appear to be effective when it is not.
For some treatments, such as physical therapy, or invasive
interventions such as surgery, blinding of the research team and
patientsmay be impossible. Inmany of these situations, however,
the individuals conducting outcome assessments can be kept
blind to the patient’s treatment, which can limit some but not all
sources of bias. Treatment effect estimates are generally greater
in clinical trials with inadequate investigator and patient blind-
ing,97,148,213 and the results of unblinded or “open-label” trials
can overestimate effectiveness and potentially be misleading.

When it is not possible to conduct a clinical trial on a fully
double-blind basis, efforts should be made to ensure that patient
and investigator expectations are as neutral as possible.35 For
example, there should be no communications or materi-
als—including the informed consent form—that suggest that
one treatment is newer, is better, or has fewer side effects than
the other. Although relatively little attention has been paid to
managing patient and research staff expectations in clinical trials
of pain treatments, there is growing recognition of the importance
of patient and research staff training and ongoing monitoring as a
means of increasing the quality of clinical trial data.184,196

Typically, the placebo in studies of analgesic medications is
inert but appears identical to the active medication in color,
shape, size, taste, and even odor. This is a critical aspect of
keeping patients and research staff blinded with respect to the
treatment that the patient is receiving. Even in double-blind RCTs,
however, patients and investigators can sometimes accurately
guess which intervention patients are receiving, either because of
characteristic side effects or because the treatment seems to be
beneficial. Following completion of participation, patients and
investigators can be asked which intervention they believe was
received (or, in the case of cross-over trials, what the treatment

sequence was) and what is the basis of their guesses.145 In a
clinical trial of an efficacious treatment, patients could correctly
guess that they received the active treatment because of its
beneficial effects, which would not be evidence of compromised
blinding. It is only when patients correctly guess their treatment
based on factors that are unrelated to efficacy, such as side
effects, that the adequacy of the blinding and the potential of bias
must be considered.

Some RCTs of analgesic medications have used “active
placebos,” which are medications that have no known pain-
relieving effects but that have side effects that mimic those of the
analgesic medication being studied (eg, sedation and constipa-
tion). The use of active placebos can be an effective strategy for
maintaining patient and investigator blinding, perhaps especially
in cross-over trials in which patients, being exposed to all study
interventions, may be more likely to correctly guess when they
received an inert placebo and when they received an active
treatment. The use of active placebos, however, remains
somewhat controversial because of the ethical issues involved
in exposing patients to the risk of side effects but not to the
potential benefit of receiving the active medication. It has been
argued that in studies of antidepressant medications in de-
pressed patients, “the available evidence does not provide a
compelling case for the necessity of an active placebo.”169 Given
the difficulty of identifying what could serve as an active placebo
for many of the medications studied for the treatment of pain, it
would be valuable to attempt to determine whether active
placebos increase the validity of analgesic clinical trials or
whether they are unnecessary.

2.3. Major types of clinical trials

Several different types of clinical trial designs have been used for
testing whether a treatment hypothesized to relieve pain has
superior benefits compared with a control intervention. Most of
these designs can also be used to examine group differences in
adverse events and safety risks. The designs discussed in this
section can also be used to test noninferiority or equivalence,
although there have been few such RCTs of pain treatments.

2.3.1. Parallel group designs

The most common type of clinical trial of pain treatments is the
parallel group design, in which patients are randomized to 2 or
more treatments, one of which is usually placebo or another
comparator that is expected to have no or minimal pain-relieving
properties. Causal inference from the results of a double-blind
parallel group RCT can be quite straightforward. If data integrity
and trial quality can be assumed, a statistically significant
difference in the primary outcome measure between the active
intervention and the control condition can be interpreted as
evidence that the treatment caused the difference.

2.3.2. Cross-over designs

In cross-over trials, each patient is randomized to 1 of 2 or more
treatment sequences. For this reason, cross-over clinical trials
should only be considered when the condition being treated is
expected to remain stable throughout the duration of the trial, the
treatment being investigated has a relatively prompt onset of
action, and the effect of the treatment disappears relatively soon
after treatment withdrawal. In most cross-over trials, there is a
“washout period” between the different treatment periods to
allow any effects of the earlier treatment to dissipate before
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starting the next treatment. In a typical analysis of the data from a
2-period placebo-controlled cross-over trial, patient outcomes at
the end of their active treatment period are compared with their
outcomes at the end of the placebo period.

Compared with parallel group trials, cross-over trials can be
very efficient with respect to sample size requirements because
each patient receives both active and control treatments, which
removes the between-patient variability that is present in parallel
group trials. Unfortunately, cross-over trials also have several
potential limitations. The cross-over design assumes that
differences in outcome between the treatments do not depend
on the period in which the treatments are given, that is, there is no
interaction between the treatment and period. If the pain
condition being studied changes over the course of the trial (eg,
pain severity increases), the outcomes in later treatment periods
will differ from those in earlier periods, that is, there will be a
“period effect.” Thismay induce an interaction between treatment
and period if the magnitude of the treatment effect depends on
the severity of the condition. Another potential cause of such an
interaction is inadequacy of the length of the washout period
whereby the effect of the treatment in the first period, for example,
may carry over to the placebo condition in the next period, thus
reducing the estimated magnitude of the treatment–placebo
difference in the second period. Although various approaches to
addressing the presence of these so-called carry-over effects
have been proposed, their value remains controversial.104,178 In
addition, if the treatment is disease-modifying (eg, associated
with persisting reduction of pain), then treatment effects in later
treatment periods will be attenuated. Despite their limitations,
cross-over trials have been very informative designs in evaluating
the efficacy of various chronic pain treatments.42,76 However,
relatively prompt resolution of pain limits the use of cross-over
trials for most acute pain conditions.

2.3.3. Enrichment designs

There has been increasing attention to the use of enrichment
designs in the study of treatments for chronic pain. One reason for
this has been the belief that enrichment can increase the assay
sensitivity of a trial to detect efficacy. The most common type of
enrichment design in the study of chronic pain has been termed
“enriched enrollment randomized withdrawal.”107,136 In this
design, there is an initial enrichment phase of several weeks in
which patients typically receive the investigational treatment on
an open-label basis. At the end of this phase, patients whose pain
has decreased (eg, by 30% or more) and who have tolerated the
treatment are then randomized on a double-blind basis to
continued active treatment or to switch to placebo. In this
randomized withdrawal phase of the trial, any pharmacologic
benefit of an efficacious treatment shown in the open-label phase
is expected to continue in the patients who remain on treatment
but is expected to dissipate in the patients randomized to
placebo. It is hypothesized either that pain will be greater in the
placebo vs the active treatment group at the end of the double-
blind phase or that the placebo group will have a faster time to a
clinically meaningful increase in pain than the active group.

Multiple RCTs of various chronic pain conditions using different
classes of medications have used this design, and the
methodologic aspects of these trials have been reviewed.144

The results of published trials suggest that the assay sensitivity of
enriched enrollment randomized trials may be greater than the
assay sensitivity of standard parallel group trials, but the evidence
is not conclusive.71,107,144 However, because the initial open-
label phase is typically used to exclude patients with poor

tolerability and clinically important adverse events, the sub-
sequent double-blind phase can show a reduced rate of adverse
events,71 which likely translates to lower rates of withdrawals and
missing data. Potential limitations of the enriched enrollment
randomized withdrawal design include unblinding due to
knowledge of benefits and side effects from the open-label
phase as well as the lack of generalizability of the results because
only those patients who exhibited a favorable response and
tolerability during the open-label phase are randomized.109,123 It
can also be argued, however, that the design mirrors clinical
practice because those who are randomized represent the
patients who would continue treatment in practice. Clinical trial
designs that include enriched enrollment and randomized
withdrawal can play a role in regulatory approval and have been
used in phase 2 and 3 trials of chronic pain treatments.51,144,207

There are other uses of enrichment in RCTs, for example, for
excluding patients who develop dose-limiting adverse events,
who have poor medication or pain diary adherence, who have a
low risk of outcome events, or who are apparent placebo
responders.114,207 It is very likely that the use of enrichment in
clinical trials of pain treatments will increase as a result of the great
interest in developing “precision” or personalized treatments that
target specific pathophysiologic mechanisms or biomarkers69

rather than broad disease etiologies in which patients appear to
have multiple but incompletely shared underlying pain
mechanisms.

2.3.4. Factorial designs

Factorial clinical trial designs can be used to simultaneously study
the efficacy and safety of 2 or more treatments and examine
whether any beneficial (or adverse) effects of the treatments are
additive, subadditive, or synergistic. In the most common type of
factorial design, patients are randomized to the 4 possible
combinations of 2 treatments and their controls. For example,
Foster et al.67 conducted such a 2 3 2 factorial trial of oral
desipramine and topical lidocaine in women with vulvodynia.
They randomized patients with equal allocation to receive oral
desipramine plus topical lidocaine; oral desipramine plus topical
placebo; oral placebo plus topical lidocaine; and oral placebo
plus topical placebo. This design makes it possible to test the
main effect of desipramine on pain by comparing patients
randomized to oral desipramine (combined with either topical
lidocaine or topical placebo) with patients randomized to oral
placebo (combined with either topical lidocaine or topical
placebo) and to similarly test the main effect of topical lidocaine.
Such comparisons, however, assume that the effect of oral
desipramine does not depend on whether or not topical lidocaine
is also given, and that the effect of topical lidocaine does not
depend on whether or not oral desipramine is also given, that is,
there is no interaction between the 2 treatments. The interaction
between the 2 treatments can also be tested to determine
whether any beneficial effects of the treatments interact
synergistically (ie, the benefit of the combination of treatments
is greater than what would be expected from the sum of their
independent effects, also termed superadditivity) or whether
there is subadditivity (ie, the benefit of the combination is less than
what would be expected from the sum of their independent
effects), which could result from overlap in their mechanisms of
action, noncompliance, and other factors.16

Factorial designs can be viewed as an efficient way to conduct
2 or more trials for the price of one, but only if it is assumed that
there is no interaction between the treatments. Planning such a
study should be done with caution because the main effects of
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treatment can be misleading in the presence of an interaction. In
the example above, the effect of oral desipramine vs oral placebo
in a standard 2-arm trial would differ from the main effect of oral
desipramine in a trial with a 23 2 factorial design if an interaction
between the 2 treatments was present. Also, although the
assumption of no interaction can be tested, the power of the test
is low comparedwith the power of a test for amain effect, so a trial
designed to detect main effects may not be able to detect
important interactions between the treatments.16 If one is to
assume the absence of an interaction, there should be sufficient
understanding of the treatments to establish confidence that their
mechanisms of action are nonoverlapping and that ceiling effects
for the improvement with one or both of the treatments are
unlikely. In addition, sufficient consideration should be given to
potential safety concerns and logistical issues that might promote
lower compliance in those assigned to receive combination
treatment.

On the other hand, interest may center on interactions
between the treatments, in which case comparisons among the
individual treatment arms/combinations would be performed.
This would require larger sample sizes than a design to detect
main effects of a treatment. Given the modest efficacy of all
existing treatments for acute or chronic pain as monotherapy,
factorial designs can be used to investigate whether combina-
tions of medications or combinations of medications with
nonpharmacologic treatments can improve patient outcomes.
Complex factorial designs can be used to study multiple
interventions17; for example, Apfel et al.5,6 conducted a 2 3 2
3 2 3 2 3 2 3 2 factorial trial of 6 different interventions for the
prevention of postoperative nausea and vomiting.

2.3.5. Adaptive designs

There are multiple types of adaptive clinical trial designs, but their
defining characteristic is “prospectively planned modifications to
one or more aspects of the design based on accumulating data
from subjects in the trial.”206 Coffey25 and Coffey et al.26

distinguish among adaptive designs for early-stage exploratory
development, for later-stage exploratory development, and for
confirmatory clinical trials. Within these broad categories, the
uses of adaptive designs can include (1) identifying a maximum
tolerated dose (eg, using the continual reassessment method72);
(2) selecting a target dosage to study in confirmatory trials (eg,
using adaptive dosage allocation); (3) evaluating the assumptions
used in sample size calculations (eg, by blinded or unblinded
assessments of outcome measure variability or event rates) and
modifying the sample size if warranted; (4) interim monitoring to
consider early stopping for safety, efficacy, or futility (eg, using
group sequential methods); (5) bridging phases 1 and 2 or phases
2 and 3 with adaptive seamless designs (eg, using phase 2 dose-
finding data to seamlessly transition to a confirmatory trial); and (6)
response adaptive randomization to increase the percentage of
patients randomized to one or more treatments showing favor-
able trends.9,13,57,206

Adaptive designs can have advantages and, depending on
the specific study hypothesis and trial circumstances (eg,
clinical condition and type of treatment), are helpful to consider
when beginning to design a clinical trial of a pain treatment.
One benefit of certain adaptive designs can be greater
efficiency because of smaller overall sample sizes or shorter
overall study durations, although such benefits do not always
occur.115,195 In addition, adaptive designs may increase the
likelihood of achieving the trial’s objective and provide
improved understanding of treatment effects. Adaptive

designs may also have particular value in studying rare
conditions for which the number of potential research patients
in the population is limited, as well as advantages in the
investigation of precision or personalized treatments, that is,
treatments with greater efficacy or safety in certain subgroups
of patients identified on the basis of aspects of their genotype
or phenotype.209

Because adaptive designs rely on analyses of accumulating
data, they sometimes require outcomes that occur relatively
early in the course of the treatment, which allows data to be
analyzed promptly and any adaptations to then occur as
planned. For this reason, disease-modifying treatments with
beneficial effects that are expected to occur over several years
may not be suitable for an adaptive design, whereas trials of
symptomatic treatments of acute or chronic pain could be.
Similarly, when temporal changes are expected over the
course of the trial in the characteristics of the patients (eg, a
new treatment becomes widespread in the community) or of
the investigational treatment (eg, surgical technology im-
proves), adaptive designs should not be used because trial
modifications will be based on patient and treatment charac-
teristics that could have changed substantially by the time the
adaptations are implemented.

There are also many logistical and procedural challenges with
implementing adaptive designs. These include issues involving
medication (or other intervention) supply and management; data
quality, extraction, and analysis; and site and datamonitoring.73 A
critically important aspect of all adaptive designs is the need to
prespecify the circumstances in which alterations in the trial will
occur and the specific nature of those adaptations. This is needed
to ensure that any such trial modifications do not cause
unacceptable increases in the type I error probability or
compromise trial integrity or data quality.206 Within the prespe-
cified description of the characteristics of an adaptive design, it is
important to identify whether the adaptations will be based on
blinded data (eg, interim sample size re-estimation using the
estimated pooled SD) or unblinded data (eg, interim futility
analyses). Any examination of unblinded data must be described
and potential threats to the integrity of the trial carefully evaluated.
Depending on the specific type of adaptive design, there are other
potentials for bias. For example, investigators can become
unblinded to emerging trends because sample size adjustments
based on interim estimates of treatment effects can be reverse
engineered to estimate the trend that caused the adjustment.34

To mitigate such sources of unblinding, firewalls to prevent
investigators from knowing that an adaptation has occurred
should be implemented whenever circumstances permit. Be-
cause clinical trials with adaptive designs are usually more
complex than standard RCTs, biostatisticians with substantial
expertise are required for their design, and interpretation of their
results can be challenging for readers who are not familiar with
clinical trial methods.

Despite their potential benefits, there have been few published
clinical trials of pain treatments that have used adaptive designs.
It is possible that a number of analgesic trials in which futility was
shown at interim analyses remain unpublished, and that some
trials have used various types of adaptation but have not reported
doing so in the published reports. Kalliomäki et al.106 have
suggested that adaptive dose-finding designs can play an
important role in early analgesic drug development. More
generally, it can be anticipated that adaptive designs will also
be used in studying whether sensory phenotyping or other
biomarkers can predict which patients will show a greater
response to analgesic treatment vs placebo.38,80
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2.4. Selection of control and comparison treatments

In RCTs of analgesic medications, a matching inert placebo
control—whether pills, saline injection, or topical vehicle cream or
gel—very effectively controls for nonspecific influences on out-
come, including placebo effects, regression to the mean, and
spontaneous improvement. Identifying a control condition that
does so in trials of invasive, psychosocial, and physical
interventions is much more challenging. A variety of different
approaches have been used, including sham surgery137 and
sham devices that seem to be real but are missing a crucial
therapeutic component (eg, an acupuncture needle that does not
penetrate the skin or a stimulator that does not deliver
stimulation).

For some treatments, the control condition can be “standard of
care” or “treatment as usual” or even being placed on awaiting list
for the active treatment. For both standard of care and waiting list
control treatments, patients should be administered baseline and
outcome assessments that are identical to and conducted at the
same intervals as those administered to patients receiving the
active treatment. Patients in both standard of care and waiting list
control conditions can be expected to be receiving the treatment
of their pain in the community, so when such designs are used,
patients receiving the active investigational treatment should also
be allowed to receive the same treatments (unless the objective of
the trial is to compare the active treatment alone with what is
typically used by patients in the community). For certain
treatments and pain conditions, “add-on” trials can be used to
show an additional benefit of a new treatment when added to an
existing treatment. For example, patients who have had a partial
response to a first-line medication can remain on that medication
and be randomized to a newmedication—presumably one with a
different mechanism of action—or matching placebo to de-
termine whether the new medication provides additional benefit.

It is often suggested that phase 2 RCTs examining analgesic
and psychiatric medications with unknown or inconclusive
efficacy should include a positive control with well-established
efficacy in addition to a placebo control. Such a positive control
makes it possible to demonstrate the assay sensitivity of the trial
to detect the efficacy of the investigational treatment.122 That is, if
neither the positive control nor the investigational treatment
significantly differs from placebo, then the study can be
considered a “failed trial” that lacked the assay sensitivity to
demonstrate efficacy. However, if the positive control differs
significantly from placebo and the investigational treatment does
not, then it can be concluded that the trial had adequate assay
sensitivity and that the investigational treatment lacks efficacy at
the dosage studied and for the specific pain condition examined
in the trial.

2.5. Allocation ratio

Most clinical trials of pain treatments allocate patients equally to
the different treatment groups. It is also possible to randomize
different percentages of patients to the different treatment
groups, for example, randomizing twice as many patients to the
active treatment as to placebo (2:1 allocation). Although there are
various reasons to consider using such unequal allocation ratios,
including enhancing the appeal of the trial to patients, sample
sizes need to be increased for such trials to have equivalent
statistical power as those with equal allocation ratios. The
required increase in overall sample size for a trial with 2:1 vs 1:1
allocation, given a desired power of 80% or 90%, is modest,
however (approximately 12%).

The results of meta-analyses of clinical trials of psychiatric and
analgesic medications have suggested that when a greater
percentage of patients are allocated to one or more active
treatment groups than to placebo, there is typically greater
improvement in the placebo groups and often smaller differences
between the active treatments and placebo.43,156 This is thought
to be due to placebo effects associated with patients having
increased expectations of receiving active treatment. For
example, patients participating in a placebo-controlled trial
evaluating 3 different medication dosages would be aware that
they have a 75% chance of being randomized to an active
medication vs placebo. Of course, this assumes that the
allocation ratio has been revealed to patients, either in the
informed consent form, by the investigators, or on a clinical trial
registration website (eg, www.clinicaltrials.gov). Such expecta-
tion effects, if present, might be prevented if patients are not
aware of the allocation ratio because this information has not
been revealed in consent forms, protocols, and websites.
Blinding patients to the allocation ratio would not, however, be
appropriate for RCTs that use unequal allocation to improve
recruitment, in which case it would be important for patients to
know that they have a greater probability of being randomized to
active treatment than to placebo.

3. Endpoints and analyses

The FDA defines “treatment benefit” as the effect of a treatment
on how “a patient survives, feels, or functions” and emphasizes
that such benefit can be shown by an advantage either in efficacy
or in safety, and that measures that do not directly capture effects
on how patients feel, function, or survive are surrogate
measures.202 This broad perspective is intended for the
regulatory evaluation of drugs, biologics, and devices, and it is
most applicable to later phase RCTs rather than phase 1 and 2
studies; nevertheless, it can also be used when considering other
types of pain treatments, including such interventions as physical
therapy, cognitive-behavioral therapy, and acupuncture. In de-
signing an RCT of any of these interventions, a crucial decision
involves selecting the specific outcomes that will be used to
examine benefits on how patients feel, function, or survive. For
trials of acute and chronic pain treatments, these outcomes will
almost always include pain intensity and will often include
physical and emotional function, as well as relevant aspects of
safety.39,191,194,198,200 Several different types of outcomes have
been used in clinical trials of pain treatments—quantitative
measures (eg, ratings on a 0–10 numeric rating scale or a 10-
cm visual analogue scale); counts of affected days or events (eg,
number of days with migraine and number of trigeminal neuralgia
paroxysms); categorical responses (eg, no, mild, moderate, or
major improvement); and time to event outcomes (eg, number of
days to mild or no pain).

3.1. Primary endpoints and analyses

The most common approach used in designing pain clinical trials
is to select one efficacy outcome as the primary endpoint, for
example, pain intensity asmeasured on a 0 to 10 numerical rating
scale (NRS) at the end of the double-blind treatment period.
However, there are multiple outcomes that can be evaluated in
clinical trials of pain treatments, and depending on the specific
trial objectives, it could be important to prespecify 2 or more
primary endpoints.200,205 For example, an investigator might
consider a novel treatment to be efficacious if improvement is
shown on either a measure of pain intensity or a measure of
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physical function. Such “multiple primary endpoints” must be
analyzed using an approach that controls the overall type I error
probability, that is, the probability of rejecting the null hypothesis
of no treatment effect for at least one of the endpoints when, in
fact, the treatment has no effect. There are a variety of multiple
comparison procedures that control the overall type I error
probability at or below a specified level.36,57 Perhaps the most
commonly used approach is the Bonferroni method, which uses
a significance level of a/k for testing the null hypothesis of no
treatment effect for each outcome variable, where a is the
prespecified overall type I error probability and k is the number of
outcome variables and, hence, the number of significance tests
that will be conducted. Although the Bonferroni method can be
easy to understand and implement, it is conservative and other
procedures to address multiple testing have been developed that
are generally more powerful.36,57

In some circumstances, an investigator might consider a novel
treatment to be efficacious only if improvement is shown on 2 or
moremeasures, for example, measures of both pain intensity and
physical function. Such “coprimary” endpoints would all need to
show a statistically significant difference in favor of the novel
treatment for the treatment to be considered efficacious. When
there are such coprimary endpoints, no adjustment is needed to
control the type I error probability of falsely rejecting the null
hypothesis of no treatment effect; this is because all the
endpoints are required to show statistically significant differences
in favor of the treatment for the treatment to be considered
efficacious. However, the type II error probability (ie, the
probability of failing to reject the null hypothesis when the
treatment is actually beneficial) increases as the number of
coprimary endpoints increases because every one of them is
required to show a statistically significant difference in favor of the
treatment. The sample size must therefore be increased to
maintain adequate statistical power, with higher numbers of
coprimary endpoints and lower correlations among them being
associated with greater increases in the required sample
size.90,91,150,192

For each outcome variable that is analyzed, prespecification of
the precise definition of the outcome variable is necessary.
Outcomes are typically measured at multiple time points, and the
primary outcome variable can be defined at a single time point
(eg, change from baseline to the end of double-blind follow-up) or
across several time points. For example, the summed pain
intensity difference is the sum (across time points) of the
differences between baseline pain intensity and current pain
intensity scores weighted by the time interval between ratings,
and the total pain relief (TOTPAR) is the sum (across time points)
of the relief scores weighted by the time interval between ratings;
both measures are frequently used in clinical trials of treatments
for acute pain.51,183 Of course, if outcomes at multiple time points
are all deemed primary, then appropriate adjustment for multiple
testing is needed. The form of the outcome variable also needs to
be specified. For example, change from baseline in pain intensity
measured using a 0 to 10 NRS can be specified as a continuous
variable or as a dichotomous variable (eg,$30% pain reduction).

Other aspects of a trial design besides multiple primary
endpoints can induce issues of multiplicity, and hence,
approaches to deal with this are important to prespecify for the
primary analysis. When there are more than 2 groups, for
example, multiple dosages of a drug and placebo, the
comparisons of primary interest need to be prespecified, with
adjustment for multiple testing as appropriate. The inclusion of
interim analyses also introduces issues of multiple testing, as
described in section 6 below. Plans for examining treatment

effects in subgroups (eg, based on quantitative sensory testing33)
are usually reserved for secondary/exploratory analyses but
should account for multiple testing if subgroup examination is
planned as a primary objective.80

Decisions regarding endpoints and analyses should be made
before beginning data analysis and prespecified in a statistical
analysis plan and on a clinical trial registration website. The
importance of prespecification of the statistical analysis plan
cannot be overemphasized. Unfortunately, publications of RCTs
of pain treatments are often missing crucial information about
endpoints and analyses and whether they have been prespeci-
fied,37,82,189 which canmake it difficult to adequately interpret the
data given that selective reporting of outcomes or analyses or
both may have occurred. Prespecification of the analyses should
include the primary statistical model, the primary method for
accommodating missing data (see section 5 below), and any
adjustment for baseline covariates. It is standard practice to
include variables used to stratify the randomization as covariates
in the primary statistical model (eg, study center), and the baseline
value of the outcome measure, if not used as a stratification
variable, is also often included. Sometimes, analyses are
performed that include baseline variables found to be distributed
differently among the treatment groups as covariates in the
statistical model; however, these and any other post hoc analyses
should be considered secondary sensitivity analyses and clearly
identified as such in all descriptions of the study results.

3.2. Secondary and exploratory endpoints and their analysis
and interpretation

Secondary endpoints are included in RCTs to provide additional
information about treatment benefit beyond that provided by the
primary endpoint. Secondary endpoints can include outcomes
that provide greater understanding of the overall treatment
benefit—for example, if the prespecified primary outcome is a
measure of pain intensity, then measures of physical function,
mood, and sleep could be included in the trial to evaluate whether
the treatment has beneficial effects on these aspects of health-
related quality of life that are often adversely affected by pain.
Other types of secondary endpoints include (1) separate
components of a composite primary endpoint; (2) variables that
can aid in understanding the mechanisms of action of the
treatment; and (3) measures that relate to secondary hypotheses
that are not major objectives of the trial.32,200

Analyses of secondary endpoints provide additional charac-
terization and understanding of treatment effects but are not by
themselves sufficient to confirm treatment efficacy in most
circumstances. It is typical in clinical trials of pain treatments for
the results of analyses of secondary endpoints and of other
secondary analyses to be presented without any attention to the
risk of type I error that results from multiple testing. The results of
such analyses can provide a basis for subsequent research but
cannot be considered a basis for concluding efficacy or for clinical
decision making.

One common approach to analyzing primary and secondary
endpoints and controlling the overall type I error probability
involves sequential “gatekeeping” procedures that test a series of
null hypotheses in a prespecified sequence.200,205 For example, a
null hypothesis of no group difference inmean pain intensity could
be tested first. If this null hypothesis cannot be rejected—that is,
the group difference is not statistically significant—then testing
stops. If the first null hypothesis is rejected, then a second null
hypothesis of no treatment effect for, say, a physical functioning
endpoint can be tested. If this second null hypothesis is rejected,
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then a third null hypothesis can be tested and so on. Testing
stops at whatever point in the prespecified sequence a null
hypothesis is encountered that cannot be rejected. Because of
the hierarchical nature of the testing, hypotheses can be tested
using the same significance level as that used in testing the
previous hypothesis. Adjustment for multiple testing is not
required when moving from one hypothesis to the next, and
conclusions about each endpoint depend on whether the null
hypotheses in the previous steps were rejected.36 Careful
prespecification of the hierarchical sequence in which hypothe-
ses are to be tested is critically important. It is possible, for
example, for a treatment to have a profound effect on a
secondary endpoint that is ranked low in the sequence, but the
null hypothesis regarding the treatment effect on that endpoint
would not even be tested if a null hypothesis concerning an
endpoint that is ranked higher in the sequence is not rejected.

Exploratory endpoints are those endpoints included in an RCT
that are typically not closely related to its primary objectives but
that may provide worthwhile information about the treatment and
provide the basis for the design of future studies. Endpoints that
are prespecified as exploratory do not require any correction for
multiplicity as long as no conclusions about efficacy will be drawn
from the results of the analyses.When no approach to addressing
multiple testing has been prespecified for the analysis of
secondary endpoints—which is often true of clinical trials of pain
treatments—the distinction between secondary and exploratory
endpoints has no implications for data analysis but often reflects
investigators’ opinions about the importance of the endpoints.

Many RCTs collect a rich set of different types of data, and
additional analyses might become of interest after the statistical
analysis plan is final. Indeed, it has been noted that reviewers of
articles can request that additional analyses be conducted and
reported, and that such analyses can reflect knowledge of the
data or interests of the reviewer rather than the original objectives
of the clinical trial.96 Any unplanned analyses that were not
prespecified should be clearly described as such in all clinical trial
reports and publications, and the post hoc nature of these
analyses must be considered when interpreting their results.52

Selective reporting of outcomes and analyses has been shown to
lead to biased estimates of treatment benefit.139,201 Inappropriate
data analysis and reporting can lead to erroneous conclusions,
causing patients to receive ineffective treatments that could
confer safety risks and unnecessary financial costs and personal
burden.

3.3. Responder and composite endpoints

There has been a great deal of attention devoted to the use of
“responder” endpoints in RCTs of pain treatments. This is a result
of multiple studies showing that reductions in pain of approx-
imately 30% or greater and 50% or greater are, respectively,
considered moderately and very clinically important by pa-
tients.44,59 These thresholds have been shown to apply to both
acute and chronic pain and can be useful for evaluating whether a
patient’s pain reduction is meaningful, irrespective of whether the
improvement reflects a true pharmacologic effect, a placebo
effect, regression to themean, or natural history. Reports of RCTs
of pain treatments often present the percentage of patients in
each of the treatment groups that have achieved one or both of
these 2 “responder” definitions and test whether between-group
differences in these percentages are statistically significant. In
addition, because such categorizations are somewhat arbitrary,
an increasing number of RCT reports also present the cumulative
distribution functions for each treatment group, which makes it

possible to examine group differences for every possible
threshold of improvement (Fig. 1).58

Such “responder” definitions can also be used to calculate the
number needed to treat (NNT), which is the inverse of the
difference between the percentages of “responders” for the 2
treatment groups. For example, when 60% of patients adminis-
tered a novel treatment and 40% of patients administered
placebo have had $30% improvement in their pain, the NNT 5
1/(0.62 0.4)5 5. The NNT can be thought of as the “number of
patients who must be treated to generate one more success or
one less failure than would have resulted had all persons been
given the comparison treatment,”119 at least on average.

“Responder” endpoints and NNTs are widely used and can
often facilitate meaningful interpretation of clinical trial results by
clinicians and patients (section 7.2.1). However, they also have
important limitations,99 including the substantial loss in statistical
power that occurs when continuous endpoints are dichoto-
mized.60,116 Larger sample sizes are needed for analyses of
“responder” endpoints to have adequate power, as is also true for
analyses of NNTs that are based on categorizing continuous
data, as very often occurs in RCTs of pain treatments. In addition,
NNTs can be misinterpreted with respect to their implications for
clinical practice171 and are often thought to be the number of
patients that a clinician would need to treat to get one positive
response rather than the NNT to get one additional positive
response beyond what would be obtained with the comparison
treatment. As Senn179,181 has also emphasized, NNTs do not
account for the heterogeneity of clinical trial participants:
“Consider a trial comparing paracetamol with a placebo for
treating tension headache. After 2 hours, 50% of people treated
with the placebo are pain-free, as are 60% of those who were
treated with paracetamol. The difference is 10%, and the NNT is
10. However, if paracetamol works for 100% of participants in
60% of the times they are treated, it will give the same NNT as if it
works for 60% of the participants 100% of the time.”181

Composite endpoints can be used to combine multiple
outcomes into a single measure and thereby test only a single
hypothesis. Such endpoints have been used to address a variety
of issues in RCTs68 and can be valuable when several endpoints
are needed to adequately characterize the beneficial effects of
treatment. A well-known example of a composite endpoint is the

Figure 1. Empirical cumulative distribution functions for percentage changes
from baseline ranging from small degrees of worsening through all possible
degrees of improvement (reproduced from ref. 187).
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use of the ACR-20 in clinical trials of rheumatoid arthritis, in which
patients are categorized as “responders” if there is a 20%
improvement in tender/swollen joint counts and in 3 of 5
additional measures.200 Another type of composite endpoint
would categorize patients as “responders” if, for example, they
have either a prespecified level of improvement in pain (eg,$30%
reduction) or a prespecified improvement in physical function.157

Ideally, the components of a composite endpoint should be
associated with each other but not so highly associated that they
provide nearly the same information that would be obtained from
a single endpoint. Composite endpoints can also include both
efficacy and safety outcomes for evaluation of the risk–benefit of a
treatment, for example, by categorizing patients with respect to
both clinical benefit and adverse events and then ranking the
desirability of their joint outcomes.56 Such composites can
incorporate associations among outcomes of interest and
address competing risk challenges,54 for example, duration of
acute pain being shorter in patients who die while recovering from
their surgery.27

Themajor disadvantages of composite endpoints are that they
generally do not permit conclusions about their specific
components and can therefore be misinterpreted, that treatment
effects may be limited to one or a few components that may be
less meaningful, and that responses may even be qualitatively
different for different components.68 For example, if a composite
endpoint includes pain, physical functioning, and sleep, it is
possible that a sedating treatment could have a meaningful
benefit on pain and sleep but be associated with impaired
functioning. Because composite endpoints can mask the
beneficial or harmful effects of their individual components, it is
generally recommended that separate analyses of each compo-
nent be reported when results for composite endpoints are
presented.68,205 If such analyseswill be used to draw conclusions
about the effects of treatment on individual components of the
composite outcome, then prespecification of the approach that
will be used for addressing multiple testing is necessary.

3.4. Adverse event assessment and analysis

Careful assessment of adverse events is an essential component
of all clinical trials,57,65 including clinical trials of pain treat-
ments.191,199 Adverse events can be assessed on the basis of
spontaneous reports, by using a nonspecific approach in which
patients are asked whether they have developed any new
symptoms or health problems, or by a targeted approach in
which patients are asked directly about specific symptoms (eg,
dizziness and constipation), or a hybrid of the 2. The targeted
approach is more sensitive for detecting specific symptoms.
However, if relatively insignificant adverse events are more likely
to be reported when patients are questioned about specific
symptoms, the events ascertained on the basis of spontaneous
reports or nonspecific questions may be more clinically relevant.

Regardless of which approach is used to collect adverse event
and safety data, there are typically a large number of different
events, laboratory values, and other measures that must be
analyzed. There are a number of challenges in the analyses of
safety data, including that events can be rare and can vary in the
time when they first appear, that different patient characteristics
can predict a greater risk of an event, and that multiple related or
independent events can occur within individual patients. Most
RCTs of pain treatments have sufficient power to detect a
minimally important effect of treatment on the primary endpoint(s)
but not necessarily to detect differences between the active and
control treatments in adverse event rates and other safety

outcomes. Because of this, efficacy trials can often have
inadequate power to detect important treatment group differ-
ences in adverse event rates and other safety outcomes.197Given
the large number of events that are often examined, there is also
an inflated probability of type I error as a result of conducting
multiple significance tests of group differences. Depending on the
specific circumstances, including the consequences of falsely
concluding that there are no significant treatment-associated
risks when there actually are, various procedures can be used to
address the issue of multiple testing.12 Discussion of the complex
issues involved in the appropriate analysis of adverse events and
safety data is beyond the scope of this article, and other sources
should be consulted.57,65

4. Sample size determination and statistical power

It is likely that one of the first issues that comes to mind when
clinician investigators think about statistical aspects of clinical
trials is the determination of the sample size. Unfortunately,
published trials often do not adequately describe how this has
been done, with one study finding that approximately two-thirds
of RCTs in major medical journals fail to report all the information
necessary for replication of the sample size determination or have
inaccurate calculations or assumptions.23 Inadequate reporting
of sample size calculations has also been found for clinical trials of
pharmacologic and invasive pain treatments, with only two-thirds
reporting a sample size calculation and only 38% of those trials
describing all the information necessary to calculate the sample
size.135

It has been argued that a larger sample size than is necessary is
unethical because it exposes patients to safety risks and to
potentially ineffective treatments or placebo.124 Too small a
sample size can also be considered unethical given that patients
are exposed to risks, but the result of the trial may be
inconclusive.3,89 Small trials, however, may make a worthwhile
contribution as early-phase studies with exploratory or feasibility
objectives, for investigating rare diseases, and when there are
commitments to include the results in meta-analyses.46,89,132

It is important to emphasize that the discussion of sample size
determination in this section involves the decisions and calcula-
tions that are made before the trial begins enrollment, that are
prespecified in the trial protocol, and that can be revised on the
basis of prespecified interim analyses. After a trial is complete,
analyses are sometimes conducted of what has been termed
“observed” or “post hoc” statistical power. Such analyses,
however, contribute no information beyond the reported P value
and confidence interval for the treatment effect, and non-
significant P values always correspond to relatively low observed
power.86,95,124

4.1. Choosing the type I and type II error probabilities

The first step in calculating the sample size needed for a clinical
trial is to choose the type I and type II error probabilities. For many
phase 2 trials and most phase 3 trials, the type I error probability,
or the probability of rejecting the null hypothesis when the
treatment has no effect, is set at 5% (ie, a significance level of
0.05). This choice is arbitrary but has a long tradition in the
medical, biological, and social sciences.63 Although setting the
type I error probability at 5% is standard, in principle, the value
should be set according to the consequences of making a type I
error, that is, falsely declaring a treatment to be effective. There
are circumstances where 10% or even higher can be used, such
as in phase 2 studies in which an increased risk of a false-positive
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outcome can be offset by the knowledge that a statistically
significant result will provide the basis for confirming efficacy in
subsequent clinical trials rather than for a change in clinical
practice.

A type II error is the failure to reject the null hypothesis when it
should be rejected, that is, a failure to detect that a truly effective
treatment is effective. With respect to clinical trials, a type II error
will result in an efficacious treatment not showing efficacy and
possibly being prematurely abandoned. Given this potential
negative impact on public health and the very great costs,
burdens, and risks associated with RCTs, the maximum type II
error probability is usually 20%, with lower rates such as 10%
preferred, especially in clinical trials involving a condition for which
no treatment exists. The complement of type II error probability is
statistical power, that is, the probability of rejecting the null
hypothesis when it is false, and for most RCTs, it is prespecified
within the range of 80% to 90%. Power is the probability of
obtaining a statistically significant result when, for example, a truly
efficacious treatment is compared with placebo. Power is greater
with increases in sample size, type I error probability, and
treatment effect magnitude and with decreases in the SD of the
(continuous) outcome variable.

4.2. Treatment effect magnitude and variability

In addition to type I and type II error probability, sample size

calculations for continuous outcome measures such as pain

intensity depend on the magnitude of the treatment effect that

trials are designed to detect and the variability of the outcomes. In

many circumstances, identifying the treatment effect that the

RCT should have adequate power to detect is the most

challenging aspect of sample size determination. There are

well-established cutoffs for the improvements in their pain that

patients consider clinically meaningful,44 but determinations of

clinically meaningful group differences depend on a variety of

factors,41 not only the magnitude of the group difference but also

whether other efficacious treatments are available for the specific

condition, safety risks associated with the treatment, and other

considerations discussed in more detail in section 7.
There have been systematic efforts to assess clinician opinions

of clinically meaningful group differences for use in sample size
determination,85,193 but such research has not been conducted
for clinical trials of pain treatments. The results of a recent survey
of clinical trialists28 and a systematic literature review94 found that
diverse methods are used for specifying an important or realistic
difference for sample size determination. These include opinion,
pilot study results, anchor- and distribution-based methods,
reviews and meta-analyses of previous trials, and cutoffs for
small, medium, and large effect sizes. Not surprisingly, these
different approaches are not always used appropriately, and
guidance for specifying the “target difference” and reporting its
justification has been published.29,30

Within the context of clinical trials of pain treatments, the
primary endpoint is typically a continuous variable, pain intensity,
based on a numerical or visual analogue scale; for example, the
mean of daily pain ratings calculated over several days of
treatment. One approach to sample size determination involves
using a standardized effect size (SES), which for a parallel trial with
2 groups is the difference between the means of the groups
divided by the SD, which is often assumed to be equal for the
groups. For example, if patients administered an active treatment
have a mean reduction in pain vs baseline of 3 points on a 0 to 10
scale, patients in the placebo group have amean reduction of 2.0

points, and the SD of this outcome variable is 2.5, the SES is (3.0
2 2.0)/2.5 5 0.4.

A useful context for considering the magnitudes of such SESs
and their effect on sample size requirements is provided by meta-
analyses of RCTs of efficacious antidepressants for major
depression, which have shown that the mean SES across trials
submitted to the FDA and in the published literature is
approximately 0.3.83,110,111 This is a modest treatment effect,
one which would require an RCT to randomize 175 patients per
group for 80% power with a 2-tailed significance level of 5%, not
accounting for subject dropout. Comparable meta-analyses of
analgesic RCTs do not exist; however, analyses of trials of
efficacious chronic pain medications that examined measures of
both average and worst pain intensity found mean SESs of
approximately 0.3 for the most recent studies.188,190 Importantly,
such estimates of treatment efficacy reflect not only the specific
effect of the active treatment (eg, the pharmacologic activity of a
medication) but also the assay sensitivity of the trial. Poor study
design or execution can increase variability and compromise the
ability of an RCT to detect a true treatment effect.

Given these considerations, how should the sample size for a
clinical trial of a chronic pain treatment be determined? There are
multiple possibilities, but all involve a decision regarding the
minimum treatment effect that would be meaningful given a
particular clinical context. As Kraemer et al.119 have emphasized,
“It makes a difference whether the treatment is for a deadly
disease like polio, or the common cold, and whether the
treatment is risky and costly or perfectly safe and free.” It can
be challenging for investigators to specify a minimum clinically
meaningful treatment effect. For example, on a 0 to 10 pain
intensity scale, is a group difference of 0.5 the minimum that
would be clinically meaningful, or would a smaller difference be
meaningful if the treatment is “perfectly safe”?41 In addition,
investigators may not be able to specify the SD that should be
used for the primary outcome measure given the specific pain
condition and trial methods. In such circumstances, the results
of previous RCTs of similar treatments could be used as a
benchmark for identifying an SES that can be used in sample
size determination; this assumes, of course, that the benefits
shown in those trials can be considered meaningful given the
specific treatment being examined and its context. It is
important to emphasize, however, that information from a
single, relatively small phase 2 trial or pilot study can be very
misleading and should rarely be the primary basis for a sample
size determination.63,118 The SESs from such trials—as
compared with those from larger trials and meta-analyses—are
less precisely estimated.

Whichever approach is used for determining the treatment
effect used in a sample size calculation, it is advisable to be
conservative regarding the assumptions on which it is based. For
example, treatment effects in clinical trials of neuropathic pain
appear to have declined over the past 3 to 4 decades,62 not
because the treatments are less efficacious but presumably
because the clinical trial methods and patient populations have
changed. Hence, if treatment effects found in early studies are
used as a basis for a sample size calculation, the trial might not
have sufficient power to detect the effect that would be obtained
by a trial conducted at present. Earlier clinical trials of analgesic
medications were often conducted at a single expert site or by a
relatively small number of sites within a given geographic area,
whereas many current phase 3 analgesic trials have a large
number of sites located in multiple countries. It would not be
surprising if the SDs of outcome variables—which may depend,
at least in part, on variability in patient training and investigator
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expertise—were greater at present than in the past. One
implication of such temporal changes, especially for larger
multinational trials, is that one should conservatively expect the
treatment effect to be somewhat lower, and the variability as
somewhat higher, than what would otherwise be anticipated.
However, for trials that include a small number of highly select
sites and experienced investigators, the temporal changes in
treatment effect magnitudes might be less relevant. Given that
there are multiple factors that must be considered in sample size
determination that are often unknown or uncertain, performing an
interim analysis to re-estimate the required sample size based on
observed estimates of variability70,168 is a generally reasonable
approach.

As noted above, the data and assumptions that formed the
basis of the sample size determination (eg, SD of the outcome
variable) are often inadequately described in publications of
analgesic RCTs.135 Because such a lack of transparency can
obstruct understanding of study methods, the sources and types
of data and the assumptions made in sample size calculation
should be routinely reported and justified given the circumstances
of the trial.29,30

4.3. Additional considerations

The previous sections have used a standard parallel group clinical
trial design with a normally distributed endpoint in discussing
sample size determination. It is important to emphasize that other
types of endpoints31,163 and different clinical trial designs will
require additional considerations for sample size determination.
For example, cross-over designs typically require fewer patients
than parallel group trials because each patient is exposed to all
treatments under study, and the reduction in sample size required
to detect a given difference in outcome between treatment
conditions can be substantial but will depend on the variability of
within-patient differences.178 Noninferiority trials generally require
larger sample sizes than superiority trials because the aim of the
trial is to determine whether the difference in, say, the mean
outcome between an established treatment and new treatment is
no greater than a prespecified noninferiority margin, where this
margin is typically chosen to be quite small.22 Sample size
determination for trials with adaptive designs, including those
with group sequential designs and other interim analyses, can be
complex and needs to address potential inflation of the type I error
probability due to multiple testing.102

For all clinical trials, missing data and treatment nonadherence
will typically require that a larger sample size be randomized than
would be needed for adequate power if data were complete for all
patients and they adhered perfectly to the treatment regimen.
Tests of hypotheses that patient subgroups—whether based on
baseline demographic or clinical characteristics, or genotypic and
phenotypic biomarkers—differ in their treatment effect will require
a larger sample for adequate power.80 Such analyses of
treatment-by-subgroup interactions will probably play an in-
creasing role in RCTs of pain treatments given the substantial
attention being devoted to the development of personalized (or
“precision”) treatment approaches.38,45,186

In addition to the considerations for sample size determination
of design complexity, missing data, nonadherence, and sub-
group analyses, sample size requirements will be greater when
multiple primary endpoints are prespecified. In RCTs with 2
treatment groups, unequal allocation ratioswill also result in larger
sample sizes because, for a given total sample size, power is
greatest when group sizes are equal. The more complex the
sample size determination, the more likely it is that conducting

simulation studies to examine the effect of different trial design
characteristics and assumptions on power would play a valuable
role. Similarly, sensitivity analyses can be used to examine the
trade-offs as different assumptions are varied.57 An example of
such sensitivity analyses is examination of how the required
sample size varies for different values of power (eg, 80% vs 90%),
group difference(s) to be detected, and SD.

In addition to increasing the sample size, there are other
approaches to increasing the power of an RCT to detect a given
treatment effect. These include decreasing variability, for
example, by increasing the reliability of the outcome mea-
sure116,125 or by using stratification or adjustment for covariates
that are known to be associated with the outcome vari-
able.93,105,158 As noted above, sample size requirements can
be reduced by using cross-over designs where applicable.

5. Missing data and trial estimands

5.1. The problem of missing data

Subject dropout is common in clinical trials of pain treatments,
particularly in those involving chronic pain conditions.113 This
leads to missing data on outcome variables for subjects who do
not complete follow-up. Data could be missing for reasons other
than subject dropout as well, but this tends to be a relatively rare
occurrence. Depending on the frequency of and reasons for the
missing data, the interpretation of the trial results can be greatly
affected. For this reason, it is important to deal with the problem of
missing data both at the stage of study design (for purposes of
prevention) and with the use of principled statistical
methods.121,146

Historically, many clinical trials of pain interventions have used
ad hoc methods to deal with missing data, including complete-
case analysis (analyzing data from only trial completers), last
observation carried forward, and baseline observation carried
forward. Thesemethods, although easy to implement, are known
to have poor statistical properties.141 The broad use of these
methods was not unique to the field of pain, leading the FDA to
commission the National Research Council to produce a highly
influential report that has led to improvements in the handling of
missing data in practice.146 Important points emphasized in the
report include the following: (1) taking steps at the stage of study
design to prevent missing data is the best way to deal with the
problem, particularly because statistical methods used to
accommodate missing data all depend on untestable assump-
tions; (2) principled methods with good statistical properties have
long existed and should be used to handle missing data; and (3)
because of the dependence of statistical methods on untestable
assumptions concerning the missing data, sensitivity analyses
should be performed that examine how robust the results of the
analyses concerning treatment effects are as those assumptions
are varied.

5.2. Statistical methods to accommodate missing data

Principled methods based on sound theoretical development to
accommodate missing data include direct likelihood methods
(eg, the mixed model repeated measures [MMRM] approach130

and linear mixed effects models), multiple imputation,20,173,176

and inverse probability weighting (eg, weighted generalized
estimating equations140). The MMRM approach appears to be
the most widely used in pain clinical trials,18 particularly when
group comparisons at a single time point are of primary interest. It
uses maximum likelihood to estimate the model parameters
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(mean outcomes for each treatment group at each time point as
well as variances and covariances among the outcomes at the
different time points) taking into account the missing data.

All these approaches are known to be valid under the “missing
at random” (MAR) assumption,172 that is, the probability of an
observation being missing depends on only the observed data
and not on the unobserved (missing) outcome that would have
occurred. A useful illustrative example provided by Mehrotra
et al.138 considers 2 trial participants in the same treatment group
with similar baseline characteristics and an identical pattern of
pain outcomes over time up until one of the participants drops out
of the trial (the other completes follow-up). According to the MAR
assumption, the participant who dropped out of the study would
have had subsequent pain outcomes similar to those of the
participant who completed the trial if she/he had remained in the
trial. As noted above, however, this assumption cannot be tested.

Other methods for dealing with missing data have been
proposed that treat all subjects who drop out as having had poor
outcomes. In the context of “responder” analyses, those who fail
to complete the trial are categorized as “nonresponders.”142,143

Another approach based on trimmed means was proposed by
Permutt and Li.160 In this approach, subjects who fail to complete
the trial are treated as having outcomes that are worse than those
of anyone else in the trial cohort. After ordering the subjects in
each treatment group from best to worst outcomes, a fixed
percentage of subjects (eg, 30%) with the worst outcomes are
omitted from each treatment group, where the percentage is
chosen to be large enough so that all dropouts are omitted. The
treatment effect is estimated as the group difference in mean
outcome among the remaining sample, with resamplingmethods
used to yield an inference concerning the treatment effect.138,160

Both of the above approaches assume that participants who
drop out of the trial have poor outcomes. This assumption might
be reasonable if subjects who drop out do so for reasons related
to treatment (eg, intolerability) but might not be reasonable
otherwise. For example, clinical trial participation often involves
burdens for the subject, and it could be that a subject would be
willing to remain on treatment in clinical practice but, for various
reasons (eg, changes in life circumstances), is unwilling to
continue to be followed regularly in a clinical trial. Assigning a poor
outcome to this subject might not be warranted.18

5.3. Estimands

An important outgrowth of the National Research Council report
was the considerable attention devoted to specification of the trial
objectives, particularly the estimand of primary inter-
est.126,127,129,131,159,162 The term “estimand” refers to the
quantity that is of interest to estimate in the RCT based on the
trial objectives and is the subject of the inference concerning the
effect of treatment. The International Conference on Harmoniza-
tion recently issued an addendum to the E9 guidance on
Statistical Principles for Clinical Trials that outlines a framework
for defining the estimand and emphasizes the role that the
estimand plays in determining the design, conduct, analysis, and
interpretation of the trial.100

An estimand is the population parameter to be estimated,
which is defined in terms of the following components: (1) the
treatment condition of interest and, if appropriate, the alternative
treatment condition to which comparison will be made; (2) the
target population; (3) the outcome variable; (4) handling of
postrandomization (intercurrent) events; and (5) the population-
level summary for the outcome variable.100 The most challenging
aspect of this definition is the specification of how intercurrent

events will be handled. In pain clinical trials, common examples of
intercurrent events include discontinuation of the study in-
tervention, reduction in dosage of the study intervention, use of
permitted rescue treatment, use of a disallowed pain treatment,
and change in the dosage of an allowed concomitant treatment.

The choice of the estimand influences many decisions
regarding trial design, conduct, and analysis. For example,
consider a randomized, double-blind, placebo-controlled clinical
trial of a novel drug for painful diabetic peripheral neuropathy in
which subjects will be followed for 12 weeks, with the primary
outcome variable being the change from baseline to week 12 in
pain intensity, as measured by the subject-rated average pain
over 24 hours using a 0 to 10 NRS, itself averaged over the 7 days
before each visit. The treatment conditions (novel treatment,
placebo), outcome variable, and population-level summary of the
outcome variable (group difference in mean 12-week change in
pain intensity from baseline) are clearly specified. The eligibility
criteria will define the target population of interest, including the
level of pain intensity required at baseline, duration of the pain
condition, outcome during a prerandomization run-in period (if
applicable, in the case of an enrichment design; see section 2.3.3
above), and allowed concomitant medications for pain (if any).

Decisions then have to be made concerning how intercurrent
events will be treated for purposes of defining the estimand.
Consider 2 very different strategies in this regard:
Strategy 1: The group difference in the mean outcome for all
randomized subjects that would have been obtained if all subjects
tolerated and complied with treatment. In this case, any data
collected after treatment discontinuation or dosage reduction, or
use of a disallowed pain medication, would be omitted from the
analysis, whereas data collected after use of permitted rescue
medication or after a change in the dosage of an allowed
concomitant treatment could be included in the analysis.
Strategy 2: The group difference in the mean outcome for all
randomized subjects that would have been obtained if alternative
treatments were not available other than those permitted by the
protocol. In this case, in contrast to strategy 1, data collected after
treatment discontinuation or dosage reduction would still be used
in the analysis, as long as such data were actually collected and
the subject did not initiate the use of a disallowed pain
medication. As with strategy 1, data collected after use of
permitted rescuemedication or after a change in the dosage of an
allowed concomitant treatment could be included in the analysis.
A major difference between the estimands defined in strategies 1
and 2 is themanner in whichmissing data should be handled. For
strategy 1, it might make sense to assume that all the missing
data are MAR if, in this case, a subject’s trajectory after the
intercurrent event could be assumed to be well modeled by the
observed data, including their trajectory before the event. The
analysis would be performed using a technique such as MMRM
or a standard application of multiple imputation to deal with the
missing data. For strategy 2, it might make sense to assume that
themissing data areMAR for those for whom the data aremissing
for reasons that are unrelated to treatment. For other reasons for
missing data, however, this would not be sensible. For someone
who withdraws from trial participation due to, say, intolerability,
one would not want to consider what that person’s outcome
would have been had the intercurrent event of intolerability not
occurred. If the treatment has a beneficial effect on pain intensity
but the subject cannot tolerate the treatment, the MAR
assumption would continue to yield favorable pain outcomes
for a subject in the novel treatment group, which would be
inappropriately optimistic. Given the definition of the estimand, it
might makemore sense to impute themissing outcomes for such
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subjects as if they came from a similar placebo-treated subject
who completed the trial. Also, it might be reasonable to assume
that themissing data in the placebo group areMAR, regardless of
the reason for the missing data.

It should be noted that what has historically been considered a
pure “intention-to-treat” estimand would be the group difference in
the mean outcome for all randomized subjects that would have
been obtained regardless of any intercurrent events that may have
occurred. Such an estimandwould be associatedwith a pragmatic
effectiveness scientific objective that might be of limited interest in
some settings, such as placebo-controlled trials of novel interven-
tions conducted for the purpose of regulatory approval, butmay be
of greater interest when estimating the effects in broader clinical
practice populations. The collection of outcome data at week 12
from all subjects would be very important for this estimand given
the difficulties in dealing with missing data in the absence of
knowledge of what happened to subjects after dropout.

The above examples make it clear that the choice of the
primary estimand depends on the scientific objective, the stage of
treatment development, and the stakeholders.127 For a phase 3
trial, for example, a pharmaceutical company might prefer
strategy 1 as more likely to yield a beneficial treatment effect in
the trial, whereas a regulator might view strategy 2 as more
clinically relevant. These examples also illustrate the importance
of defining the scientific objective of the trial and the estimands of
interest, as these have a major influence on elements of trial
design, conduct, analysis, and interpretation. The emphasis on
estimands represents a paradigm shift in the conduct of clinical
trials. Historically, investigators would design the trial and specify
a statistical analysis plan, including (often) simplistic methods to
deal with missing data, and would be left with an estimate of
treatment effect that was difficult to interpret. Having the study
objective and estimand drive the design, conduct, and analysis of
the trial leads to substantial clarity in its interpretation. The
International Conference on Harmonization E9 Addendum100

provides excellent guidance and examples regarding choices of
estimands; examples specific to clinical trials in pain are provided
by Callegari et al.19 and Cai et al.18

5.4. Control-based imputation and sensitivity analyses

The example estimand in strategy 2 above requires that a
principled method be used for dealing with missing data that is
more flexible than those that assume MAR. A recently developed
method of handling missing data that is coming into widespread
use is control-based imputation.21 This method allows flexibility in
the assumptions that one canmake concerning the distribution of
outcomes after dropout (or any intercurrent event that causes
subsequent data to be treated as missing for purposes of
analysis), given their observed outcomes, treatment group, and
possibly other characteristics.

To apply this approach to the estimand in strategy 2 above,
one can assume that themissing data are MAR for subjects in the
placebo group, an assumption commonly made in practice, and
subjects in the novel treatment group who have missing data for
reasons that are unrelated to treatment. For those with missing
data for treatment-related reasons (eg, intolerability) in the novel
treatment group, an assumption called “jump to reference” (J2R)
can be used whereby outcomes after dropout (or an applicable
intercurrent event) immediately switch to behave like those from
similar subjects in the placebo group.151 Figure 2 illustrates
typical imputations of missing pain intensity outcomes for a
subject in the novel treatment group according to the MAR and

J2R assumptions. Of course, these are just 2 examples of the
many assumptions that can be made.21,151

Control-based imputation can be implemented with multiple
imputation using pattern mixture models21,151 or a likelihood-
based method that does not require explicit subject-level data
imputation.138 Given its flexibility, the approach is particularly useful
for performing sensitivity analyses to examine the robustness of the
results of the primary analysis to assumptions concerning the
missing data mechanism,8,21,138,151 but it might also be appropri-
ate for the primary analysis of a clinical trial depending on the
primary estimand of interest.18,19 Themethod should be used with
caution when the clinical trial does not include a control group that
is expected to be either comparable with or inferior to the active
treatment groups under study with respect to outcomes.151

6. Data monitoring and interim analyses

6.1. Rationale for interim monitoring

In any clinical trial, it is important to use regularmonitoring of study
performance and data quality. Aspects to be monitored include
adherence to the protocol on the part of both investigators and
trial participants, enrollment progress, subject retention, and data
quality.74,108 Periodic monitoring of individual clinical sites
participating in the trial is also frequently performed, including
adequacy of the study facilities, protocol adherence, documen-
tation of informed consent, agreement between data entered on

Figure 2. Illustration of typical imputed values for a subject in the treatment
group that drops out of the trial after week 1 for different assumptions
concerning the missingness mechanism: missing at random (MAR) and jump
to reference (J2R). The black squares ( ) are the observed means in the
placebo group, and the open squares ( ) are the observed means in the
treatment group. The asterisks represent either observed (weeks 0 and 1) or
imputed (weeks 3, 5, and 8) values for the subject who dropped out of the trial.
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case report forms and data in source documents, accuracy and
completeness of study records, appropriate regulatory reporting
(eg, to the IRB and study sponsor), and storage and disposal of
study drug, among other things. The purpose of regular
monitoring is to identify problems in real time so that they can
be quickly and effectively resolved and to prevent future similar
problems from occurring.

The monitoring described above is often referred to as blinded
monitoring because it is performed without regard to the
treatment group to which the subjects have been assigned. This
section will focus on unblinded monitoring of accumulating
clinical trial data for the purpose of monitoring the safety of clinical
trial participants and determining whether or not the accumulat-
ing evidence is sufficient to warrant modifying or halting the trial
due to the efficacy, futility, or harm of the intervention(s) under
investigation. There are ethical and economic reasons for such
monitoring. If the data indicate that the risks to study participants
are no longer acceptable, there is a clear ethical obligation to
either modify or halt the trial. Similarly, if the data indicate that the
intervention is efficacious, there may be an ethical obligation to
inform all study participants, as well as the medical community
and patients with the condition under study, of this finding. Finally,
if the data indicate that the intervention is ineffective, then further
exposure of study participants to the possible risks of continued
participation may be unwarranted. Also, valuable resources can
be saved by halting the trial on the basis of this information.
Unblinded monitoring functions are typically performed by an
independent committee, the role, composition, and function of
which are described below.

6.2. Data and Safety Monitoring Boards

A Data and Safety Monitoring Board (DSMB) is a committee that
is responsible for (1) safeguarding the interests of study
participants, (2) preserving the integrity and credibility of the trial
so that future patients may be optimally treated, and (3) ensuring
that definitive and reliable trial results bemade available in a timely
manner to the medical community.47 It should be emphasized
that the role of the DSMB is purely advisory to the trial sponsor;
the ultimate responsibility for trial design, conduct, and reporting
rests with the trial investigators and the sponsor.

A DSMB typically consists of members with a variety of
expertise, including relevant medical, basic science, bioethical,
and statistical expertise, and often includes others such as a
patient advocate. Ideally, a knowledgeable and experienced chair
would be chosen from among the members to guide the
deliberations of the DSMB. A trial funded by a government
sponsor (eg, US National Institutes of Health [NIH]) often includes
a nonvoting sponsor representative on the DSMB. The impor-
tance of the independence of the DSMB members from the trial
sponsor and investigators cannot be overstated given their role in
being (ideally) the only individuals who have access to accumu-
lating unblinded trial results. Members should be free of
significant conflicts of interest, whether they are financial,
intellectual, or personal, in order for the DSMB to be able to
provide unbiased and objective advice to the sponsor and to
preserve the integrity and credibility of the trial. It is essential that
DSMB members maintain confidentiality of the unblinded in-
formation in their communications with the sponsor and study
investigators.

The organization, role, and functioning of the DSMB are
summarized in a formal charter. The charter describes the frequency
and format of DSMB meetings, guidelines for interim analyses,
extent of blinding of the DSMB, and rules for communication

between the DSMB and the sponsor and study leadership, among
other things. At the initial meeting of the DSMB, the draft charter and
protocol, as well as the format of data reports to be prepared for
subsequentmeetings, are reviewed.Periodicmeetings of theDSMB
typically begin with an open session attended by the sponsor,
representatives from the study team (eg, lead investigators and
primary statistician), and DSMB members. In the open session, the
DSMB is provided with an update on the study status (screening,
recruitment, and retention), protocol changes (executed or pro-
posed), and any problems that have occurred (eg, protocol
violations) and how they have been resolved. The open session
data report includes information on participant characteristics,
participant disposition, information on data quality and site
performance (recruitment and retention, data completeness and
quality, timeliness of data entry, and query resolution), adverse
events (including serious adverse events), and compliance with the
intervention. This is followed by a closed session, attended by only
DSMB members and a statistician appointed by the study team
(DSMB liaison), during which a similar data report, with much of the
above information broken downby the treatment group, is reviewed.
The DSMB can request additional information from the statistician if
desired. The DSMB then deliberates and formulates recommenda-
tions for the sponsor, after a formal vote among the members if
necessary, and communicates these either by email or through a
final open session with the sponsor and study team.

It is preferred that the statistician preparing closed session
reports for the DSMB be someone who remains independent
from the study team, that is, to not be the primary statistician for
the trial, so that the primary statistician can remain blinded and
provide unbiased advice to the study team as a member of the
trial steering committee. It is equally important that the in-
dependent statistician be intimately familiar with the trial design
and the data so that she/he can communicate effectively with the
DSMB members during the closed sessions. The closed session
DSMB reports often label the treatment groups with codes such
as “A” and “B” without explicit reference to the identity of the
treatment groups. In such cases, the DSMB would be given the
ability to unblind themselves should this be necessary to make
recommendations to the sponsor and study team.

The frequency of DSMB meetings is often linked to the rate of
subject accrual, and quarterly or semiannual meetings are
common choices. Because of the importance of rapid identifica-
tion of potential safety issues associated with a treatment, some
trials will require serious adverse events or other adverse events of
special interest to be reported to the DSMB shortly after their
occurrence (eg, within 24 hours of being reported) so that they
can be monitored in real time.

The possible recommendations of the DSMB include (1)
continue the trial without modification, (2) continue the trial after
implementing a protocol modification, and (3) stop the trial.
Possible reasons for a recommendation of early modification or
termination of the trial include identification of an increased risk of
harm in one of the treatment groups, clear evidence of efficacy for
a treatment group, clear evidence of futility (lack of efficacy) for a
treatment group, issues related to study performance (eg, slow
accrual, poor data quality, and poor adherence to the protocol),
relevant developments external to the trial, and loss of resources
to complete the trial.

Not all clinical trials use or even require DSMBs. They tend to
be used in trials of treatments for conditions that are associated
with mortality or major morbidity or with progression of serious
disease.47 Additional settings in which a DSMB might be
appropriate include trials of high-risk treatments (including
early-phase trials), trials involving vulnerable populations (eg,
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children and patients with dementia), and trials with a potentially
large public health impact.47 Trials with complex adaptive
elements such as sample size re-estimation, adding/dropping
treatment arms, and seamless phase 2/3 designs would almost
certainly benefit from the guidance of an independent DSMB.
Both the NIH and the FDA have specific guidance on the need for,
role, and function of an independent DSMB. Because publica-
tions of RCTs do not consistently report whether DSMBs were
established and their membership, objectives, and processes,78

it is difficult to determine how often DSMBs have used for clinical
trials of pain treatments and in what specific circumstances.

6.3. Interim analyses

Where applicable, it is important for a formal interim monitoring
plan to be specified at trial initiation, including guidelines for
modifying or stopping the trial based on evidence for the efficacy
or futility of the treatment. Anticipated safety issues should be
prespecified in the protocol. Formal guidelines for the monitoring
of safety outcomes that would cover all the possible situations
that might arise are more difficult to formulate given the higher
degree of multiplicity involved. The clinical judgment of the DSMB
is critical when considering treatment group imbalances in
adverse events, particularly in the context of the severity of the
events, the disease under study, and the potential benefits vs
risks of the treatments being investigated.53 Guidance from the
trial sponsor with respect to their philosophy on these issues can
be valuable to the DSMB.47

Interim analyses for efficacy and futility, if desired, can be
performed for the primary outcome variable with the use of a group
sequential design.102 In addition to the planned primary analysis at
the end of the trial, periodic analyses of the primary outcome variable
would be performed as the trial is ongoing after a certain percentage
of the information anticipated to be available at the scheduled end of
the trial has been obtained. For a continuous outcome variable such
as pain intensity, the percentage of information, called the
information fraction, is simply the percentage of subjects scheduled
to be enrolled in whom the primary outcome variable has been
measured at the time of the interim analysis. For interim analyses for
efficacy, the group sequential design adjusts the significance levels
for each analysis to account for the number and timing of the
analyses that will be performed to preserve the overall type I error
probability at a prespecified level (eg, 5%). Anotherway to view this is
that the design defines so-called stopping boundaries that dictate
how large the value of the test statistic (eg, t statistic or Z statistic)
needs to be to declare a statistically significant treatment group
difference. Similarly, for interim analyses for futility, the group
sequential design can incorporate well-defined stopping boundaries
that preserve the overall type II error probability at a prespecified level
(eg, 10%or 20%) under the effect size used to determine the sample
size for the trial.

6.3.1. Group sequential boundaries

Before the start of the trial, the boundaries to be used for interim
monitoring need to be specified. This can be done by specifying
so-called alpha- and beta-spending functions, the former for
efficacy boundaries120 and the latter for futility boundaries.155 The
number and timing of the interim analyses is typically prespecified
as well, although these can be modified during the trial as long as
the spending functions have been specified. Perhaps the most
well-known stopping boundaries are the Haybittle–Peto bound-
ary,92,161 the Pocock boundary,164 and the O’Brien–Fleming
boundary.149 Examples of these boundaries (2-sided, 5%

significance level) for efficacy are provided in Figure 3. In this

example, the interim analyses for efficacy are scheduled to be

performed after 20%, 40%, 60%, and 80% of the information on

the primary outcome variable has been obtained. If the value of

the test statistic (Z) falls above the upper boundary or below the

lower boundary, the null hypothesis of no treatment group

difference would be rejected.
Haybittle-Peto boundary: The boundary (|Z| 5 3) is constant and
very conservative for the 4 interim analyses, so very strong

evidence against the null hypothesis would be required to stop

the trial before its scheduled end. An advantage of this boundary

is that the boundary at the final analysis (|Z|5 1.99) is very close to

what it would be if no interim analyses were performed (|Z| 5
1.96), that is, one pays a negligible price for having interim looks at
the data if the trial continues to its scheduled end.
Pocock boundary: The boundary uses the same critical value
(|Z| 5 2.41) for all the analyses, including the final analysis. An
advantage of this boundary is that one would be more likely to
identify a treatment group difference at an interim analysis than if
one were to use a highly conservative boundary such as
Haybittle–Peto. On the other hand, if the trial continues to its
scheduled end, the strength of the evidence required to reject the
null hypothesis is greater, leading to an increased sample size
requirement when planning the trial. This boundary might be best
used if it is expected that a treatment group difference might be
quite large and detectable early in the trial.
O’Brien–Fleming boundary: This boundary is highly conservative
early in the trial when not much evidence has been accumulated
and the results are not very stable, and becomes less
conservative with time. This is intuitively appealing and is the

Figure 3. Illustration of 3 types of 2-sided efficacy boundaries for group
sequential designs for a comparison of 2 groups. It is assumed that the test
statistic (Z) is approximately normally distributed, and an overall 5%
significance level is used. Interim analyses are to be performed after the
primary outcome variable is available for 20%, 40%, 60%, 80%, and 100% of
the enrolled subjects. At each interim analysis, if the Z statistic falls above the
upper boundary or below the lower boundary, the null hypothesis of no
treatment group difference is rejected; otherwise, the trial is continued.
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principal reason for its widespread use in practice. A desirable
property that it shares with the Haybittle–Peto boundary is that if
the trial continues to its scheduled end, the boundary at the final
analysis (|Z|5 2.04) is only slightly greater than what it would be if
no interim analyses were performed. It is not as aggressive as the
Pocock boundary in terms of detecting large treatment group
differences early in the trial but becomes more aggressive than
the Pocock boundary as the trial nears its scheduled end.

The above examples use 2-sided symmetric boundaries that
are perhaps more applicable to clinical trials that are comparing 2
active treatments. For a trial comparing an active treatment with
placebo, a one-sided stopping boundary for efficacy (using a
significance level of, say, 2.5% instead of 5%) might be more
appropriate because it would not typically be of interest to
demonstrate that placebo was superior to active treatment. On
the other hand, it is often of interest to stop the trial early if there is
strong evidence that the treatment will not ultimately demonstrate
a significant benefit in the final analysis, that is, to detect futility of
the treatment. Figure 4 provides an example of an
O’Brien–Fleming futility boundary superimposed on a 2-sided
O’Brien–Fleming efficacy boundary, illustrating the fact that
stopping for futility or lack of benefit of the treatment would occur
sooner than stopping for demonstration of inferiority of treatment
to placebo.

The above examples are limited in the sense that there is really
no limit on the frequency and timing of the interim analyses (ie,
they do not have to be equally spaced in terms of the information
fraction), and there are rich families of alpha- and beta-spending
functions from which to choose, not just the 3 illustrated above.
Also, there are other tools that can be used for determining
stopping boundaries such as conditional power/stochastic
curtailment and Bayesian predictive power, but these can be
formulated in terms of alpha- and beta-spending functions.47,48

There are additional approaches based on effect size, associated
precision for estimating the effect, and prediction.7,55,128 Finally, it
should be noted that estimators for treatment effects after early
stopping are biased; however, methods exist to correct this
bias.49,112,212

7. Interpretation of results

7.1. Statistical significance and confidence intervals

Once a trial has been completed and the data analyzed, careful
interpretation of the results is necessary.187 To adequately
evaluate the evidence of efficacy provided by a statistically
significant primary analysis, several issuesmust be addressed.
Foremost among these are whether the analysis that tested the
primary hypothesis of the trial was prespecified and whether
the possibility that multiple outcomes or analyses could have
inflated the probability of a type I error and was addressed in a
satisfactory manner. Additional important considerations in-
volve whether there were any flaws or potentials for bias in the
design and execution of the trial and whether the results for
important secondary outcomes and subgroups were consis-
tent with the results of the primary analysis.167 As discussed in
the following sections, an evaluation of the extent to which the
results of the clinical trial suggest that the treatment provides a
clinically meaningful benefit is also very important.

When the primary analysis of an RCT is not statistically
significant, one possibility is that the treatment is truly efficacious
but that the results of the trial failed to demonstrate that efficacy.
This can happen for a variety of reasons, including a sample size
that was too small to detect a meaningful treatment effect and

problematic study design or execution that resulted in poor
quality data and inadequate assay sensitivity.43 However,
assuming that there was adequate study design and execu-
tion,166 it is important to evaluate whether the results are truly
negative or whether they should be considered “inconclusive.”
One important approach to making this determination involves
examination of the confidence interval for the treatment effect.
Specifically, if the confidence interval for the treatment effect does
not contain what is considered a clinically meaningful treatment
effect, then the trial can be considered negative, that is, the
results failed to show clinically relevant efficacy (Fig. 5).79,187

However, if the confidence interval includes a clinically meaningful
effect, then the trial results should be considered inconclusive
and as providing the basis for further study to examine the
treatment’s hypothesized efficacy.88 Although biostatisticians
have advocated this approach to interpreting nonsignificant
results of clinical trials for many years, a recent review of RCTs
published in general medical journals found that reporting and
interpretation of confidence intervals was often problematic.79

Systematic reviews of RCTs in the general medical
literature15 and for pharmacologic and invasive pain treat-
ments81 have also shown that erroneous or misleading
interpretations of statistically nonsignificant results are quite
common. For example, it is often concluded that 2 interven-
tions have comparable benefits when an RCT fails to show that
one treatment is superior to another. This conclusion is only
appropriate when a trial has been designed to test hypotheses

Figure 4. Illustration of a group sequential design with 2-sided
O’Brien–Fleming efficacy boundaries and a 1-sided O’Brien–Fleming futility
boundary for a comparison of an active treatment group and a placebo group.
In this case, the lower efficacy boundary would indicate inferiority of active
treatment (or harm) relative to placebo. It is assumed that the test statistic (Z) is
approximately normally distributed, and an overall 5% significance level is
used. Interim analyses are to be performed after the primary outcome variable
is available for 20%, 40%, 60%, 80%, and 100% of the enrolled subjects. At
each interim analysis, if the Z statistic falls above the upper boundary, the null
hypothesis of no treatment group difference is rejected. If the Z statistic falls
below the futility boundary, the trial is halted for futility (non-superiority) of the
active treatment relative to placebo.
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of equivalence or noninferiority and not when the trial was
designed to test the superiority of one treatment compared
with another. Common examples of “spin” in the interpretation
of RCTs with nonsignificant primary analyses include empha-
sizing statistically significant secondary analyses and focusing
on improvements from baseline in the active treatment group
rather than differences in such improvements between this
group and the control or comparison group.

In recent years, there has been increasing recognition that P
values are often misused and misinterpreted. For example, P
values are frequently interpreted as the probability that a null
hypothesis of no treatment effect is true.However, theP value is the
probability that a treatment effect as large as or larger than that
observed in the trial would occur if the null hypothesis were true. In
addition, the interpretation that the results of an RCT constitute
“proof” that the treatment is effective if they are statistically
significant is flawed, as is the interpretation that the treatment is
not effective if the results are not statistically significant (see the
discussion above regarding “negative” vs “inconclusive” results).
Importantly, the use of strict dichotomieswith respect toP values to
determine whether a treatment is efficacious can also be very
problematic, with the level of evidence for treatment efficacy not
being qualitatively different if, for example, P 5 0.049 or if P 5
0.051. Valuable discussions of important issues and challenges
involving P values and their interpretation can be found in recent
proposals and responses.1,11,210,211

7.2. What is a clinically important treatment benefit?

Statistically significant evidence of a treatment’s efficacy in an
RCT does not alone indicate that the magnitude of the treatment
effect is clinically meaningful; for example, if the sample size is
sufficiently large, very small group differences may be statistically
significant, although they are clinically unimportant. The evalua-
tion of clinical importance depends on whether the objective is to

determine whether the improvements associated with treatment
are important to individual patients or whether the group

differences between treatments in anRCT are clinically important.

It also depends on whether the benefits of a treatment are

meaningful to society (eg, in reducing healthcare costs or

increasing worker productivity). Such evaluations are obviously

important and challenging but are beyond the scope of this

article.

7.2.1. Clinical importance of individual patient improvements

The results of numerous studies that haveexamined themagnitude
of reductions in acute and chronic pain that are meaningful to
patients have shown that decreases of$30% correspond to what
patients generally consider “moderately important” improvements,
whereas reductions of $50% can be considered “substantial”
improvements.44,59,152,153 Although the percentage reduction in
pain may be an informative approach to identifying thresholds for
what patients consider clinically meaningful improvements, per-
centage change tends to be a highly variable measure that is not
typically normally distributed and its use as an outcomemeasure is
generally discouraged.180,182,208

Althoughmeaningful reductions in pain intensity are, of course,
important to patients with acute and chronic pain, patients

typically consider other factors associated with a treatment in

evaluating their overall improvement.61,84,200 For example, a

marginal reduction in pain intensity could be accompanied by

substantial improvements in sleep quality, mood, or physical

function that, taken together, would be considered a major

benefit by patients. Alternatively, apparently meaningful reduc-

tions in pain intensity could be accompanied by considerable side

effects, with overall health-related quality of life unimproved or

even worsened as a result. Unfortunately, such “trade-offs”

between pain intensity and other factors associated with pain

Figure 5. Interpretation of clinical trial results using confidence intervals for the treatment effect. CMTE, clinically meaningful treatment effect. Reproduced from
reference 187 and adapted by permission from BMJ Publishing Group Limited: Gewandter JS, McDermott MP, Kitt RA, Chaudari J, Koch JG, Evans SR, Gross
RA, Markman JD, Turk DC, Dworkin RH. Interpretation of CIs in clinical trials with non-significant results: systematic review and recommendations. BMJ Open
2017;7:e017288.
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treatments have rarely been considered in evaluations of what
levels of improvement patients consider meaningful.

7.2.2. Clinical importance of group differences in a clinical
trial

Evaluations of the magnitudes of pain reduction that individual
patients consider clinically important are very often conflated with
the determination of the magnitude of group differences between
an active and a control treatment in an RCT that can be
considered clinically important. The distinction between these 2
different concepts of clinical importance has been recognized for
many years across a variety of therapeutic areas. It has been
emphasized that the determination of the clinical importance of
group differences in clinical trials should not be based on what
improvements patients consider important for themselves but
rather on a constellation of factors; these consist of the
magnitude of the group difference in the trial, and also the
broader context of the disease being treated, including whether
other treatments are available, adverse events and safety risks
associated with the treatment, and an overall evaluation of the
benefit–risk profile, ideally as assessed by patients, clinicians,
researchers, statisticians, and other stakeholders.41,87,117,174 For
example, a decrease in pain intensity of$2 on a 0–10 NRS could
be considered a clinically meaningful improvement for an in-
dividual patient, but this criterion should not necessarily be con-
sidered the difference between an active treatment and placebo
for the effect of the treatment to be considered clinically impor-
tant. The interpretation of meaningful change depends on
whether it is being done “at a group level (where smaller changes
may be interpreted as important) or at an individual level, where
larger changes are required before they are confidently accepted
as indicating a meaningful change.”10

Table 1 presents a number of factors that can be considered
when evaluating the clinical importance of group differences in an
RCT.41 The first consideration is that the differences must be
statistically significant, which is generally a necessary criterion. In
addition, the group difference in the primary outcome (eg, as
assessed by the SESor anothermeasure of treatment effect) can be
compared with the treatment effects associated with other
treatments that are considered to have clinically important benefits.
Support for the clinical importance of the groupdifference in a clinical
trial of a novel treatment is provided when the treatment effect is
comparable to or greater than the effects seen with existing
efficacious therapies. However, if the treatment effect foundwith the
novel treatment is appreciably smaller than what has been found for
existing therapies, it becomesessential to evaluatewhether there are

any other characteristics of the new treatment that might
compensate for the modest treatment effect on the primary
outcome. Thesecharacteristics include safety and tolerability, results
for secondary efficacy outcomes including physical and emotional
functioning, limitations of existing treatments, and the other factors
listed in Table 1.

An evaluation of the overall clinical importance of the group
differences found in a single RCT is one component of an overall
assessment of the benefits vs risks of the treatment, which is
usually determined on the basis of multiple studies and is, of
course, a major consideration in regulatory decisions involving
approval of medications and medical devices. There are a variety
of approaches to conducting benefit–risk evaluations, ranging
from the subjective but ideally evidence-based decisions made
by advisory committees to quantitative multidimensional meth-
ods.24,57,154 Benefit–risk evaluations can be used to guide in-
dividual treatment decisions by patients and their clinicians and
can also be valuable at the societal level as a basis for medical
recommendations and policies, regulatory approvals, and re-
imbursement decisions. For benefit–risk evaluations to be
meaningful, comprehensive analysis and presentation of the ef-
ficacy and safety data collected in RCTs is necessary. Un-
fortunately, as noted elsewhere in this article, there are
inadequacies in the reporting of efficacy outcomes in clinical trials
of pain treatments, and the descriptions and analyses of adverse
events and safety risks in published pharmacologic185,191 and
especially nonpharmacologic98 RCTs have also been problem-
atic. Careful attention to CONSORT (www.consort-statement.
org) and pain-specific guidelines77,191 for the reporting of clinical
trial results can address these limitations of the existing literature.
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[97] Hróbjartsson A, Thomsen ASS, Emanuelsson F, Tendal B, Hilden J,
Boutron I, Ravaud P, Brorson S. Observer bias in randomized clinical
trials with binary outcomes: systematic review of trials with both blinded
and non-blinded outcome assessors. BMJ 2012;344:e1119.

[98] Hunsinger M, Smith SM, Rothstein D, McKeown A, Parkhurst M, Hertz
S, Katz NP, Lin AH, McDermott MP, Rappaport BA, Turk DC, Dworkin
RH. Adverse event reporting in nonpharmacologic, noninterventional
pain clinical trials: ACTTION systematic review. PAIN 2014;155:
2253–62.

[99] Hutton JL. Number needed to treat: properties and problems. J R Stat
Soc A 2000;163:403–19.

[100] International Council for Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use. Addendum on estimands and
sensitivity analysis in clinical trials to the guideline on statistical
principles for clinical trials: E9(R1). Amsterdam, The Netherlands:
European Medicines Agency, 2019.

[101] Ioannidis JPA, Greenland S, Hlatky MA, Khoury MJ, Macleod MR,
Moher D, Schulz KF, Tibshirani R. Increasing value and reducing waste
in research design, conduct, and analysis. Lancet 2014;383:166–75.

[102] Jennison C, Turnbull BW. Group sequential methods with applications
to clinical trials. Boca Raton: Chapman & Hall/CRC, 2000.

[103] Jones B, Jarvis P, Lewis JA, Ebbutt AF. Trials to assess equivalence: the
importance of rigorous methods. BMJ 1996;313:36–9.

[104] Jones B, Kenward MG. Design and analysis of cross-over trials. Boca
Raton: Chapman & Hall/CRC, 2003.
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