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Abstract
In our increasingly unstable and unpredictable world, population dynamics rarely settle uniformly to long-term behaviour. 
However, projecting period-by-period through the preceding fluctuations is more data-intensive and analytically involved 
than evaluating at equilibrium. To efficiently model populations and best inform policy, we require pragmatic suggestions as 
to when it is necessary to incorporate short-term transient dynamics and their effect on eventual projected population size. 
To estimate this need for matrix population modelling, we adopt a linear algebraic quantity known as non-normality. Matrix 
non-normality is distinct from normality in the Gaussian sense, and indicates the amplificatory potential of the population 
projection matrix given a particular population vector. In this paper, we compare and contrast three well-regarded metrics of 
non-normality, which were calculated for over 1000 age-structured human population projection matrices from 42 European 
countries in the period 1960 to 2014. Non-normality increased over time, mirroring the indices of transient dynamics that 
peaked around the millennium. By standardising the matrices to focus on transient dynamics and not changes in the asymp-
totic growth rate, we show that the damping ratio is an uninformative predictor of whether a population is prone to transient 
booms or busts in its size. These analyses suggest that population ecology approaches to inferring transient dynamics have 
too often relied on suboptimal analytical tools focussed on an initial population vector rather than the capacity of the life 
cycle to amplify or dampen transient fluctuations. Finally, we introduce the engineering technique of pseudospectra analysis 
to population ecology, which, like matrix non-normality, provides a more complete description of the transient fluctuations 
than the damping ratio. Pseudospectra analysis could further support non-normality assessment to enable a greater under-
standing of when we might expect transient phases to impact eventual population dynamics.

Keywords Damping ratio · Europe · Eurostat · Human demography · Population projection matrix · Pseudospectra

Introduction

Our world is in constant flux, so populations are never at 
equilibrium. Population dynamics are altered by ongoing 
and abrupt processes, both immediately and over longer 
timescales, diverting trajectories from the paths they would 
otherwise follow. Transient fluctuations such as baby booms 
dampen away, leaving population size modified by a process 
known as momentum (Keyfitz 1971; Espenshade and Tan-
nen 2015)—or more generally and formally, inertia. Inertia 
occurs when unstable population structures cause eventual 
population size to be larger or smaller than if projected from 
a stable initial stage structure; momentum is the special case 
for stationary populations with zero growth (Koons et al. 
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2007). Given the importance of population projections to 
national and global development policies (UN 2015), we 
need a better understanding of how transients affect popu-
lation dynamics in the short- and long-term (Osotimehin 
2011), and how responses are shaped by environmental and 
social factors at a range of spatial scales (Hastings 2004; 
Harper 2013).

Although equilibrium approximations are useful in the 
absence of complete population knowledge at each point 
in time (Caswell 2000), there is increasing recognition that 
systems are dynamic entities for which short-term transient 
effects must also be considered as fundamental aspects of 
ecological dynamics (Hastings 2004; Ezard et al. 2010; 
Stott et al. 2010), explaining approximately half of the vari-
ation in growth rates in comparative studies of plants (Ellis 
and Crone 2013; McDonald et al. 2016). This is especially 
important when shorter timescales are of greater applied rel-
evance (Hastings 2004; Ezard et al. 2010), or when repeated 
disturbances prevent populations from settling to equilib-
rium behaviour (Townley and Hodgson 2008; Tremblay 
et al. 2015). In human populations, gradual demographic 
transitions (from high to low rates of mortality and fertility) 
are a major driver of transient phenomena (Blue and Espen-
shade 2011), over and above abrupt disturbances such as 
wars and pandemics. In deterministic models—as used here 
for conceptual clarity (see Ezard et al. 2010)—transients can 
be considered deterministic responses to stochastic events 
(Stott et al. 2010). This allows setting of bounds, which 
“help to create an envelope of possible future population 
scenarios around the mean, long-term prediction” (Townley 
and Hodgson 2008, p. 1836), aiding in the incorporation of 
at least some aspects of uncertainty into near-term estimates 
for a given population structure.

We know that transients occur when disturbances desta-
bilise population structure, causing deviation from the pro-
portional composition that balances different groups’ varying 
contributions to population growth or decline (Townley and 
Hodgson 2008). Precise predictions of transient dynamics 
require detailed and frequent updating of population structures, 
which is typically data-intensive, as it requires making spe-
cific, fine-grained assumptions about the future (Townley et al. 
2007). In long-lived organisms with age-dependent schedules 
of maturation and reproduction, such as modern humans Homo 
sapiens, structuring is by age: stable age structure is deter-
mined by the age-structured life table (Caswell 2001). Given 
that transient analysis “produce[s] output which is compli-
cated, and difficult to define succinctly” (Yearsley 2004, p. 
245), it would be useful to have diagnostic tools to indicate if 
it is desirable to perform further analyses on transients.

Asymptotic and transient behaviour can be disentangled 
in matrix population modelling (Caswell 2001). Population 
projection matrices (PPMs) are built using (st)age-specific 
rates of reproduction and transition between life cycle stages 

(vital rates), to project population structures over time. The 
‘eigendecomposition’ of a matrix determines the spectrum 
(set of eigenvalues) and ‘natural directions’ (set of eigenvec-
tors) of a matrix,1 and is used to analyse the model: for PPMs, 
the dominant eigenvalue gives the asymptotic growth rate, 
and its associated right and left eigenvectors determine the 
stable (st)age structure and (st)age-specific reproductive val-
ues, respectively. Subdominant eigendata pertain to transient 
responses, with decreasing influence over time following dis-
turbance from the stable (st)age structure (Caswell 2001).

The classical metric of the duration of this decreasing 
influence is the damping ratio, which is calculated as the ratio 
of the dominant eigenvalue divided by the absolute value of 
the subdominant eigenvalue (Caswell 2001). As a measure of 
‘intrinsic population resilience’ to transient deviations (with 
a higher value suggesting a shorter recovery time), the damp-
ing ratio has been shown to be useful in comparative demog-
raphy (Stott et al. 2011). However, it is methodologically lim-
ited, because rather than bounding the duration of transient 
dynamics, it actually measures the asymptotic rate at which 
transients decay. As such, it correlates weakly with conver-
gence times of realistic population projections (Stott et al. 
2011) because transient dynamics are not determined solely 
by the largest two eigenvalues, as the damping ratio assumes, 
but rather by the whole set. Figure 1 shows an eigenvalue 
spectrum for a PPM for Bulgaria in 2014, demonstrating that 
many of the lower eigenvalues can have magnitudes similar 
to the subdominant one—highlighting how much informa-
tion for predicting transient dynamics is lost when focusing 
solely on the damping ratio. More integrative measures of 
eigenvalue variation have the potential to increase the accu-
racy of transient dynamic predictions (cf. Crone et al. 2013).

In population ecology, transients are the result of an ini-
tial population vector being propagated through a population 
projection matrix. The focus of efforts into transient fluctua-
tions has most often centred on how the population structure 
at a given point in time differs from the stable age distribu-
tion [reviewed by Williams et al. (2011)]. As individuals at 
different developmental (st)ages have different mortality and 
fertility rates, the discrepancy between observed and sta-
ble population structures causes the aggregated population 
growth rate to change despite constant demographic rates 
(Koons et al. 2005; Ezard et al. 2010; Stott et al. 2011). This 
focus on population structures represents a single side of the 
same coin—a given initial condition can have very different 
transient dynamics depending on the matrix through which 
it is projected. This leads to asking whether there are prop-
erties of the PPM that can indicate a system’s propensity to 
exhibit amplificatory dynamics.

1 For readers unfamiliar with eigenvalues and eigenvectors, we rec-
ommend the following webpage: http://setos a.io/ev/eigen vecto rs-and-
eigen value s/.

http://setosa.io/ev/eigenvectors-and-eigenvalues/
http://setosa.io/ev/eigenvectors-and-eigenvalues/
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It has long been recognised within mathematics that tran-
sient dynamics depend on a matrix characteristic known as 
‘normality’ (Elsner and Paardekooper 1987; Trefethen and 
Embree 2005). If a matrix is normal its properties are fully 
determined by eigendata (Trefethen and Embree 2005), the 
set of basis values and vectors that describe the core prop-
erties of the system. While undoubtedly valuable (Caswell 
2001; Hodgson et al. 2006; Crone et al. 2011), eigendata 
are an asymptotic description and therefore cannot capture 
all dynamical aspects of populations’ short- and medium-
term trajectories as determined by asymmetric, non-normal 
PPMs. Transient effects are limited in normal systems, but 
can be substantial (Trefethen 1997) and potentially domi-
nating (Townley et al. 2007) in non-normal ones. A key 
challenge then is to find and understand simple measures of 
non-normality that might predict and explain links between 
matrix asymmetry and transient dynamics in population 
ecology and evolutionary demography.

Here, we apply non-normality metrics to PPMs. Human 
populations are particularly susceptible to transients as a 
result of culture and geopolitics inducing strong cohort 
effects (Ezard et  al. 2010), in addition to long lifespan 
(Koons et al. 2005, 2007). Momentum will dominate long-
term population dynamics in Africa and Asia due to high 
uncertainty and variability in fertility and mortality rates 
(Azose et al. 2016), and can be expected to account for over 
half of all population growth in developing countries from 
1995 to 2100 (Bongaarts 1994). We used Eurostat data for 

1960 to 2014 to build over 1000 PPMs of country–year 
combinations. After showing that non-normality has gener-
ally increased in these PPMs over time, we use multivariate 
analyses to highlight the dependencies among the facets of 
matrix non-normality and classical ecological population 
dynamic metrics. Our three non-normality metrics correlate 
well with transient indices, but not with the damping ratio. 
These patterns are best drawn out through an important dis-
tinction between non-normality for the system as a whole, 
combining asymptotic and transient dynamics, and that for 
the scaled system, when asymptotic growth rate is factored 
out. Finally, we also introduce to population ecology the 
technique of pseudospectra analysis (Trefethen and Embree 
2005), originally derived from applications in fluid dynam-
ics (Trefethen et al. 1993), which should prove helpful in 
the incorporation of non-normality assessment into matrix 
population modelling.

Methods

Data

We used the Eurostat database (http://ec.europ a.eu/euros tat) 
to collect secondary data on age-specific female population 
sizes, births and deaths, for the 45 European countries with 
complete population data for any subset of years 1960–2014 
(range 3–55 years, 6 complete sets, mean 28 years). The 
variables are provided in single-year age classes, up to the 
oldest age recorded or an arbitrary ‘x years and over’ cat-
egory. Following standard human demography protocols 
(e.g., Keyfitz and Flieger 1968, 1971, 1990; Wiśniowski 
et  al. 2016), we aggregated into 18 5-year bins, up to 
‘85 years and over’. Total births are available separated by 
babies’ sex from 2007 only, so we estimated female births 
by taking the ‘sex ratio at birth’ values for the relevant 
countries and years from the World Bank Databank (http://
datab ank.world bank.org/data/repor ts.aspx?sourc e=gende 
r-stati stics ), and calculating their grand mean. We removed 
121 country–year combinations that had five or more con-
secutive zero deaths across single-year classes—including 
all data for Andorra, Liechtenstein, and San Marino—since 
this is either suggestive of inaccurate data collection and/or 
curation, or related to impractical small population counts. 
This left 1,120 country–year combinations from 42 coun-
tries for matrix construction. Note that all available years 
were used, so PPMs could overlap in their timeframes; for 
example, where data were available for both 2001 and 2002, 
there would be a matrix using 2001 data projecting to 2006, 
and another from 2002 to 2007.

Fig. 1  Eigenvalue spectrum for Bulgaria in 2014. Numbers corre-
spond to eigenvalues ordered by magnitude, which is calculated as 
the length of the vector joining each point to the origin (shown in 
red). Eigenvalues 13–18 lie on the origin. Note the similarity in mag-
nitude of, say, the 4th eigenvalue to that of the 2nd

http://ec.europa.eu/eurostat
http://databank.worldbank.org/data/reports.aspx?source=gender-statistics
http://databank.worldbank.org/data/reports.aspx?source=gender-statistics
http://databank.worldbank.org/data/reports.aspx?source=gender-statistics
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Matrices

For each available country–year combination, we projected 
the observed population at year 0 to year 5, by premultiply-
ing the initial population vector, n0, by its corresponding 
PPM, A: i.e., nt+5 = Ant. The timestep is 5 years due to the 
data being aggregated into 5-year bins; an individual which 
is 0–4 years old at year 0 will be 5–9 years old after projec-
tion. The initial population vectors had 18 entries represent-
ing the observed population structure across the 5-year age 
bins; the PPMs were of dimension 18 × 18. Each matrix was 
generated via the following approximations for each bin:

• survival i.e., progression = 1 −

(
5 × deaths

population size

)

– included along the matrix subdiagonal, for bins 0–4 
to 80–84

• 85 + survival i.e., stasis = 1 −

(
5 × deaths

population size

)

– included in the final entry of the matrix diagonal
• fertility =

�
5 × births

population size

��√
survival(maternal)

�

�√
survival(0 − 4)

�
 (following the birth-flow approxima-

tion of Morris and Doak 2002)
– included along the top row of the matrix.

Note that negative survival values, which arose when 
quintupled deaths exceeded population size, were replaced 
with zero. Additionally, survival was calculated separately 
for infants under 1 year and children aged 1–4 years—since 
deaths are much higher in the former stage—and then com-
bined as follows:

For each matrix we computed:

• eigenvalues, λn, using base R’s eigen() function,
• damping ratio = �

1

/
||�2|| (Caswell 2001),

• case-specific reactivity, the relative population size after 
one projection interval, standardised for λ1, = ‖�̂�𝐧

0
‖
1
 

(Stott et al. 2011) where ‖‖
1
 is the one-norm (the sum of 

the modulus of the entries) of a vector, �̂� = 𝐀∕�
1
 , and 

n0 is the initial population structure scaled such that it 
sums to 1 (giving the proportions of the population in 
each 5-year age bin),

• inertia, the relative population size after the transient 
period (here defined as 100 timesteps i.e., 500 years) 
= ‖�

100
‖
1
 where ‖‖

1
 is the one-norm (sum) of a vector 

and 𝐧
100

= �̂�100𝐧
0
,

• various non-normality metrics, discussed below.

survival(0 − 4) = (0.2 × survival (0)) + (0.8 × survival (1 − 4)).

Note that Stott et al. (2011) differentially name positive 
and negative transient indices, such that a negative value 
of our ‘case-specific reactivity’ would correspond to ‘case-
specific first timestep attenuation’ in their treatment.

Non‑normality

Elsner and Paardekooper (1987) reviewed matrix non-nor-
mality and presented four main metrics, one intuitive defi-
nition (distance from the set of normal matrices) and three 
pragmatic implementable suggestions (Table 1). All three 
metrics have their foundations in AA* rather than just A, 
and tackle the discrepancy between AA* and A*A to reveal 
the asymmetry of A. The Henrici metric uses the Frobenius 
norm of A*A, while the Frobenius and Ruhe metrics use 
the eigendata of A*A, also known as the singular value 
decomposition of A, as previously introduced to evolution-
ary biology (Townley and Ezard 2013). The singular value 
decomposition of A is the eigendecomposition of AA*, 
yielding an alternative set of basis values and vectors. If 
A is symmetric and normal, the singular value and eigen-
decompositions are the same. With increasing asymmetry 
of the PPM, the singular value and eigen-decompositions 
diverge.

In order to isolate transient effects from the overall sys-
tem, we present the results obtained by using standardised 
( �̂� ) matrices in addition to raw ones (A); scaling by λ1 
removes differences in dynamics that result from populations 
increasing or decreasing (Koons et al. 2005; Townley and 
Hodgson 2008; Stott et al. 2011). While Elsner and Paarde-
kooper (1987) additionally present alternative versions of 
the Frobenius and Henrici metrics using the spectral rather 
than Frobenius norm, we chose to limit our analyses to the 
Frobenius norm only, since it simplifies the interpretation 
of the Henrici metric (see Trefethen and Embree 2005, pp. 
444–445; Table 1). To visualise non-normality over time, 
we generated generalised additive mixed models (GAMMs) 
with year as a smoothed fixed effect, controlling for country 
as a random effect. We used the ‘gamm4’ package (Wood 
and Scheipl 2016), fitted with family ‘Gamma’ and the 
‘identity’ link function.

Multivariate analyses

Linear correlations were calculated using Spearman’s 
rank correlations; those presented were significant with 
P < 0.05 and are given to 2 decimal places. Principal com-
ponent analysis was used to assess relationships among 
metrics. This was conducted (using base R’s prcomp() 
function) for both raw and standardised matrices, with 
scaled and centred non-normality metrics and a range 
of relevant variables (see Table 2 for justifications and 
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definitions). We generated biplots from the informative 
principal components—defined as those with eigenvalues 
exceeding 1, after ‘conservative’ bias correction using 
the 95th percentile in parallel analysis (Peres-Neto et al. 
2005) using the ‘paran’ package (Dinno 2012). We list 
loadings that exceeded 10% of each axis, in the order of 
decreasing importance.

The statistical software ‘R’ (version 3.3.2, R Develop-
ment Core Team 2016) was used for all analyses and fig-
ures, along with the ‘R ColorBrewer’ package (Neuwirth 
2014) for the latter.

Results

Figure 2 shows how non-normality in European human 
populations has increased over time. The top row illus-
trates non-normality of the whole system: raw matrices 
describe both asymptotic and transient dynamics. In that 
context: the Frobenius metric changed little over the time 
period; the Henrici metric increased up to a plateau begin-
ning around 1990 (with low outliers including Portugal 
1960–1975, enlarged on the figure and examined below); 
the Ruhe metric showed an almost flat relationship.

Table 1  Non-normality metrics

A is a matrix ( ̂𝐀 if standardised); A* is the conjugate transpose of A; || is a scalar magnitude; ‖‖ is a matrix norm—subscript F specifies the 
Frobenius norm: 

√
(ΣjΣi|aij|2) (aij is a matrix entry, where i denotes row and j denotes column); λk is the kth eigenvalue (ordered by decreasing 

magnitude) of total n (n = matrix dimension); σk is the kth singular value (ordered corresponding to eigenvalues) (Elsner and Paardekooper 1987; 
Henrici 1962; Ruhe 1975)

Non-normality metric Formula Code in R Explanation

Frobenius
√
‖�*� − ��*‖

F
> sqrt(norm((Conj(t(A))%*%A) − (A%*%C

onj(t(A))), type=‘F’))
Or
> sqrt(norm((Conj(t(Re(Â)))%*%Re(Â)) − 

(Re(Â)%*%Conj(t(Re(Â)))), type=“F”))

One of the main conditions defining matrix 
normality is the equality A*A = AA*; this metric 
provides a measure of non-normality by quantify-
ing the discrepancy between A and A*

Henrici
�

‖�‖
F

2
− �

n

k=1
���2 > Re(sqrt(norm(A, type=“F”)^2 − sum(abs

(eigen(A)$values)^2)))
Or
> Re(sqrt(norm(Re(Â), type=“F”)^2 − sum

(abs(eigen(Re(Â))$values)^2)))

This metric considers all eigenvalues of matrix A, 
and is in fact a rearrangement of the Frobenius 
norm of A*A. It quantifies non-normality since 
“A is normal if and only if [formula] = 0” (Hen-
rici 1962, p. 27)

Ruhe max
k
||�k − ||�k|||| > max(svd(A)$d − abs(eigen(A)$values))

Or
> max(svd(Re(Â))$d − abs(eigen(Re(Â))$

values))

Maximum difference between singular value and 
associated absolute eigenvalue: close to normal 
if similar, increasingly non-normal with distance. 
The singular value decomposition is the eigende-
composition of AA*, yielding an alternative set 
of basis values and vectors

Table 2  Variables used in the principal component analysis

Variable Justification Definition

Year Transient dynamics were expected to change over time N/A
Asymptotic growth rate, λ1 A component of total population growth rate

A key matrix output
The numerator of the damping ratio

The rate at which the population would grow or decline in 
the absence of transient dynamics

The dominant eigenvalue of a PPM
Damping ratio A metric originally formulated to measure the duration 

of transient impact
The dominant eigenvalue divided by the absolute value of 

the subdominant eigenvalue (which can be a complex 
number)—see “Matrices”

Reactivity An index of short-term transient impact Relative population size, after scaling out the asymptotic 
growth rate, in the first timestep—see “Matrices”

Inertia An index of long-term transient impact Relative population size, after scaling out the asymptotic 
growth rate, after 100 timesteps—see “Matrices”

Frobenius non-normality Metric under consideration See Table 1
Henrici non-normality Metric under consideration See Table 1
Ruhe non-normality Metric under consideration See Table 1
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Scaling focuses on transient effects by factoring out the 
effect of λ1. This increased the mean value of all non-
normality metrics, by almost 4% each. Comparing the 
bottom and top rows of Fig. 2 shows that the shape of the 
estimated GAMM curves also changed, in terms of inter-
cept, slope, and variance patterns. This can be coarsely 
explained by a systematic change in λ1: the annual mean 
dropped below 1 in 1975 and remained so for the rest 
of the time period (see Fig. 3a). The Frobenius metric 
(Fig. 2a, d) shows how higher λ1 values before 1975 were 
pushing the curve up, while lower values afterwards pulled 
it down. The overall effect resulted in similar increases 
over time across the scaled non-normality metrics (which 
were pairwise correlated with one another at ρ > 0.78). 
However, in contrast to the smooth increase in the scaled 
Frobenius metric, the Henrici and Ruhe metrics both show 
a peak around 2000—close to that of the transient indices 
(see Fig. 3c, d)—and appear to plateau by the end of the 
time series.

Even where scaling did not change the overall pattern, 
as with the Henrici metric, increased variance allows an 
improved visualisation of dynamics. Additionally, outli-
ers tended to become less distinct, although corresponding 
country–years are still distinguishable as bounds on vari-
ation in top and bottom rows of Fig. 2. The outlying line 
of Portugal 1960–1975 on the plots of the Henrici metric 
(enlarged points in Fig. 2b, e) corresponds to matrices with 
very low old-age survivals and zero 85 + stasis.

Figure  3 shows that both λ1 and the damping ratio 
decreased over time. The transient indices of reactivity and 
inertia were strongly correlated with one another (ρ = 0.93), 
both peaking around 1995. Furthermore, values for both 
exceeded 1 for over 97% of matrices, revealing a propensity 
for amplifying transient growth rather than decline, with the 
latter being restricted to prior to 1971 for reactivity and 1991 
for inertia. The transient indices were positively correlated 
with all scaled non-normality metrics (ρ > 0.52).

Of the three non-normality metrics, Henrici changed the 
least with matrix standardisation; the scaled and unscaled 
versions were correlated at ρ = 0.82. Nevertheless, Fig. 4 
shows that scaling still altered the Henrici metric’s relation-
ships with ecological measures of population dynamics. It 
decreased the strength of the relationship between non-nor-
mality and damping ratio (Fig. 4a, c), such that there was 
only a slight correlation with the effect of λ1 removed; this is 
unsurprising given λ1 is the numerator of the damping ratio. 
In contrast, scaling increased the strength of the relationship 
between non-normality and reactivity (Fig. 4b, d), such that 
high values of scaled non-normality were a good predictor 
of strong immediate transient growth.

Principal component analysis allowed more in-depth 
investigation of interrelationships among the variables, visu-
ally represented as biplots in Fig. 5. Using the unscaled non-
normality metrics, the two significant principal components 
explained 72% of the variance. The first principal compo-
nent loaded onto λ1 (negatively), and transient indices, the 

Fig. 2  Non-normality over time, 
measured by three different met-
rics—from left to right: Frobe-
nius, Henrici, Ruhe. Top row 
shows raw matrices, and bottom 
row standardised ones. Points 
are coloured by country. Solid 
lines are GAMM estimates, 
with dashed lines showing their 
95% confidence intervals

a b c

d e f
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Fig. 3  Ecological measures of 
population dynamics over time. 
Points are coloured by country. 
Asymptotic growth rate is the 
dominant eigenvalue, with the 
dashed line showing λ1 = 1 i.e., 
no population change—above 
the line is population growth; 
below, decline. For definitions 
of the other measures, refer to 
“Methods”. For reactivity and 
inertia, the dashed lines divide 
the plot into transient growth 
(> 1) and decline (< 1)

a b

c d

Fig. 4  The Henrici non-nor-
mality metric, unscaled (top) 
and scaled (bottom), against 
damping ratio (left) and reactiv-
ity (right). Points are coloured 
by country. Simple Spearman’s 
rank correlation coefficients 
are given above each plot as a 
visualisation aid

a b

c d



192 Population Ecology (2018) 60:185–196

1 3

Henrici metric, and year (positively). The second loaded 
onto the Frobenius metric (positively), damping ratio (nega-
tively), and year again (positively). Note that the Ruhe met-
ric is not represented by either of the significant principal 
components. Using the scaled non-normality metrics, the 
two significant principal components explained more of the 
variance (86%) than the unscaled case. Loadings differed, 
but directions did not: the first principal component loaded 
onto the Henrici metric, λ1, the Ruhe metric positively, the 
Frobenius metric, and transient indices; the second compo-
nent loaded onto damping ratio, year, and inertia again, but 
this time negatively.

Scaling moved all non-normality metrics into the same 
part of the plot (in Fig. 5b), whereas when unscaled, the 
Frobenius and Henrici metrics were almost orthogonal to 
each other (in Fig. 5a). The Frobenius and Ruhe metrics 
appeared to be most susceptible to asymptotic growth rate, 
moving more than the other variables when the effect of λ1 
was removed; this reiterates the relatively low sensitivity 
of the Henrici metric to scaling. In both plots the damping 
ratio was orthogonal to the axis with λ1 and transient indi-
ces (unscaled plot) or non-normality (scaled), suggesting 
that it describes something fundamentally different to both 
asymptotic and transient dynamics—which should perhaps 
be unsurprising since it is supposedly a measure of duration 
rather than amplitude. Two groups of points (labelled as: 36, 
53, 70; and 553, 580) are notable outliers on both biplots: 
the former represent Iceland in the 1960s; the latter Bulgaria 
in the late 1990s.

Discussion

This is, to the best of our knowledge, the first comprehensive 
continental-scale comparative assessment of the susceptibil-
ity of human populations to transient dynamics. We quan-
tified this transient potential using non-normality metrics: 
overall, these increased for European populations between 
1960 and 2014 (Fig.  2). The patterns of non-normality 
metrics were correlated with transient indices (Figs. 2, 3): 
relationships were strong and positive, with the peaks in the 
scaled Henrici and Ruhe metrics echoed in those for reactiv-
ity and inertia—implying increasing influence of transient 
dynamics on these populations. Although we caution against 
the potential loss of information in restricting analyses to a 
single measure of non-normality, where a streamlined evalua-
tion is desired we particularly recommend the Henrici metric, 
since in our study it proved to be least affected by the scaling 
issue and most strongly correlated with transient indices.

Focusing on these transient indices, we found a very strong 
and significant correlation between reactivity (transient change 
in population size after one timestep) and inertia (asymptotic 
change in population size due to transience), as did Stott et al. 
(2011). Our transient indices rarely yielded attenuation, i.e., 
values smaller than one, which reflect decreases relative to 
the asymptotic trajectory. In contrast, using the same metrics 
on orchids, Tremblay et al. (2015) showed transient decline 
to be much more common than amplification; this suggests 
that the western human populations that are most common 
in our database tend towards transient increases, while plants 
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Fig. 5  Biplots of principal component analysis on non-normality metrics (prefix ‘N’) and ecological measures of population dynamics. a Using 
unscaled metrics; b scaled. Frob Frobenius, Hen Henrici, lambda1 λ1 i.e., dominant eigenvalue, reac reactivity
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may more often decrease. While we found a greater likelihood 
of transient increase when populations were declining overall 
(and vice versa), since both transient indices were opposed to 
λ1 (Fig. 5), the opposite was found in a study of over 100 plant 
species, where faster-growing populations tended towards 
greater reactivity (along with other measures of transience; 
Stott et al. 2010). Stott et al. (2010) argued from their results 
that vital rates impacted short- and long-term dynamics simi-
larly, but pointed out that animal populations including humans 
appear to be more sensitive to initial conditions.

The opposition of short- and long-term dynamics is fur-
ther drawn out in the contrast of decreasing λ1 through time, 
whereas reactivity and inertia peak around the millennium. 
The first observation is increasingly recognised: for many 
countries worldwide, and especially in Europe, a ‘second 
demographic transition’ is underway, with total fertility rate 
dropping below replacement, driving population decline in 
the absence of immigration (Harper 2013; van Daalen and 
Caswell 2015). Any reason for a peak in transience is less 
obvious. Lutz et al. (2003) found that “for the [then] 15 mem-
ber countries of the EU, low fertility brought the population 
to the turning point from positive to negative momentum 
around the year 2000” (p. 1991). However, inspection of 
country-stratified data suggests that the humps are a combi-
nation of different types of trajectory, rather than all countries 
peaking simultaneously. Perhaps some are related to preced-
ing and ongoing disturbances such as the dismantling of the 
socialist economic model in Central and Eastern Europe 
(Sobotka 2002), the reunification of Germany (1989), and 
the armed conflict in the former Yugoslavia (1991–1999). As 
a specific example, Bulgaria’s economic instability during the 
1990s could have driven the transient effects suggested by the 
PPMs for 1997 and 1998, which were outliers on the biplots 
and had the highest values for the scaled Henrici metric.

Returning to the non-normality metrics, we found all 
three measures to have similar temporal trends once the 
effect of declining asymptotic growth had been factored out. 
This follows Stott et al.’s (2011) recommendation that tran-
sient analyses are more usefully performed on standardised 
matrices. When studying the whole system, using raw matri-
ces, the different non-normality metrics told varying stories: 
Frobenius suggests a negative quadratic relationship, Henrici 
increases to a plateau, and Ruhe shows very little change. 
This impact of λ1 is especially notable given the relatively 
small range of values seen across human populations as 
opposed to other animals or plants: this study saw 0.89–1.11, 
compared to 0.80–1.12 within one metapopulation of mar-
mots (Ozgul et al. 2009), and approximately 0.7–2.1 across 
20 plant species (Crone et al. 2013). The effect of λ1 should 
therefore be acknowledged in all comparative studies of tran-
sients (Stott et al. 2011).

Furthermore, we suggest that longitudinal (as well as 
comparative) studies should consider the potential for 

varying non-normality across datasets. Both overall trends 
and turning points illustrate that non-normality cannot be 
considered static for a given country, rather as changing tem-
porally—perhaps similarly to momentum which is a process 
that plays out over time (Blue and Espenshade 2011). While 
a non-normality value for a single matrix reveals little about 
the impact of the transient at that snapshot in time, its rela-
tion to others in the dataset integrate multiple sources and 
forms of stochasticity with respect to the impact of varying 
transient dynamics on population trajectories. Historically, 
the damping ratio has been used to quantify transient impact, 
but it exhibits orthogonal behaviour to inertia and reactivity 
(Fig. 5). Over and above the methodological limitations of 
the damping ratio already discussed, a key consideration is 
the fact that the damping ratio is a proxy for the duration of 
transient fluctuations, while reactivity and inertia provide 
immediate and eventual measures of the transient ampli-
fication in population size. It remains to be seen how the 
three non-normality metrics perform across other systems 
and stage structures, and whether their interrelationships 
with population dynamic indices remain consistent. Com-
parative studies using the COMPADRE and COMADRE 
demographic databases (Salguero-Gómez et al. 2015, 2016) 
could prove particularly insightful here.

Caveats

Matrix outputs are affected by matrix dimension (Tenhum-
berg et al. 2009), with potential implications for non-normal-
ity. A study on cacti found larger matrices to generate lower 
asymptotic growth rates (Rojas-Sandoval and Meléndez-
Ackerman 2013). With our data, single-year matrices (of 
dimension 85 × 85) generated λ1 values up to 9% larger or 
smaller than those from the 18 × 18 matrices used here, with 
a mean difference of + 3% (unpublished data); we employed 
the smaller matrices in this study for consistency with stand-
ard approaches in human demography and because they cap-
ture the vast majority of variation whilst enabling expansion 
to other regions and time periods for which annual data are 
not available. Influence of matrix dimension on transients is 
more contested: while a study of six bird and mammal spe-
cies with varied life histories found no effect (Koons et al. 
2005), a piece of research on pea aphids and another on a 
wide range of plants found positive correlations (Tenhum-
berg et al. 2009; Williams et al. 2011). Furthermore, the 
potential for transients has been found to affect the magni-
tude of changes in λ1 with matrix dimensionality (Ramula 
and Lehtilä 2005). Although Stott et al. (2010) are concerned 
that such effects could “perhaps [be] signifying a potentially 
worrying artefact of basic model parameterisation” (p. 302), 
Ellis (2013) reassures that these relationships are likely to 
be weaker when considering case-specific transient indices 
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(‘realistic’ scenarios, as here), compared to bounds (extreme 
hypothetical cases; see Stott et al. 2011).

A further fundamental caveat is the lack of migration 
among populations, which is increasingly considered essen-
tial when modelling human populations (Azose et al. 2016; 
Willekens 2016). Ozgul et al. (2009) shows how transients 
unfold differently when incorporating migration between 
patches in metapopulations. Inclusion of such complexity 
reveals highly variable transient responses (Espenshade and 
Tannen 2015, and the unpublished EU study therein), with 
eminent policy implications.

A more significant limitation to our study is the obser-
vation that differing behaviours of non-normality metrics 
with respect to matrix standardisation remind us that these 
measures may be well-defined mathematically but less so 
with relevance to demography. Even in their original formu-
lations, “scalar measures of nonnormality suffer from a basic 
limitation: Non-normality is too complex to be summarised 
in a single number” (Trefethen and Embree 2005, p. 446). 
There is therefore still a need to develop more reliable meas-
ures. One response (Gheorghiu 2003) to Elsner and Paarde-
kooper’s (1987) review of non-normality metrics considered 
scalar instruments to be just one of two ‘major concepts’ in 
their measurement—the other being pseudospectra analysis.

A future direction: pseudospectra analysis 
for population ecology

Pseudospectra are visual representations of non-normality 
developed by Trefethen and colleagues (Trefethen 1992; 

Trefethen et al. 1993; Trefethen and Embree 2005) for appli-
cations in fluid dynamics, but with the recognition that the 
techniques also apply to related problems across the mathe-
matical sciences. Trefethen (1997) believes that visual repre-
sentations aid interpretation by “supplementing the abstract 
notion of a matrix [with] a picture in the complex plane” (p. 
383). He suggested that pseudospectra give matrices ‘per-
sonality’, and that they may allow us “to notice things that 
went unnoticed before” (p. 404). Pseudospectra can now be 
interrogated via perturbation analysis and transient bound 
calculation (Townley et al. 2007).

Figure 6 shows two different types of plot for pseudospec-
tra corresponding to the spectrum shown in Fig. 1 (for Bul-
garia in 2014). Pseudospectra ‘look beyond’ eigenvalues to 
express how they change under perturbation (Trefethen 1992; 
Trefethen and Embree 2005). Here it can be helpful to bear 
in mind that errors in parameter estimation mean that the 
‘true’ model may actually lie within the pseudospectral set 
of slightly perturbed matrices. Pseudospectra can capture 
transient dynamics more holistically than eigenvalues—
“although pseudospectra rarely give an exact answer, they 
detect and quantify transients that eigenvalues miss” (Trefe-
then and Embree 2005, p. 135). Another reason we restricted 
analyses to the Frobenius norm is that it defines a special 
case where pseudospectra exactly determine matrix norm 
behaviour (Greenbaum and Trefethen 1993). Inferences about 
non-normality can be made by studying eigenvalue encap-
sulation by the pseudospectra contours: the lower the value 
of contours encapsulating the eigenvalues, the less stable the 
matrix and the greater its proneness to transient behaviour.

a b

Fig. 6  Pseudospectra for Bulgaria in 2014, as a contour plot (a) and 
a perspective plot (b). Compare to the spectrum in Fig. 1. Contours 
correspond to perturbations of the original matrix, with an inverse 
relationship: small-valued contours correspond to large perturba-
tions, and vice versa. The original, unperturbed, eigenvalues have a 
‘height’ of infinity (= 1/0): they are seen as dots in the contour plot 
and sharp peaks in the perspective plot. Eigenvalues encapsulated by 

lower-valued contours (e.g., contour 4 around λ1) would shift only 
under large perturbations, while those encapsulated by higher eigen-
values (e.g., contour 12 around eigenvalues 6–8) are more easily per-
turbed. Human PPMs have multiple zero eigenvalues, which explains 
the ‘volcano’ pattern in the perspective plot, as these eigenvalues are 
sensitive to even small perturbations
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Concluding remarks

Regardless of the precise way in which PPM non-normality 
is incorporated into future study, the insight the metrics offer 
into transient dynamics renders them an instructive addition 
to the demographer’s toolbox. At the very least, increasing 
non-normality, with concomitant transient impacts, neces-
sitates a shift away from the prevailing overreliance on 
asymptotic growth rate and the damping ratio—which we 
have shown is too closely related to λ1 (Fig. 3) and too far 
removed from transient indices (Fig. 5) to be an optimal tran-
sient metric. Implications of non-normality are not restricted 
to short-term dynamics; even longer-term projections, such 
as the 2100 population size, should consider transients due 
to their enduring inertial effect that echoes across generations 
into the future (Koons et al. 2007). Matrix non-normality 
measures the extent of the amplificatory impacts of the PPM 
on the population projection, moving beyond the current 
focus of demographic projections incorporating transient 
dynamics solely due to their conditional definition from a 
specified initial population (Yearsley 2004; Caswell and 
Sánchez Gassen 2015).

Increasing non-normality suggests intensifying transient 
effects, with repercussions for European human populations 
and beyond. Further development of the non-normality met-
rics applied here (especially our favoured Henrici), along with 
exploration of pseudospectra, would facilitate improved evi-
dence-based understanding of how the inevitable disturbances 
that divert population trajectories alter our demographic des-
tinies. Such insight would benefit varied fields, from evolu-
tionary demography (e.g., Metcalf and Pavard 2007), through 
development studies (e.g., Osotimehin 2011), to population 
health (e.g., Harper 2010; Kassebaum et al. 2016). Population 
ecology has long benefitted from an acute awareness of math-
ematical knowledge. We encourage judicious use of interdis-
ciplinary approaches to help population projection models 
remain relevant in a continuously changing world.
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