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Abstract

In our increasingly unstable and unpredictable world, population dynamics rarely settle uniformly to long-term behaviour.
However, projecting period-by-period through the preceding fluctuations is more data-intensive and analytically involved
than evaluating at equilibrium. To efficiently model populations and best inform policy, we require pragmatic suggestions as
to when it is necessary to incorporate short-term transient dynamics and their effect on eventual projected population size.
To estimate this need for matrix population modelling, we adopt a linear algebraic quantity known as non-normality. Matrix
non-normality is distinct from normality in the Gaussian sense, and indicates the amplificatory potential of the population
projection matrix given a particular population vector. In this paper, we compare and contrast three well-regarded metrics of
non-normality, which were calculated for over 1000 age-structured human population projection matrices from 42 European
countries in the period 1960 to 2014. Non-normality increased over time, mirroring the indices of transient dynamics that
peaked around the millennium. By standardising the matrices to focus on transient dynamics and not changes in the asymp-
totic growth rate, we show that the damping ratio is an uninformative predictor of whether a population is prone to transient
booms or busts in its size. These analyses suggest that population ecology approaches to inferring transient dynamics have
too often relied on suboptimal analytical tools focussed on an initial population vector rather than the capacity of the life
cycle to amplify or dampen transient fluctuations. Finally, we introduce the engineering technique of pseudospectra analysis
to population ecology, which, like matrix non-normality, provides a more complete description of the transient fluctuations
than the damping ratio. Pseudospectra analysis could further support non-normality assessment to enable a greater under-
standing of when we might expect transient phases to impact eventual population dynamics.
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2007). Given the importance of population projections to
national and global development policies (UN 2015), we
need a better understanding of how transients affect popu-
lation dynamics in the short- and long-term (Osotimehin
2011), and how responses are shaped by environmental and
social factors at a range of spatial scales (Hastings 2004;
Harper 2013).

Although equilibrium approximations are useful in the
absence of complete population knowledge at each point
in time (Caswell 2000), there is increasing recognition that
systems are dynamic entities for which short-term transient
effects must also be considered as fundamental aspects of
ecological dynamics (Hastings 2004; Ezard et al. 2010;
Stott et al. 2010), explaining approximately half of the vari-
ation in growth rates in comparative studies of plants (Ellis
and Crone 2013; McDonald et al. 2016). This is especially
important when shorter timescales are of greater applied rel-
evance (Hastings 2004; Ezard et al. 2010), or when repeated
disturbances prevent populations from settling to equilib-
rium behaviour (Townley and Hodgson 2008; Tremblay
et al. 2015). In human populations, gradual demographic
transitions (from high to low rates of mortality and fertility)
are a major driver of transient phenomena (Blue and Espen-
shade 2011), over and above abrupt disturbances such as
wars and pandemics. In deterministic models—as used here
for conceptual clarity (see Ezard et al. 2010)—transients can
be considered deterministic responses to stochastic events
(Stott et al. 2010). This allows setting of bounds, which
“help to create an envelope of possible future population
scenarios around the mean, long-term prediction” (Townley
and Hodgson 2008, p. 1836), aiding in the incorporation of
at least some aspects of uncertainty into near-term estimates
for a given population structure.

We know that transients occur when disturbances desta-
bilise population structure, causing deviation from the pro-
portional composition that balances different groups’ varying
contributions to population growth or decline (Townley and
Hodgson 2008). Precise predictions of transient dynamics
require detailed and frequent updating of population structures,
which is typically data-intensive, as it requires making spe-
cific, fine-grained assumptions about the future (Townley et al.
2007). In long-lived organisms with age-dependent schedules
of maturation and reproduction, such as modern humans Homo
sapiens, structuring is by age: stable age structure is deter-
mined by the age-structured life table (Caswell 2001). Given
that transient analysis “produce[s] output which is compli-
cated, and difficult to define succinctly” (Yearsley 2004, p.
245), it would be useful to have diagnostic tools to indicate if
it is desirable to perform further analyses on transients.

Asymptotic and transient behaviour can be disentangled
in matrix population modelling (Caswell 2001). Population
projection matrices (PPMs) are built using (st)age-specific
rates of reproduction and transition between life cycle stages
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(vital rates), to project population structures over time. The
‘eigendecomposition’ of a matrix determines the spectrum
(set of eigenvalues) and ‘natural directions’ (set of eigenvec-
tors) of a matrix,' and is used to analyse the model: for PPMs,
the dominant eigenvalue gives the asymptotic growth rate,
and its associated right and left eigenvectors determine the
stable (st)age structure and (st)age-specific reproductive val-
ues, respectively. Subdominant eigendata pertain to transient
responses, with decreasing influence over time following dis-
turbance from the stable (st)age structure (Caswell 2001).

The classical metric of the duration of this decreasing
influence is the damping ratio, which is calculated as the ratio
of the dominant eigenvalue divided by the absolute value of
the subdominant eigenvalue (Caswell 2001). As a measure of
‘intrinsic population resilience’ to transient deviations (with
a higher value suggesting a shorter recovery time), the damp-
ing ratio has been shown to be useful in comparative demog-
raphy (Stott et al. 2011). However, it is methodologically lim-
ited, because rather than bounding the duration of transient
dynamics, it actually measures the asymptotic rate at which
transients decay. As such, it correlates weakly with conver-
gence times of realistic population projections (Stott et al.
2011) because transient dynamics are not determined solely
by the largest two eigenvalues, as the damping ratio assumes,
but rather by the whole set. Figure 1 shows an eigenvalue
spectrum for a PPM for Bulgaria in 2014, demonstrating that
many of the lower eigenvalues can have magnitudes similar
to the subdominant one—highlighting how much informa-
tion for predicting transient dynamics is lost when focusing
solely on the damping ratio. More integrative measures of
eigenvalue variation have the potential to increase the accu-
racy of transient dynamic predictions (cf. Crone et al. 2013).

In population ecology, transients are the result of an ini-
tial population vector being propagated through a population
projection matrix. The focus of efforts into transient fluctua-
tions has most often centred on how the population structure
at a given point in time differs from the stable age distribu-
tion [reviewed by Williams et al. (2011)]. As individuals at
different developmental (st)ages have different mortality and
fertility rates, the discrepancy between observed and sta-
ble population structures causes the aggregated population
growth rate to change despite constant demographic rates
(Koons et al. 2005; Ezard et al. 2010; Stott et al. 2011). This
focus on population structures represents a single side of the
same coin—a given initial condition can have very different
transient dynamics depending on the matrix through which
it is projected. This leads to asking whether there are prop-
erties of the PPM that can indicate a system’s propensity to
exhibit amplificatory dynamics.

! For readers unfamiliar with eigenvalues and eigenvectors, we rec-
ommend the following webpage: http://setosa.io/ev/eigenvectors-and-
eigenvalues/.


http://setosa.io/ev/eigenvectors-and-eigenvalues/
http://setosa.io/ev/eigenvectors-and-eigenvalues/
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Fig. 1 Eigenvalue spectrum for Bulgaria in 2014. Numbers corre-
spond to eigenvalues ordered by magnitude, which is calculated as
the length of the vector joining each point to the origin (shown in
red). Eigenvalues 13—18 lie on the origin. Note the similarity in mag-
nitude of, say, the 4th eigenvalue to that of the 2nd

It has long been recognised within mathematics that tran-
sient dynamics depend on a matrix characteristic known as
‘normality’ (Elsner and Paardekooper 1987; Trefethen and
Embree 2005). If a matrix is normal its properties are fully
determined by eigendata (Trefethen and Embree 2005), the
set of basis values and vectors that describe the core prop-
erties of the system. While undoubtedly valuable (Caswell
2001; Hodgson et al. 2006; Crone et al. 2011), eigendata
are an asymptotic description and therefore cannot capture
all dynamical aspects of populations’ short- and medium-
term trajectories as determined by asymmetric, non-normal
PPMs. Transient effects are limited in normal systems, but
can be substantial (Trefethen 1997) and potentially domi-
nating (Townley et al. 2007) in non-normal ones. A key
challenge then is to find and understand simple measures of
non-normality that might predict and explain links between
matrix asymmetry and transient dynamics in population
ecology and evolutionary demography.

Here, we apply non-normality metrics to PPMs. Human
populations are particularly susceptible to transients as a
result of culture and geopolitics inducing strong cohort
effects (Ezard et al. 2010), in addition to long lifespan
(Koons et al. 2005, 2007). Momentum will dominate long-
term population dynamics in Africa and Asia due to high
uncertainty and variability in fertility and mortality rates
(Azose et al. 2016), and can be expected to account for over
half of all population growth in developing countries from
1995 to 2100 (Bongaarts 1994). We used Eurostat data for

1960 to 2014 to build over 1000 PPMs of country—year
combinations. After showing that non-normality has gener-
ally increased in these PPMs over time, we use multivariate
analyses to highlight the dependencies among the facets of
matrix non-normality and classical ecological population
dynamic metrics. Our three non-normality metrics correlate
well with transient indices, but not with the damping ratio.
These patterns are best drawn out through an important dis-
tinction between non-normality for the system as a whole,
combining asymptotic and transient dynamics, and that for
the scaled system, when asymptotic growth rate is factored
out. Finally, we also introduce to population ecology the
technique of pseudospectra analysis (Trefethen and Embree
2005), originally derived from applications in fluid dynam-
ics (Trefethen et al. 1993), which should prove helpful in
the incorporation of non-normality assessment into matrix
population modelling.

Methods
Data

We used the Eurostat database (http://ec.europa.eu/eurostat)
to collect secondary data on age-specific female population
sizes, births and deaths, for the 45 European countries with
complete population data for any subset of years 1960-2014
(range 3-55 years, 6 complete sets, mean 28 years). The
variables are provided in single-year age classes, up to the
oldest age recorded or an arbitrary ‘x years and over’ cat-
egory. Following standard human demography protocols
(e.g., Keyfitz and Flieger 1968, 1971, 1990; Wisniowski
et al. 2016), we aggregated into 18 5-year bins, up to
‘85 years and over’. Total births are available separated by
babies’ sex from 2007 only, so we estimated female births
by taking the ‘sex ratio at birth’ values for the relevant
countries and years from the World Bank Databank (http://
databank.worldbank.org/data/reports.aspx?source=gende
r-statistics), and calculating their grand mean. We removed
121 country—year combinations that had five or more con-
secutive zero deaths across single-year classes—including
all data for Andorra, Liechtenstein, and San Marino—since
this is either suggestive of inaccurate data collection and/or
curation, or related to impractical small population counts.
This left 1,120 country—year combinations from 42 coun-
tries for matrix construction. Note that all available years
were used, so PPMs could overlap in their timeframes; for
example, where data were available for both 2001 and 2002,
there would be a matrix using 2001 data projecting to 2006,
and another from 2002 to 2007.

@ Springer


http://ec.europa.eu/eurostat
http://databank.worldbank.org/data/reports.aspx?source=gender-statistics
http://databank.worldbank.org/data/reports.aspx?source=gender-statistics
http://databank.worldbank.org/data/reports.aspx?source=gender-statistics

188

Population Ecology (2018) 60:185-196

Matrices

For each available country—year combination, we projected
the observed population at year O to year 5, by premultiply-
ing the initial population vector, n, by its corresponding
PPM, A:i.e., n s = An, The timestep is 5 years due to the
data being aggregated into 5-year bins; an individual which
is 0—4 years old at year 0 will be 5-9 years old after projec-
tion. The initial population vectors had 18 entries represent-
ing the observed population structure across the 5-year age
bins; the PPMs were of dimension 18 X 18. Each matrix was
generated via the following approximations for each bin:

5 X deaths )

e survival i.e., progression = 1 — (—
population size

— included along the matrix subdiagonal, for bins 0—4
to 80-84

5 X deaths )

o 85+ survival i.e., stasis =1 — <—
population size

— included in the final entry of the matrix diagonal
o fertility = ( > X births ><\/ survival(maternal))

population size

(\/survival(O - 4)) (following the birth-flow approxima-

tion of Morris and Doak 2002)
— included along the top row of the matrix.

Note that negative survival values, which arose when
quintupled deaths exceeded population size, were replaced
with zero. Additionally, survival was calculated separately
for infants under 1 year and children aged 1-4 years—since
deaths are much higher in the former stage—and then com-
bined as follows:

survival(0 — 4) = (0.2 X survival (0)) + (0.8 X survival (1 — 4)).

For each matrix we computed:
e cigenvalues, 1, using base R’s eigen() function,
e damping ratio = ’11/|/12| (Caswell 2001),

e case-specific reactivity, the relative population size after
one projection interval, standardised for 4, = ||An0||l
(Stott et al. 2011) where || ||,is the one-norm (the sum of
the modulus of the entries) of a vector, A=A /4, and
n, is the initial population structure scaled such that it
sums to 1 (giving the proportions of the population in
each 5-year age bin),

e inertia, the relative population size after the transient
period (here defined as 100 timesteps i.e., 500 years)
= ||Inoll; where ||| is the one-norm (sum) of a vector
and n;y, = A'%n,,

e various non-normality metrics, discussed below.

@ Springer

Note that Stott et al. (2011) differentially name positive
and negative transient indices, such that a negative value
of our ‘case-specific reactivity’ would correspond to ‘case-
specific first timestep attenuation’ in their treatment.

Non-normality

Elsner and Paardekooper (1987) reviewed matrix non-nor-
mality and presented four main metrics, one intuitive defi-
nition (distance from the set of normal matrices) and three
pragmatic implementable suggestions (Table 1). All three
metrics have their foundations in AA* rather than just A,
and tackle the discrepancy between AA* and A*A to reveal
the asymmetry of A. The Henrici metric uses the Frobenius
norm of A*A, while the Frobenius and Ruhe metrics use
the eigendata of A*A, also known as the singular value
decomposition of A, as previously introduced to evolution-
ary biology (Townley and Ezard 2013). The singular value
decomposition of A is the eigendecomposition of AA*,
yielding an alternative set of basis values and vectors. If
A is symmetric and normal, the singular value and eigen-
decompositions are the same. With increasing asymmetry
of the PPM, the singular value and eigen-decompositions
diverge.

In order to isolate transient effects from the overall sys-
tem, we present the results obtained by using standardised
(A) matrices in addition to raw ones (A); scaling by 4,
removes differences in dynamics that result from populations
increasing or decreasing (Koons et al. 2005; Townley and
Hodgson 2008; Stott et al. 2011). While Elsner and Paarde-
kooper (1987) additionally present alternative versions of
the Frobenius and Henrici metrics using the spectral rather
than Frobenius norm, we chose to limit our analyses to the
Frobenius norm only, since it simplifies the interpretation
of the Henrici metric (see Trefethen and Embree 2005, pp.
444-445; Table 1). To visualise non-normality over time,
we generated generalised additive mixed models (GAMMs)
with year as a smoothed fixed effect, controlling for country
as a random effect. We used the ‘gamm4’ package (Wood
and Scheipl 2016), fitted with family ‘Gamma’ and the
‘identity’ link function.

Multivariate analyses

Linear correlations were calculated using Spearman’s
rank correlations; those presented were significant with
P <0.05 and are given to 2 decimal places. Principal com-
ponent analysis was used to assess relationships among
metrics. This was conducted (using base R’s prcomp()
function) for both raw and standardised matrices, with
scaled and centred non-normality metrics and a range
of relevant variables (see Table 2 for justifications and
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Table 1 Non-normality metrics

Non-normality metric Formula Code in R

Explanation

One of the main conditions defining matrix
normality is the equality A"A =AA"; this metric
provides a measure of non-normality by quantify-
ing the discrepancy between A and A*

This metric considers all eigenvalues of matrix A,
and is in fact a rearrangement of the Frobenius
norm of A*A. It quantifies non-normality since
“A is normal if and only if [formula]=0" (Hen-
rici 1962, p. 27)

Maximum difference between singular value and

Frobenius IA*A — AA™|| > sqrt(norm((Conj(t(A))%*%A) — (A%*%C
onj(t(A))), type="F"))
Or
> sqrt(norm((Conj(t(Re(A)))%*%Re(A)) —
(Re(A)%*%Conj(t(Re(A)))), type="F"))
Henrici A 2y | Mz > Re(sqrt(norm(A, type="“F")"2 — sum(abs
F k=1 (eigen(A)$values)”2)))
Or
> Re(sqrt(norm(Re(A), type="“F")"2 —sum
(abs(eigen(Re(A))$values)*2)))
Ruhe max,|o, — | A|

T

> max(svd(Re(A))$d — abs(eigen(Re(A))$

values))

> max(svd(A)$d — abs(eigen(A)$values))
O

associated absolute eigenvalue: close to normal
if similar, increasingly non-normal with distance.
The singular value decomposition is the eigende-
composition of AA", yielding an alternative set
of basis values and vectors

A is a matrix (A if standardised); A* is the conjugate transpose of A; || is a scalar magnitude; ||| is a matrix norm—subscript F specifies the
Frobenius norm: \/ (ZjZ,-Ia,»jlz) (a; is a matrix entry, where i denotes row and j denotes column); 4, is the kth eigenvalue (ordered by decreasing
magnitude) of total n (n=matrix dimension); o, is the kth singular value (ordered corresponding to eigenvalues) (Elsner and Paardekooper 1987;

Henrici 1962; Ruhe 1975)

Table 2 Variables used in the principal component analysis

Variable Justification

Definition

Year
Asymptotic growth rate, 4,
A key matrix output
The numerator of the damping ratio
Damping ratio
of transient impact

Reactivity An index of short-term transient impact

Inertia An index of long-term transient impact

Transient dynamics were expected to change over time
A component of total population growth rate

A metric originally formulated to measure the duration

N/A

The rate at which the population would grow or decline in
the absence of transient dynamics

The dominant eigenvalue of a PPM

The dominant eigenvalue divided by the absolute value of
the subdominant eigenvalue (which can be a complex
number)—see ‘“Matrices”

Relative population size, after scaling out the asymptotic
growth rate, in the first timestep—see “Matrices”

Relative population size, after scaling out the asymptotic
growth rate, after 100 timesteps—see “Matrices”

Frobenius non-normality =~ Metric under consideration See Table 1
Henrici non-normality Metric under consideration See Table 1
Ruhe non-normality Metric under consideration See Table 1
definitions). We generated biplots from the informative Results

principal components—defined as those with eigenvalues
exceeding 1, after ‘conservative’ bias correction using
the 95th percentile in parallel analysis (Peres-Neto et al.
2005) using the ‘paran’ package (Dinno 2012). We list
loadings that exceeded 10% of each axis, in the order of
decreasing importance.

The statistical software ‘R’ (version 3.3.2, R Develop-
ment Core Team 2016) was used for all analyses and fig-
ures, along with the ‘R ColorBrewer’ package (Neuwirth
2014) for the latter.

Figure 2 shows how non-normality in European human
populations has increased over time. The top row illus-
trates non-normality of the whole system: raw matrices
describe both asymptotic and transient dynamics. In that
context: the Frobenius metric changed little over the time
period; the Henrici metric increased up to a plateau begin-
ning around 1990 (with low outliers including Portugal
1960-1975, enlarged on the figure and examined below);
the Ruhe metric showed an almost flat relationship.

@ Springer
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Fig.2 Non-normality over time,
measured by three different met-

a Frobenius, unscaled

rics—from left to right: Frobe-
nius, Henrici, Ruhe. Top row
shows raw matrices, and bottom
row standardised ones. Points
are coloured by country. Solid
lines are GAMM estimates,
with dashed lines showing their
95% confidence intervals

1960 1980 2000

d Frobenius, scaled

Non-normality

1960 1980 2000

Scaling focuses on transient effects by factoring out the
effect of 4,. This increased the mean value of all non-
normality metrics, by almost 4% each. Comparing the
bottom and top rows of Fig. 2 shows that the shape of the
estimated GAMM curves also changed, in terms of inter-
cept, slope, and variance patterns. This can be coarsely
explained by a systematic change in 4,: the annual mean
dropped below 1 in 1975 and remained so for the rest
of the time period (see Fig. 3a). The Frobenius metric
(Fig. 2a, d) shows how higher 1, values before 1975 were
pushing the curve up, while lower values afterwards pulled
it down. The overall effect resulted in similar increases
over time across the scaled non-normality metrics (which
were pairwise correlated with one another at p > 0.78).
However, in contrast to the smooth increase in the scaled
Frobenius metric, the Henrici and Ruhe metrics both show
a peak around 2000—close to that of the transient indices
(see Fig. 3¢, d)—and appear to plateau by the end of the
time series.

Even where scaling did not change the overall pattern,
as with the Henrici metric, increased variance allows an
improved visualisation of dynamics. Additionally, outli-
ers tended to become less distinct, although corresponding
country-years are still distinguishable as bounds on vari-
ation in top and bottom rows of Fig. 2. The outlying line
of Portugal 1960-1975 on the plots of the Henrici metric
(enlarged points in Fig. 2b, e) corresponds to matrices with
very low old-age survivals and zero 85 + stasis.
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C Ruhe, unscaled

b Henrici, unscaled

0.98

0.96

0.94

1960 1980 2000 1960 1980 2000

€ Henrici, scaled f Ruhe, scaled

1960 1980 2000 1960 1980 2000

Year

Figure 3 shows that both A, and the damping ratio
decreased over time. The transient indices of reactivity and
inertia were strongly correlated with one another (p =0.93),
both peaking around 1995. Furthermore, values for both
exceeded 1 for over 97% of matrices, revealing a propensity
for amplifying transient growth rather than decline, with the
latter being restricted to prior to 1971 for reactivity and 1991
for inertia. The transient indices were positively correlated
with all scaled non-normality metrics (p > 0.52).

Of the three non-normality metrics, Henrici changed the
least with matrix standardisation; the scaled and unscaled
versions were correlated at p =0.82. Nevertheless, Fig. 4
shows that scaling still altered the Henrici metric’s relation-
ships with ecological measures of population dynamics. It
decreased the strength of the relationship between non-nor-
mality and damping ratio (Fig. 4a, c), such that there was
only a slight correlation with the effect of 4, removed; this is
unsurprising given 4, is the numerator of the damping ratio.
In contrast, scaling increased the strength of the relationship
between non-normality and reactivity (Fig. 4b, d), such that
high values of scaled non-normality were a good predictor
of strong immediate transient growth.

Principal component analysis allowed more in-depth
investigation of interrelationships among the variables, visu-
ally represented as biplots in Fig. 5. Using the unscaled non-
normality metrics, the two significant principal components
explained 72% of the variance. The first principal compo-
nent loaded onto 4, (negatively), and transient indices, the



Population Ecology (2018) 60:185-196

191

Fig.3 Ecological measures of
population dynamics over time.
Points are coloured by country.
Asymptotic growth rate is the
dominant eigenvalue, with the
dashed line showing 4;=11i.e.,
no population change—above
the line is population growth;
below, decline. For definitions
of the other measures, refer to
“Methods”. For reactivity and
inertia, the dashed lines divide
the plot into transient growth
(>1) and decline (< 1)

Fig.4 The Henrici non-nor-
mality metric, unscaled (top)
and scaled (bottom), against
damping ratio (left) and reactiv-
ity (right). Points are coloured
by country. Simple Spearman’s
rank correlation coefficients

are given above each plot as a
visualisation aid

a Asymptotic growth rate

b Damping ratio
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Fig.5 Biplots of principal component analysis on non-normality metrics (prefix ‘N’) and ecological measures of population dynamics. a Using
unscaled metrics; b scaled. Frob Frobenius, Hen Henrici, lambdal 1, i.e., dominant eigenvalue, reac reactivity

Henrici metric, and year (positively). The second loaded
onto the Frobenius metric (positively), damping ratio (nega-
tively), and year again (positively). Note that the Ruhe met-
ric is not represented by either of the significant principal
components. Using the scaled non-normality metrics, the
two significant principal components explained more of the
variance (86%) than the unscaled case. Loadings differed,
but directions did not: the first principal component loaded
onto the Henrici metric, 4,, the Ruhe metric positively, the
Frobenius metric, and transient indices; the second compo-
nent loaded onto damping ratio, year, and inertia again, but
this time negatively.

Scaling moved all non-normality metrics into the same
part of the plot (in Fig. 5b), whereas when unscaled, the
Frobenius and Henrici metrics were almost orthogonal to
each other (in Fig. 5a). The Frobenius and Ruhe metrics
appeared to be most susceptible to asymptotic growth rate,
moving more than the other variables when the effect of 4,
was removed; this reiterates the relatively low sensitivity
of the Henrici metric to scaling. In both plots the damping
ratio was orthogonal to the axis with 4, and transient indi-
ces (unscaled plot) or non-normality (scaled), suggesting
that it describes something fundamentally different to both
asymptotic and transient dynamics—which should perhaps
be unsurprising since it is supposedly a measure of duration
rather than amplitude. Two groups of points (labelled as: 36,
53, 70; and 553, 580) are notable outliers on both biplots:
the former represent Iceland in the 1960s; the latter Bulgaria
in the late 1990s.

@ Springer

Discussion

This is, to the best of our knowledge, the first comprehensive
continental-scale comparative assessment of the susceptibil-
ity of human populations to transient dynamics. We quan-
tified this transient potential using non-normality metrics:
overall, these increased for European populations between
1960 and 2014 (Fig. 2). The patterns of non-normality
metrics were correlated with transient indices (Figs. 2, 3):
relationships were strong and positive, with the peaks in the
scaled Henrici and Ruhe metrics echoed in those for reactiv-
ity and inertia—implying increasing influence of transient
dynamics on these populations. Although we caution against
the potential loss of information in restricting analyses to a
single measure of non-normality, where a streamlined evalua-
tion is desired we particularly recommend the Henrici metric,
since in our study it proved to be least affected by the scaling
issue and most strongly correlated with transient indices.
Focusing on these transient indices, we found a very strong
and significant correlation between reactivity (transient change
in population size after one timestep) and inertia (asymptotic
change in population size due to transience), as did Stott et al.
(2011). Our transient indices rarely yielded attenuation, i.e.,
values smaller than one, which reflect decreases relative to
the asymptotic trajectory. In contrast, using the same metrics
on orchids, Tremblay et al. (2015) showed transient decline
to be much more common than amplification; this suggests
that the western human populations that are most common
in our database tend towards transient increases, while plants
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may more often decrease. While we found a greater likelihood
of transient increase when populations were declining overall
(and vice versa), since both transient indices were opposed to
A, (Fig. 5), the opposite was found in a study of over 100 plant
species, where faster-growing populations tended towards
greater reactivity (along with other measures of transience;
Stott et al. 2010). Stott et al. (2010) argued from their results
that vital rates impacted short- and long-term dynamics simi-
larly, but pointed out that animal populations including humans
appear to be more sensitive to initial conditions.

The opposition of short- and long-term dynamics is fur-
ther drawn out in the contrast of decreasing 4, through time,
whereas reactivity and inertia peak around the millennium.
The first observation is increasingly recognised: for many
countries worldwide, and especially in Europe, a ‘second
demographic transition’ is underway, with total fertility rate
dropping below replacement, driving population decline in
the absence of immigration (Harper 2013; van Daalen and
Caswell 2015). Any reason for a peak in transience is less
obvious. Lutz et al. (2003) found that “for the [then] 15 mem-
ber countries of the EU, low fertility brought the population
to the turning point from positive to negative momentum
around the year 2000 (p. 1991). However, inspection of
country-stratified data suggests that the humps are a combi-
nation of different types of trajectory, rather than all countries
peaking simultaneously. Perhaps some are related to preced-
ing and ongoing disturbances such as the dismantling of the
socialist economic model in Central and Eastern Europe
(Sobotka 2002), the reunification of Germany (1989), and
the armed conflict in the former Yugoslavia (1991-1999). As
a specific example, Bulgaria’s economic instability during the
1990s could have driven the transient effects suggested by the
PPMs for 1997 and 1998, which were outliers on the biplots
and had the highest values for the scaled Henrici metric.

Returning to the non-normality metrics, we found all
three measures to have similar temporal trends once the
effect of declining asymptotic growth had been factored out.
This follows Stott et al.’s (2011) recommendation that tran-
sient analyses are more usefully performed on standardised
matrices. When studying the whole system, using raw matri-
ces, the different non-normality metrics told varying stories:
Frobenius suggests a negative quadratic relationship, Henrici
increases to a plateau, and Ruhe shows very little change.
This impact of 1, is especially notable given the relatively
small range of values seen across human populations as
opposed to other animals or plants: this study saw 0.89-1.11,
compared to 0.80-1.12 within one metapopulation of mar-
mots (Ozgul et al. 2009), and approximately 0.7-2.1 across
20 plant species (Crone et al. 2013). The effect of 4, should
therefore be acknowledged in all comparative studies of tran-
sients (Stott et al. 2011).

Furthermore, we suggest that longitudinal (as well as
comparative) studies should consider the potential for

varying non-normality across datasets. Both overall trends
and turning points illustrate that non-normality cannot be
considered static for a given country, rather as changing tem-
porally—perhaps similarly to momentum which is a process
that plays out over time (Blue and Espenshade 2011). While
a non-normality value for a single matrix reveals little about
the impact of the transient at that snapshot in time, its rela-
tion to others in the dataset integrate multiple sources and
forms of stochasticity with respect to the impact of varying
transient dynamics on population trajectories. Historically,
the damping ratio has been used to quantify transient impact,
but it exhibits orthogonal behaviour to inertia and reactivity
(Fig. 5). Over and above the methodological limitations of
the damping ratio already discussed, a key consideration is
the fact that the damping ratio is a proxy for the duration of
transient fluctuations, while reactivity and inertia provide
immediate and eventual measures of the transient ampli-
fication in population size. It remains to be seen how the
three non-normality metrics perform across other systems
and stage structures, and whether their interrelationships
with population dynamic indices remain consistent. Com-
parative studies using the COMPADRE and COMADRE
demographic databases (Salguero-Gémez et al. 2015, 2016)
could prove particularly insightful here.

Caveats

Matrix outputs are affected by matrix dimension (Tenhum-
berg et al. 2009), with potential implications for non-normal-
ity. A study on cacti found larger matrices to generate lower
asymptotic growth rates (Rojas-Sandoval and Meléndez-
Ackerman 2013). With our data, single-year matrices (of
dimension 85 x 85) generated 1, values up to 9% larger or
smaller than those from the 18 X 18 matrices used here, with
a mean difference of + 3% (unpublished data); we employed
the smaller matrices in this study for consistency with stand-
ard approaches in human demography and because they cap-
ture the vast majority of variation whilst enabling expansion
to other regions and time periods for which annual data are
not available. Influence of matrix dimension on transients is
more contested: while a study of six bird and mammal spe-
cies with varied life histories found no effect (Koons et al.
2005), a piece of research on pea aphids and another on a
wide range of plants found positive correlations (Tenhum-
berg et al. 2009; Williams et al. 2011). Furthermore, the
potential for transients has been found to affect the magni-
tude of changes in A, with matrix dimensionality (Ramula
and Lehtild 2005). Although Stott et al. (2010) are concerned
that such effects could “perhaps [be] signifying a potentially
worrying artefact of basic model parameterisation” (p. 302),
Ellis (2013) reassures that these relationships are likely to
be weaker when considering case-specific transient indices
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Fig.6 Pseudospectra for Bulgaria in 2014, as a contour plot (a) and
a perspective plot (b). Compare to the spectrum in Fig. 1. Contours
correspond to perturbations of the original matrix, with an inverse
relationship: small-valued contours correspond to large perturba-
tions, and vice versa. The original, unperturbed, eigenvalues have a
‘height’ of infinity (=1/0): they are seen as dots in the contour plot
and sharp peaks in the perspective plot. Eigenvalues encapsulated by

(‘realistic’ scenarios, as here), compared to bounds (extreme
hypothetical cases; see Stott et al. 2011).

A further fundamental caveat is the lack of migration
among populations, which is increasingly considered essen-
tial when modelling human populations (Azose et al. 2016;
Willekens 2016). Ozgul et al. (2009) shows how transients
unfold differently when incorporating migration between
patches in metapopulations. Inclusion of such complexity
reveals highly variable transient responses (Espenshade and
Tannen 2015, and the unpublished EU study therein), with
eminent policy implications.

A more significant limitation to our study is the obser-
vation that differing behaviours of non-normality metrics
with respect to matrix standardisation remind us that these
measures may be well-defined mathematically but less so
with relevance to demography. Even in their original formu-
lations, “‘scalar measures of nonnormality suffer from a basic
limitation: Non-normality is too complex to be summarised
in a single number” (Trefethen and Embree 2005, p. 446).
There is therefore still a need to develop more reliable meas-
ures. One response (Gheorghiu 2003) to Elsner and Paarde-
kooper’s (1987) review of non-normality metrics considered
scalar instruments to be just one of two ‘major concepts’ in
their measurement—the other being pseudospectra analysis.

A future direction: pseudospectra analysis
for population ecology

Pseudospectra are visual representations of non-normality
developed by Trefethen and colleagues (Trefethen 1992;
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b Bulgaria 2014, perspective

lower-valued contours (e.g., contour 4 around 4;) would shift only
under large perturbations, while those encapsulated by higher eigen-
values (e.g., contour 12 around eigenvalues 6-8) are more easily per-
turbed. Human PPMs have multiple zero eigenvalues, which explains
the ‘volcano’ pattern in the perspective plot, as these eigenvalues are
sensitive to even small perturbations

Trefethen et al. 1993; Trefethen and Embree 2005) for appli-
cations in fluid dynamics, but with the recognition that the
techniques also apply to related problems across the mathe-
matical sciences. Trefethen (1997) believes that visual repre-
sentations aid interpretation by “supplementing the abstract
notion of a matrix [with] a picture in the complex plane” (p.
383). He suggested that pseudospectra give matrices ‘per-
sonality’, and that they may allow us “to notice things that
went unnoticed before” (p. 404). Pseudospectra can now be
interrogated via perturbation analysis and transient bound
calculation (Townley et al. 2007).

Figure 6 shows two different types of plot for pseudospec-
tra corresponding to the spectrum shown in Fig. 1 (for Bul-
garia in 2014). Pseudospectra ‘look beyond’ eigenvalues to
express how they change under perturbation (Trefethen 1992;
Trefethen and Embree 2005). Here it can be helpful to bear
in mind that errors in parameter estimation mean that the
‘true’ model may actually lie within the pseudospectral set
of slightly perturbed matrices. Pseudospectra can capture
transient dynamics more holistically than eigenvalues—
“although pseudospectra rarely give an exact answer, they
detect and quantify transients that eigenvalues miss” (Trefe-
then and Embree 2005, p. 135). Another reason we restricted
analyses to the Frobenius norm is that it defines a special
case where pseudospectra exactly determine matrix norm
behaviour (Greenbaum and Trefethen 1993). Inferences about
non-normality can be made by studying eigenvalue encap-
sulation by the pseudospectra contours: the lower the value
of contours encapsulating the eigenvalues, the less stable the
matrix and the greater its proneness to transient behaviour.
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Concluding remarks

Regardless of the precise way in which PPM non-normality
is incorporated into future study, the insight the metrics offer
into transient dynamics renders them an instructive addition
to the demographer’s toolbox. At the very least, increasing
non-normality, with concomitant transient impacts, neces-
sitates a shift away from the prevailing overreliance on
asymptotic growth rate and the damping ratio—which we
have shown is too closely related to 4, (Fig. 3) and too far
removed from transient indices (Fig. 5) to be an optimal tran-
sient metric. Implications of non-normality are not restricted
to short-term dynamics; even longer-term projections, such
as the 2100 population size, should consider transients due
to their enduring inertial effect that echoes across generations
into the future (Koons et al. 2007). Matrix non-normality
measures the extent of the amplificatory impacts of the PPM
on the population projection, moving beyond the current
focus of demographic projections incorporating transient
dynamics solely due to their conditional definition from a
specified initial population (Yearsley 2004; Caswell and
Sanchez Gassen 2015).

Increasing non-normality suggests intensifying transient
effects, with repercussions for European human populations
and beyond. Further development of the non-normality met-
rics applied here (especially our favoured Henrici), along with
exploration of pseudospectra, would facilitate improved evi-
dence-based understanding of how the inevitable disturbances
that divert population trajectories alter our demographic des-
tinies. Such insight would benefit varied fields, from evolu-
tionary demography (e.g., Metcalf and Pavard 2007), through
development studies (e.g., Osotimehin 2011), to population
health (e.g., Harper 2010; Kassebaum et al. 2016). Population
ecology has long benefitted from an acute awareness of math-
ematical knowledge. We encourage judicious use of interdis-
ciplinary approaches to help population projection models
remain relevant in a continuously changing world.
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