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1  | INTRODUC TION

Experimental evolution combined with whole-genome resequenc-
ing (E&R) is an effective approach to detect genomic signatures 
of adaptation (Turner, Miller, & Cochrane, 2013). E&R studies 
on complex sexually reproducing organisms like Drosophila use 

polymorphic founder populations, and selection acts mainly on 
standing genetic variation instead of new mutations (Tenaillon 
et al., 2012). Here, the power to detect selected alleles signifi-
cantly increases with an increasing number of replicates (Kofler & 
Schlötterer, 2014; Long, Liti, Luptak, & Tenaillon, 2015) and time 
points (Burke, Liti, & Long, 2014), and the most economic approach 
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Abstract
Shifting from the analysis of single nucleotide polymorphisms to the reconstruction 
of selected haplotypes greatly facilitates the interpretation of evolve and resequence 
(E&R) experiments. Merging highly correlated hitchhiker SNPs into haplotype blocks 
reduces thousands of candidates to few selected regions. Current methods of hap-
lotype reconstruction from Pool-seq data need a variety of data-specific parameters 
that are typically defined ad hoc and require haplotype sequences for validation. 
Here, we introduce haplovalidate, a tool which detects selected haplotypes in Pool-
seq time series data without the need for sequenced haplotypes. Haplovalidate 
makes data-driven choices of two key parameters for the clustering procedure, the 
minimum correlation between SNPs constituting a cluster and the window size. 
Applying haplovalidate to simulated E&R data reliably detects selected haplotype 
blocks with low false discovery rates. Importantly, our analyses identified a restric-
tion of the haplotype block-based approach to describe the genomic architecture 
of adaptation. We detected a substantial fraction of haplotypes containing multiple 
selection targets. These blocks were considered as one region of selection and there-
fore led to underestimation of the number of selection targets. We demonstrate that 
the separate analysis of earlier time points can significantly increase the separation 
of selection targets into individual haplotype blocks. We conclude that the analysis of 
selected haplotype blocks has great potential for the characterization of the adaptive 
architecture with E&R experiments.
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is to sequence pools of individuals (Pool-seq) instead of individual 
genomes (Schlötterer, Tobler, Kofler, & Nolte, 2014). While esti-
mating population allele frequencies accurately, Pool-seq does not 
provide linkage information. Therefore, E&R studies typically treat 
individual SNPs as independent instead of incorporating the un-
derlying haplotype structure, and frequently report an excess of 
outlier SNPs responding to selection (Burke et al., 2010; Griffin, 
Hangartner, Fournier-Level, & Hoffmann, 2017; Jha et al., 2015; 
Orozco-terWengel et al., 2012; Remolina, Chang, & Leips, 2012; 
Tobler et al., 2014; Turner et al., 2013; Turner, Stewart, Fields, 
Rice, & Tarone, 2011), which is not compatible with population ge-
netic theory (Nuzhdin & Turner, 2013).

Franssen, Nolte, Tobler, and Schlötterer (2015) shed some 
light on the excess of candidate loci by jointly analysing Pool-seq 
data and experimentally phased haplotypes from the same ex-
periment. They pointed out that a high number of the candidate 
SNPs in Drosophila melanogaster studies were either located in 
large segregating inversions (Kapun, Van Schalkwyk, McAllister, 
Flatt, & Schlötterer, 2014) which suppress recombination or in ge-
nomic regions with reduced recombination rates. Another factor 
contributing to the large number of candidate SNPs is selection 
on low-frequency alleles. The moderate number of recombination 
events during the experiment is not sufficient to break up the as-
sociation between the target of selection and linked neutral vari-
ants that were private to the selected low-frequency haplotype. 
These results show that understanding the genomic architecture 
of adaptation is a very challenging task and individual haplotypes 
from evolved populations greatly facilitate it by providing linkage 
information.

Sequencing of individuals in combination with phasing is a widely 
used approach to infer haplotype data (Browning & Browning, 2007; 
Delaneau, Howie, Cox, Zagury, & Marchini, 2013; Delaneau Zagury 
& Marchini, 2013; Li, Willer, Ding, Scheet, & Abecasis, 2010; 
Marchini, Howie, Myers, McVean, & Donnelly, 2007; Stephens, 
Smith, & Donnelly, 2001). However, in populations with low-linkage 
disequilibrium, statistical phasing of these individual genomes is still 
a challenge (Bukowicki, Franssen, & Schlötterer, 2016). Alternatively, 
phased haplotypes can be generated experimentally, but this 
method requires living organisms (Franssen et al., 2015; Langley, 
Crepeau, Cardeno, Corbett-Detig, & Stevens, 2011). An alternative 
approach is the statistical inference of haplotypes from Pool-seq 
data. Taking advantage of sequenced founder haplotypes, the hap-
lotypes of evolved individuals have been determined by regression 
(Long et al., 2011), a hidden Markov model (Cubillos et al., 2013), 
maximum likelihood (Kessner, Turner, & Novembre, 2013) and a 
system of linear equations (Cao & Sun, 2015). These methods rely 
on the complete knowledge of all involved founder haplotypes 
(Cubillos et al., 2013) and are limited to a restricted window size be-
cause otherwise the error rate is too high (Cao & Sun, 2015; Kessner 
et al., 2013; Long et al., 2011).

A different approach to reconstruct selected haplotype blocks 
without information about the founder haplotypes was proposed 
by Franssen, Barton, and Schlötterer (2017). This approach uses 

window-based correlation analysis of allele frequency data across 
replicates and time points combined with hierarchical clustering. 
Each cluster of SNPs corresponds to a selected haplotype block. 
Franssen, Barton, et al. (2017) focused on haplotype blocks starting 
from low allele frequencies (≤0.03), and marker SNPs (i.e. correlated 
SNPs increasing in frequency), which are mostly private to them, 
can be identified by strongly correlated allele frequency changes. 
This approach successfully identified selected haplotype blocks up 
to several Mb in simulated and empirical Pool-seq data. Extending 
the approach of Franssen, Barton, et al. (2017) to haplotypes by 
including also alleles with higher starting frequencies, Barghi et al. 
(2019) successfully reduced over 50,000 outlier SNPs to 99 recon-
structed haplotype blocks responding to selection in experimentally 
evolved Drosophila simulans populations. Both, Barghi et al. (2019) 
and Franssen, Barton, et al. (2017) relied on experimentally phased 
haplotypes of evolved populations to validate their results. Without 
sequences of evolved and ancestral haplotypes, the validation of 
reconstructed blocks is challenging, as haplotype reconstruction re-
quires ad hoc choices of key parameters which can change the out-
come dramatically and are highly dependent on the data set.

Here, we propose a new approach to define the haplotype re-
construction criteria to detect independent genomic regions with 
selection signatures. It is suitable for most E&R experiments, avoids 
ad hoc choices of clustering parameters and does not depend on the 
availability of phased haplotype data. Our approach takes advantage 
of the full genomic data to distinguish between statistically signifi-
cant clustering, most likely caused by directional selection, and ran-
dom associations. It is implemented in the r package haplovalidate.

2  | MATERIAL S AND METHODS

If not stated otherwise, all analyses were conducted with r version 
3.6.0 (R Core Team, 2019) and the r package poolseq version 0.3.1 
(Taus, Futschik, & Schlötterer, 2017) and haploReconstruct 0.1.3_3 
(Franssen, Barton, et al., 2017).

2.1 | Haplotype reconstruction

The haplotype reconstruction approach applied by haplovalidate 
was proposed by Franssen, Barton, et al. (2017) and implemented in 
the r package haploReconstruct. It is based on the idea that SNPs on 
the same haplotype block should behave similarly over time, that is, 
have highly correlated allele frequency trajectories. The boundaries 
of haplotype blocks on the chromosomes are formed by the inter-
play of recombination and evolutionary forces. Selected haplotype 
blocks increasing in frequency can be monitored by following the 
trajectories of their marker SNPs. This approach is especially suit-
able for E&R experiments, as multiple time points and population 
replicates increase the power of detecting correlated signals (for an 
example see Figure 1). Franssen, Barton, et al. (2017) proposed to 
analyse the correlation of SNPs across replicates and time points 
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within overlapping genomic windows and apply hierarchical cluster-
ing. Different groups are then separated by applying a correlation 
cut-off, with each cluster of SNPs corresponding to a reconstructed 
haplotype block.

2.2 | Haplovalidate

The results of an E&R experiment depend greatly on the underly-
ing adaptive architecture, for example selection scenario, number of 
selected loci, initial starting frequencies of selected alleles, strength 
of selection and linkage structure of the founder population. One 
selected haplotype block can consist of a group of haplotypes with 
some sequence variation, but all haplotypes are sharing the same 
selected allele(s). As a consequence, the correlation of SNPs in the 
haplotype block depends on the extent they are shared among se-
lected haplotypes and nonselected ones. This results in variation of 
the correlation of shared marker SNPs within one selected haplo-
type block. Haplovalidate specifically estimates two key parameters 
of the haplotype reconstruction from the data, that is minimal clus-
ter correlation and window size. Other haplotype reconstruction 
parameters were not inferred from the data, but chosen to fit to a 
broad range of data sets (see Table 1).

2.3 | Detailed procedure

Haplovalidate consists of five different steps (see Figure 2). Please 
find details on parameter choice and candidate SNP identification in 
the sections below.

2.3.1 | Step 0: Identify candidate SNPs and select 
window size

Candidate SNPs (i.e. SNPs that change more in frequency than 
expected under neutrality) were identified by chi-square test and 
Cochran–Mantel–Haenszel (CMH) test comparing the most evolved 
to the founder population, and the optimal window size is calculated 
using the MNCS (median normalized CMH score sum) approach, 
which is explained in detail in the section Variable parameters below.

2.3.2 | Step 1: Reconstruct haplotype blocks

Haplotype blocks are reconstructed using parameters as described 
below and minimum cluster correlations ranging from 0.9 to 0.3 
in 0.1 steps. The reconstruction with most reconstructed blocks 
is used as starting point to determine focal and background block 
correlations.

2.3.3 | Step 2: Determine focal and background 
block correlations

We normalize allele frequency data by using arcsine-square-root-
transformation followed by centring and scaling. Block correlations 
are then calculated for SNP allele frequency trajectories of any two 
haplotype block marker SNPs of two blocks (pairwise correlations), 
and the median is taken from all estimates of the two block com-
parison. The two blocks can be either blocks within the window used 
for haplotype reconstruction (focal block correlations) or blocks on 

F I G U R E  1   Example of correlated allele frequency trajectories in a reconstructed haplotype block (simulated data). The simulations were 
performed over 60 generations (x-axis) and allele frequencies (y-axis) were detected in 10 replicates. Each green line is a haplotype block 
marker SNP, and each box is a different population replicate. The black line is the median for all haplotype block marker SNPs in a replicate 
[Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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different chromosomes (background block correlations). Focal block 
correlations can only be calculated if at least two blocks are present 
in a given window. Windows containing only one block are not con-
sidered. For blocks with more than 2000 SNPs, only 2000 randomly 
selected SNPs were used to increase computational efficiency.

2.3.4 | Step 3: Evaluate block correlation 
distributions

Block correlations are normalized using the Fisher transformation 
(Fisher, 1915). The difference in focal and background correlations 
is determined by a one-sided t test. In the case of a significant dif-
ference between chromosome and background (p-value <.025), the 
procedure is repeated with step 1 and a less stringent minimum clus-
ter correlation (0.01 steps). If there is no significant difference be-
tween chromosome and background (p-value ≥.025), haplovalidate 
uses the last significant haplotype reconstruction, therefore reduc-
ing nonindependent haplotype blocks to a minimum. If fewer than 
three values are available for focal or background block correlation, 
haplovalidate returns no result.

2.3.5 | Step 4: Filter for dominant blocks

If a selection target is present in several haplotype blocks, they will 
be identified as independent, overlapping blocks. To identify the 
dominating block per selection target, we filter genomic regions 
with overlapping blocks for the block with the most significant al-
lele frequency change (CMH test/chi-square test; Spitzer, Pelizzola, 
& Futschik, 2020).

2.4 | Variable parameters

The parameter ‘minimal cluster correlation’ determines the cut-off for 
hierarchical clustering and is among the most important parameters 
for haplotype reconstruction. Using too high correlation coefficients 
splits a selected haplotype block into smaller regions, giving the im-
pression of multiple selection targets, rather than one. If the correla-
tion coefficients are too low, independent selected haplotype blocks 
are combined and consequently the number of selection targets is 
underestimated (Franssen, Barton, et al., 2017). However, the defini-
tion of too high and too low varies between different data sets as the 

F I G U R E  2   Overview of the iterative procedure to define haplotype blocks with haplovalidate. After identifying candidate SNPs and 
calculating the window size (step 0), the haplotype reconstruction starts with stringent parameters (step 1). The allele frequency trajectory 
correlation of SNPs from different blocks on the same chromosome (focal block correlation) is compared to the correlation of SNPs from 
blocks located on different chromosomes and tested for significant differences (step 2, 3). If focal block correlations are higher than the 
background correlations, this indicates that a too stringent correlation cut-off was used; and haplotype reconstruction is repeated using 
less stringent parameter (back to step 1). If focal block correlations are similar to background correlations, the least significant haplotype 
reconstruction is used and regions with overlapping blocks are filtered for the most dominant block (step 4) [Colour figure can be viewed at 
wileyonlinelibrary.com]

Reconstruction parameter Definition
Ad 
hoc Haplovalidate

min.cl.cor Minimum correlation threshold 
for SNP clustering

0.7 Set by 
haplovalidate

winsize Window size 1 Mb Set by 
haplovalidate 
(MNCS of 0.01 or 
0.03)

min.minor.freq Minimum starting allele 
frequency of SNPs used for 
clustering

0 0

max.minor.freq Maximum starting allele 
frequency of SNPs used for 
clustering

0.03 1

minfreqchange Minimum frequency change of 
SNPs used for clustering

0.2 0

minrepl Minimum number of replicates 
in which SNP is present

2 1

min.cl.size Minimum number of SNPs in a 
cluster

8 20

min.inter Minimum number of SNPs that 
overlap for merging clusters

4 4

The ad hoc reconstruction parameters were taken from a standard configuration used by Franssen, 
Barton, et al. (2017).

TA B L E  1   haploReconstruct parameters 
and the values used for the ad hoc 
analysis and haplovalidate

www.wileyonlinelibrary.com
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correlation between marker SNPs of a selected haplotype block de-
pends on the strength of selection and the initial frequency of marker 
SNPs. Haplovalidate infers the optimal haplotype block reconstruc-
tion using data-specific minimal cluster correlations. This is achieved 
by using a cluster correlation, which is just above random correlations. 
More specifically, we calculate the median correlation between two 
marker SNPs from two haplotype blocks on the same chromosome 
(focal block correlation) and two haplotype block marker SNPs be-
tween chromosomes (background block correlation) for each minimal 
cluster correlation tested. Because different chromosomes are not 
physically linked, background block correlations are on average an es-
timate of random associations and serve as a null distribution. Focal 
block correlations higher than background correlation (p-value <.025) 
suggest that the two blocks should be joined. In contrast, the focal 
block correlation of reconstructed haplotype blocks belonging to inde-
pendent selection targets will not differ from the null distribution. We 
caution that LD for short blocks tends to be higher than background 
LD between chromosomes. This may cause a more liberal combination 
of haplotype blocks in very close distance. Since reconstructed haplo-
type blocks of simulated and experimental data are typically consider-
ably larger than the regions of elevated LD (see Figures S1 and S2), we 
do not consider this a major problem of our approach.

The parameter window size determines the upper length of 
reconstructed haplotype blocks. Small windows result in shorter 
blocks (Franssen, Barton, et al., 2017), which facilitate the separa-
tion of independently selected regions. However, reliable haplotype 
block reconstruction strongly relies on the number and effect size 
of the candidate SNPs. As the number and effect size of candidate 
SNPs are highly data-specific, we do not only consider the number 
and effect size of SNPs in a given window, but also take the total 
number of candidate SNPs into account. Hence, we use the same 
fraction of total candidate SNP effect size per window and there-
fore make haplotype reconstruction comparable, even for data sets 
that differ in candidate SNP number and/or effect size distribution. 
Consequently, a few moderately significant candidate SNPs may 
be sufficient to define a haplotype block when no other candidate 
SNPs are present on the chromosome. Alternatively, with many 
candidate SNPs, larger windows with more and highly significant 
candidate SNPs are needed to reconstruct a haplotype block. This 
is achieved with the median normalized CMH score sum (MNCS), a 
normalized measure combining effect sizes (based on the CMH test) 
and SNP numbers associated with window size (see also Equation (1) 
where p is the p-value of the CMH test and −log(p) the CMH score):

We split the candidate SNPs in windows of a given size (0.1–
10 Mb in 0.1 Mb steps). For each window, we summed the CMH 
scores of the candidate SNPs and divided it by the sum of all CMH 
scores. From the distribution of all normalized window sums, we 
took the median, that is MNCS.

Standard haplovalidate analyses use a window size correspond-
ing to a MNCS of 1%, as this fraction has proven to give good results 

for most data sets. In the case haplovalidate fails because there are 
not enough SNPs in a window we repeated the analysis with a MNCS 
of 3% and the corresponding window size.

2.5 | Fixed parameters

We fixed the haplotype reconstruction parameters such that alleles 
starting from any frequency (starting allele frequency between 0 
and 1) in at least one replicate are included. The allele frequency 
change threshold parameter aims to focus on SNPs changing more 
than expected under drift. As we used a modified chi-square test 
and CMH test that have a null hypothesis adapted for drift and pool 
sequencing noise (Spitzer et al., 2020), we set the allele frequency 
change threshold to 0. Following Barghi et al. (2019), we required at 
least 20 SNPs for each cluster and only clusters sharing at least four 
SNPs could be merged.

2.6 | Candidate SNPs

Because only selected haplotype blocks are of interest, clustering is 
performed only on candidate SNPs which change more in frequency 
than expected under neutrality. Candidate SNPs were identified 
by chi-square test and Cochran–Mantel–Haenszel (CMH) test ac-
counting for drift and pool sequencing variance as implemented in 
the r package ACER (Spitzer et al., 2020). All available time points 
were used for calculating the test statistics. Effective population 
size was calculated (estimatewndne function from poolseq package; 
Taus et al., 2017) for intermediate and most evolved generations. 
Here, allele frequency shifts between the starting and the focal gen-
eration were used to estimate standardized variance (Jónás, Taus, 
Kosiol, Schlötterer, & Futschik, 2016). In addition, we corrected the 
p-values for multiple testing using the Benjamini–Hochberg method 
as implemented in the r function p.adjust. We chose candidate SNPs 
with a corrected p-value < .05 in the CMH test or p-value < .001 
in the chi-square test of any replicate. Using both tests allows for 
including replicate-specific responses, which could be missed by the 
CMH test alone as it detects consistent changes across replicates. A 
more stringent p-value threshold for the chi-square test was used to 
include only replicate-specific candidates with a pronounced allele 
frequency change. If a simulation run had more than 50,000 can-
didate SNPs per chromosome, we randomly sampled 50,000 SNPs 
from the candidates to increase computational efficiency.

2.7 | Identification of multiple-target 
haplotype blocks

We identified multiple-target haplotype blocks by comparing hap-
lotype blocks reconstructed based on all generations (up to 60) to 
those obtained from reconstructions using time points up to gen-
eration 20 (or generation 30 if not enough candidate SNPs were 

(1)MNCS=median((
∑

−log(p)window)∕(
∑

−log(p)total))
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identified at F20). The presence of regions with several haplotype 
blocks at an intermediate time point but only a single haplotype 
block in the later generations is considered the signature of a multi-
ple-target haplotype (Figure 8). We account for this by replacing the 
single haplotype block from the later time points with the haplotype 
blocks identified at the intermediate time points.

The results of haplovalidate with and without intermediate gen-
erations were compared based on each of the normalized summary 
statistics (i.e. true-positive rate, single target fraction, multiple-tar-
get fraction, multiple target per haplotype fraction, false-positive 
rate, Figure 9) using arcsine-square-root-transformation and Welch's 
t test.

2.8 | Simulations

We performed 1,000 genome-scale forward simulations covering 
the two main autosomes of Drosophila simulans using mimicree2 ver-
sion 206 (Vlachos & Kofler, 2018). We simulated a diploid sexual 
organism and loci with constant selection coefficients (s) and a domi-
nance coefficient (h) of 0.5. Fitness (w) of genotypes was defined as 
follows: waa = 1, waA = 1 + sh, wAA = 1 + s. We simulated selec-
tive sweeps, rather than a quantitative trait experiencing a shift in 
trait optimum, as most E&R studies only focus on the early phase of 
adaptation where the trajectories of QTLs and selective sweeps are 
very similar (Barghi & Schlötterer, 2020). We mimicked an Evolve 
and Resequence (E&R) experiment in D. simulans with 10 replicates, 

each with a population size of 1,200, evolving for 60 generations. 
We extracted allele frequencies for every 10th generation (sync file 
format; Kofler, Pandey, & Schlötterer, 2011) and haplotypes for the 
most evolved generation (F60). We restricted our analysis to the 
main autosomes of D. simulans (chromosome 2 and chromosome 
3). The founder population was created from 189 experimentally 
phased haplotypes originating from a natural D. simulans population 
(Barghi et al., 2019). We generated the same number of simulations 
for 16, 32, 64 or 128 selected loci (equal number of loci on both 
chromosomes). Starting allele frequencies and selection coefficients 
were taken from 99 selection targets detected in a Drosophila E&R 
study (Barghi et al., 2019). In the case of 128 loci, 29 randomly cho-
sen estimates for selection coefficients and starting allele frequency 
were used twice. SNPs matching the allele frequency were randomly 
chosen from the founder population. Selection coefficients ranged 
from 0.02 to 0.14, which covers the lower boundary of detect-
able effect sizes (Baldwin-Brown, Long, & Thornton, 2014; Kofler 
& Schlötterer, 2014). Starting allele frequencies ranged from 0.003 
to 0.76 with low-frequency alleles pairing with both, high and low 
selection coefficients, indicating that small and big effect alleles 
were used for our simulations. The corresponding number of loci 
was randomly drawn from the set of 99 selection targets without 
replacement. We used the D. simulans-specific recombination map 
(Dsim_recombination_map_LOESS_100kb_1.txt; Howie, Mazzucco, 
Taus, Nolte, & Schlötterer, 2019). We generated ‘Pool-seq data’ with 
50× coverage and added sequencing noise by binomial sampling 
based on the allele frequencies.

F I G U R E  3   True- and false-positive rates of reconstructed selected haplotypes based on the parameters proposed by Franssen, Barton, 
et al. (2017) for low starting frequencies (left panel) and on haplovalidate (right panel) using 1,000 selective sweep simulations with a 
broad range of starting frequencies for a different number of selected loci (see colour code in legend) [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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2.9 | Bottleneck simulations

As a decrease in population size can severely influence haplotype 
structure in a population, we tested the performance of haplov-
alidate on E&R simulations with two bottleneck scenarios. We re-
peated 100 simulations from the scenario with 32 targets and used 
the same simulation parameters but reduced the population size 
from generation 20 to 30 to 20% or 10%.

2.10 | Application to experimental data

We applied haplovalidate to two different Drosophila E&R data sets 
which capture experimental evolution to a new temperature re-
gime in D. simulans but show different selection responses. Barghi 
et al. (2019) found 88 selected regions on the autosomes, whereas 
Mallard, Nolte, Tobler, Kapun, and Schlötterer (2018) focused on 
two regions while analysing the top 100 CMH test outlier SNPs. 

F I G U R E  4   The performance of haplovalidate based on 1,000 selective sweep simulations containing either 16, 32, 64 or 128 selected 
alleles. (a) True-positive rate (all identified selection targets), (b) fraction of identified single targets of selection, (c) fraction of selected 
targets sharing a haplotype block, (d) average fraction of selection targets per haplotype block, (e) false-positive rate. Dashed line represents 
the marginal median across different number of selection targets [Colour figure can be viewed at wileyonlinelibrary.com]

(a)

(d) (e)

(b) (c)

www.wileyonlinelibrary.com
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For an unbiased comparison of the clustering results, we aimed to 
use the same candidate SNPs as in the original studies. As the top 
100 CMH test outlier SNPs did not result in enough SNPs per win-
dow to perform haplotype reconstruction for the data of Mallard 
et al. (2018), we extended the SNP-set to the top 1,000 outlier SNPs 
per chromosome.

We performed a permutation test to evaluate whether the 
number of shared haplotype blocks between the data of Barghi 
et al. (2019) or Mallard et al. (2018), and our method exceeds random 
expectations. To this end, we randomly sampled from the candidate 
SNPs of each data set the same number of SNPs as present in the 
haplotype blocks. We then computed the maximum number of hap-
lotype blocks sharing at least 50% of the candidate SNPs between 
the resampled Portugal and Florida data (N = 5,000). Permuted and 
observed data were compared using a chi-square test.

3  | RESULTS

3.1 | Performance

An approach for reconstructing selected haplotype blocks with-
out information about the founder haplotypes was proposed by 
Franssen, Barton, et al. (2017) and implemented in the r package 
haploReconstruct. This approach uses window-based correlation 
analysis of allele frequency data across replicates and time points 
combined with hierarchical clustering. Each cluster of SNPs corre-
sponds to a selected haplotype block. Franssen, Barton, et al. (2017) 
successfully identified selected haplotype blocks from simulated and 
experimental E&R data. The reconstructed haplotype blocks were 
validated using haplotype sequence data. Most importantly, the ap-
proach of Franssen, Barton, et al. (2017) requires a low starting fre-
quency of the selected haplotype block. While this is typically the 
case, also higher starting frequencies need to be considered (Barghi 
et al., 2019). To test the generality of the approach and parameters 
proposed by Franssen, Barton, et al. (2017), we applied them to E&R 
data simulated with a broader range of parameters. We used a set 
of 189 sequenced D. simulans haplotypes (chromosome 2 and 3) to 

create a founder population (N = 1,000) with realistic linkage dis-
equilibrium. Selection coefficients and starting allele frequencies 
were matched to a Drosophila E&R experiment by Barghi et al. (2019). 
We tested four different numbers of selected loci (16, 32, 64 or 128 
loci per chromosome), randomly sampling SNPs with the frequency 
in the founder population matching Barghi et al. (2019). Simulations 
were conducted over 60 generations in 10 replicates using a selec-
tive sweep scenario.

Using the reconstruction parameters for selection targets with 
low starting frequencies as recommended by Franssen, Barton, et al. 
(2017), 19.8% (median true-positive rate over all simulations) of the 
selected loci were located in a reconstructed haplotype block. The 
false-positive rate, that is the detection of blocks without a selected 
locus, exceeded the true-positive rate (29.6% median false-positive 
rate over all simulations, Figure 3, left panel). Apparently, these pa-
rameters were not suitable for the reconstruction of selected haplo-
type blocks from simulations with multiple selected loci with variable 
starting frequencies, illustrating that haplotype reconstruction pa-
rameters are highly dependent on the analysed data set. Using the 
same set of simulations for validation as described above, haploval-
idate is able to recover selected haplotype blocks covering 97% of 
the selected loci (median true-positive rate over all simulations) with 
only 7% of the reconstructed blocks not containing a selected locus 
(median false-positive rate over all simulations, Figure 3, right panel).

Analysing the haplovalidate performance in more detail shows 
that haplovalidate indeed reliably detects haplotype blocks for sim-
ulations with different numbers of selection targets; 93%–98% of 
all selected alleles were captured (Figure 4a) with a low false-pos-
itive rate, ranging from 4% to 14% (Figure 4e). Selected haplotype 
blocks covered moderate to high proportions of the chromosomes 
depending on the number of selection targets and their starting fre-
quencies. While one third of the chromosomes was covered in the 
case of 16 selection targets, up to 90% of the genome could be cov-
ered by selected haplotype blocks when 128 targets were present 
(Figure 5). Not every selected allele resulted in an independent hap-
lotype block—only 7%–56% of the selected alleles did so (Figure 4b) 
because many inferred haplotype blocks contain more than one tar-
get of selection. The fraction of selected alleles on haplotype blocks 

F I G U R E  5   Depending on the number 
of selection targets, selected haplotype 
blocks span a moderate to high fraction 
of the genome as show for chromosome 
2 (left) and 3 (right) [Colour figure can be 
viewed at wileyonlinelibrary.com]
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with multiple targets can be substantial (median 38% to −91%, see 
Figure 4c) with a given haplotype block containing a median of 7%–
14% of the targets (see Figure 4d). The issue of multiple selection 
targets being present on a single haplotype block becomes increas-
ingly important with the number of selected loci in a simulation.

In addition, we compared the performance of haplovalidate in 
simulations with and without bottleneck. We analysed two different 

bottleneck scenarios, reducing the population size to 20% or 10% for 
ten generations. Although the resulting differences in effective pop-
ulation size were rather large (Figure 6 panel h), the total true-positive 
identification rate was still above 90% for both bottleneck scenarios. 
Overall, we identified slightly less selection targets (Wilcoxon rank-
sum test p-value < .001, Figure 6 panel a), which reflects a weaker 
selection signature due to the loss of selected haplotype blocks 

F I G U R E  6   The performance of haplovalidate is robust to fluctuations in population size. 100 sweep simulations with 32 targets 
were performed with constant population size or containing a bottleneck which reduces the initial population size to 20% or 10% for 10 
generations. (a) True-positive rate (all identified selection targets), (b) fraction of identified single targets of selection, (c) fraction of selected 
targets sharing a haplotype block, (d) average fraction of selection targets per haplotype block, (e) false-positive rate, (f) median effective 
population size. Dashed line represents the marginal median across simulations with different population sizes [Colour figure can be viewed 
at wileyonlinelibrary.com]

(a) (b) (c)

(d) (e) (f)
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in the bottleneck (Figure 6 panel h). This also resulted in a slightly 
higher false-positive rate (Figure 6 panel e, Wilcoxon rank-sum test 
p-value < .001 for 10% and p-value < .05 for 20%). Interestingly, the 
stronger bottleneck scenario resulted in an increase of single tar-
get and a decrease of multiple-target identifications (Figure 6 panel 
b,c), indicating that haplotype blocks with multiple selection targets 
are more frequently lost due to their lower initial frequency in the 
population (see below). We conclude that haplovalidate is robust 
to changes in population size, reliably detecting selected haplotype 
blocks even after severe population reductions.

3.2 | Using early generations to identify blocks with 
multiple selection targets

The allele frequency trajectory of multiple selected SNPs in high 
linkage disequilibrium (LD) cannot be easily distinguished from a 
single selection target. Because of the additive effect of the selec-
tion targets, highly correlated allele frequency trajectories will be 
obtained (see Figure 7) even if the selected SNPs are not in high LD 
at the beginning of the experiment: The haplotype block with the 
largest number of selection targets will increase most strongly and 
LD will increase during the experiment (see Figure 8). Even if the 
selected alleles have a low starting frequency and are not linked, re-
combination during the experiment may generate haplotype blocks 
with multiple selection targets, which will experience a stronger 

selective advantage, resulting again in increased LD. Thus, haplov-
alidate is very likely to reconstruct haplotype blocks with multiple 
targets, in particular for simulations with many selected alleles and 
high starting frequencies.

Across all simulations 37,846 selected alleles (82%) were located 
on a haplotype with multiple selected alleles at generation 60. 95% of 
these alleles share haplotypes already in the founder population. This 
is significantly more often than random pairs of 35,000 SNPs hav-
ing the same physical distance (chi-square test, p-value < .001). This 
result indicates that haplotype structure in the founder population 
predetermines the occurrence of multiple-target haplotype blocks.

Given that LD between selection targets increases during the 
experiment, we reasoned that haplotype block reconstruction at 
earlier generations may be more powerful to distinguish indepen-
dent selection targets that have high LD at later stages of the experi-
ments. As expected, we were able to fine-map multiple-target blocks 
by comparing reconstructions based on all generations (up to 60) to 
those obtained from intermediate time points up to generation 20 
(or generation 30 if not enough candidate SNPs were identified at 
F20). As in the majority of cases the multiple-target haplotype is rare 
compared to the single target haplotypes in the founder population, 
single target haplotypes have more pronounced allele frequency 
differences in the intermediate generations. However, the additive 
selective advantage of all selected alleles on a haplotype block ulti-
mately outcompetes single-target haplotypes if not lost by genetic 
drift. The characteristic hallmark of reconstructed haplotype blocks 

F I G U R E  7   Allele frequency 
trajectories of a reconstructed haplotype 
block in one replicate over 60 generations 
with selection targets marked in different 
colours (simulated data). Candidate SNPs 
linked to the selection targets are marked 
in blue [Colour figure can be viewed at 
wileyonlinelibrary.com]
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with multiple selection targets is the presence of a single haplotype 
block at generation 60, but several reconstructed haplotype blocks 
at intermediate time points.

Haplotype reconstruction of intermediate time points can only 
be informative when a sufficient number of candidate SNPs is avail-
able for clustering. Seventy-four simulations with 32 targets, 166 
with 64 targets and 126 with 128 targets contained sufficient can-
didate SNPs for the analysis of intermediate time points. The inclu-
sion of intermediate time points increased the number of haplotype 
blocks while decreasing the average number of selection targets per 
haplotype block (see Figure 9). This was also observed when simu-
lations with different numbers of selection targets were analysed 
separately (see Appendix S3).

3.3 | Experimental data

We applied haplovalidate to two different D. simulans E&R data sets 
which differ in their selection response to a new temperature regime. 
Barghi et al. (2019) found 88 selected regions on the autosomes 
whereas Mallard et al. (2018) highlighted five selection targets.

Because the haplotypes reconstructed by Barghi et al. (2019) 
were validated with experimentally derived haplotypes from founder 
and evolved generations, we consider these results as a gold stan-
dard, against which we test the performance of haplovalidate. Using 
the candidate SNPs from Barghi et al. (2019) with haplovalidate iden-
tified similar haplotype blocks. Instead of 88 blocks, haplovalidate 
detected 104 haplotype blocks of which all 104 overlap at least for 
50% with regions from Barghi et al. (2019). Vice versa, 70 regions 
detected by Barghi et al. (2019) overlap at least for 50% with hap-
lovalidate (see Figure 10). In both cases, the overlap is significantly 
higher than expected by chance (chi-square test p-value < .001). 
Interestingly, on chromosome 2 the reconstruction of haplovalidate 
is almost indistinguishable from Barghi et al. (2019). On chromosome 
3, more independent haplotype blocks are inferred by haplovalidate. 
Based on the currently available data, it is not possible to distinguish 
whether haplovalidate is more powerful to detect independent se-
lection targets, or whether some of the additional haplotype blocks 
are false positives not containing a selection target.

We also applied haplovalidate to the data of Mallard et al. (2018). 
Based on the 1,000 most significant SNPs for each chromosome, 
haplovalidate identified all five regions detected in the original study 
(Figure 11), which is significantly more than expected by chance 
(chi-square test p-value = .03). In addition, we also identified two 
additional haplotype blocks, which are, however, not containing can-
didate SNPs reaching the significance threshold applied by Mallard 
et al. (2018).

4  | DISCUSSION & OUTLOOK

Moving from a SNP-centric analysis to the identification of se-
lected haplotype blocks provides a significant advancement of 
E&R studies (Barghi & Schlötterer, 2019). Introducing haplovali-
date, we provide a tool to make the reconstruction of selected 
haplotype blocks a routine method that does not rely on the 

F I G U R E  8   F Haplotype blocks containing multiple selected 
alleles behave as single target of selection (see Figure 7 for the 
corresponding allele frequency trajectories, simulated data). Each 
row indicates a haplotype each column indicates a genomic position 
with a polymorphic site. Haplotypes present in F20 (top) and F60 in 
one replicate of a region containing five targets of selection. Alleles 
present in the evolved reconstructed haplotype block are marked 
in blue (other colours for the selected alleles); ancestral alleles are 
light yellow [Colour figure can be viewed at wileyonlinelibrary.com]
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availability of haplotype information from the founder population 
or from evolved individuals. We demonstrated with simulated and 
experimental data that haplovalidate can be applied to a broad 
range of data, from few to many targets of selection and with fluc-
tuations in population size. We attribute this to the data-driven 
selection of two key parameters of the reconstruction procedure, 
the minimum correlation between SNPs constituting a cluster 
and the window size. It is important to note that we only simu-
lated selective sweeps and not a quantitative trait experiencing 

a shift in trait optimum. Since the allele frequency trajectories of 
sweeps and quantitative traits diverge after a trait optimum has 
been reached (Franssen, Kofler, & Schlötterer, 2017), the perfor-
mance of haplovalidate is not clear when very advanced genera-
tions are included. Nevertheless, since the trajectories of sweeps 
and quantitative traits are rather similar until the new trait opti-
mum is being reached (Franssen, Kofler, et al., 2017) and most E&R 
experiments only involve a moderate number of generations, we 
restricted our analysis to selective sweeps. Because Drosophila is 

F I G U R E  9   Haplovalidate with and without including intermediate time points. (a) True-positive rate (all identified selection targets), 
(b) fraction of haplotype blocks with a single selection target, (c) fraction of haplotype blocks with multiple targets, (d) average fraction 
of selection targets on a haplotype block, (e) false-positive rate. Dashed line represents the overall median for each parameter. Asterisks 
indicate significant differences for clustering with and without intermediate time points (p-value < .05) [Colour figure can be viewed at 
wileyonlinelibrary.com]

(a) (b)

(d) (e)

(c)
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the most commonly used out-crossing model in E&R studies, we 
matched our simulation parameters to D. simulans, which is better 
suited for E&R studies than D. melanogaster (Barghi, Tobler, Nolte, 
& Schlötterer, 2017). We anticipate that haplovalidate can be also 
applied to E&R studies using other organisms with a different re-
combination landscape, such as Caenorhabditis remanei (Teotónio, 
Estes, Phillips, & Baer, 2017), because haplovalidate accounts for 
linkage by comparing the correlation within blocks and between 
blocks.

Our study also demonstrated the limits of a haplotype block-
based analysis of the adaptive architecture. We found that a high 
fraction of the reconstructed haplotype blocks contained multi-
ple selected alleles. Interestingly, a similar observation was made 
by Sachdeva and Barton (2018) when analysing linked polygenic 
selection. In concordance with our study, the authors found that 
multiple-target haplotypes outcompeted other haplotypes over 
time. The occurrence of multiple-target haplotypes can lead to 
an underestimation of selection targets if each haplotype block 

F I G U R E  1 0   Manhattan plot for the data of Barghi et al. (2019). SNPs belonging to haplotype blocks identified by haplovalidate are 
shown in different colours. The horizontal lines show the genomic regions spanned by haplotype blocks of Barghi et al. (2019) (pink) and 
haplovalidate (blue) [Colour figure can be viewed at wileyonlinelibrary.com]
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is considered the outcome of selection operating on a single 
target in this block. However, we also show that restricting the 
analysis to intermediate generations (up to F20 or F30) improves 
the resolution—several multiple-target blocks could be broken 
into single-target blocks by the inclusion of earlier time points. 
Interestingly, most multiple-target haplotype blocks were already 
present in the founder population indicating that the initial hap-
lotype structure is an important factor for shaping the genomic 
signatures of adaptation, a result also supported by a theoretical 

study of Weissman and Barton (2012). More work is needed to 
understand how the haplotype composition of the founder popu-
lation in combination with the number of founder haplotypes af-
fects the power of E&R studies.
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