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ABSTRACT: This study investigated the effects of varying water stress levels on
Rosmarinus officinalis essential oils (EO). Three samples (S1, S2, and S3) were
cultivated under different stress levels (40, 60, and 80%). Increased water stress
led to changes in primary and secondary metabolites, EO contents, and physical
properties. Antioxidant activity varied, with S2 exhibiting the highest IC50 value.
In terms of antidiabetic activity, S2 showed robust α-amylase inhibition, while S3
displayed a commendable influence. For α-galactosidase inhibition, S3 had a
moderate effect, and S2 stood out with increased efficacy. Gas chromatography−
mass spectrometry analysis revealed stress-induced changes in major compounds.
The study enhances the understanding of plant responses to water stress, with
potential applications in antioxidant therapy and diabetes management. The
findings emphasize the importance of sustainable water management for
optimizing the EO quality in its various uses.

1. INTRODUCTION
The intricate interplay of climate dynamics profoundly
influences the complex tapestry of weather patterns,1 weaving
intricate narratives for plant diversity and chemical composi-
tions across ecosystems.2 In the midst of this intricate ballet,
human activities, particularly the heightened release of green-
house gases since the Industrial Revolution,3 trigger planetary
shifts in temperature and rainfall, signaling alarming con-
sequences in the realm of climate transformation.4 If these
patterns persist, the current trajectory of greenhouse gas
emissions predicts a significant global temperature rise of 5.3
°C by 2100, posing a severe threat to the world’s biodiversity.5

The current temperature increase, already surpassing historical
levels by 1.1 °C,6 resonates widely across habitats, impacting
both flora and fauna,7 and raising concerns about the future of
the planet.8 Once mere whispers in the ecological narrative,
these effects now resound with unprecedented intensity,
marking a departure from past epochs.9 The ethereal conductor
positions climate change as a tempo-sensitive force, creating a
symphony of reverberations across the canvases of plant
biodiversity and molecular harmonies.10 In this grand
symphony, climate change disrupts the rhythmic cadence of
crucial life cycle events for plants,11 affecting processes such as
petal unfolding, fruiting, and leaf descent.12 Elevated temper-
atures expedite these events,13 disrupting the delicate inter-

actions between plants and their pollinators, or seed
dispersers.14 This dissonance cascades into broader movements,
resonating throughout plant reproduction and the orchestration
of ecosystems.15

Plants, as verdant conductors, play a pivotal role in various
ecological services,16 including carbon sequestration, water flow
modulation,17 and soil enrichment.18 The evolving composition
of the climate disrupts these processes, causing discord that
reverberates across broader ecological narratives and socio-
economic tales.19 In this evolving sonata, the stories of plants
unfold a new chapter, influencing ancient traditions and cultural
narratives centered around healing herbs and aromatic
essences.20 Weather, both direct and indirect, shapes the
evolving saga of plant growth,21 threading through biomass
and influencing the intricate dance of chemical compositions.22

In the cosmic audience, humanity’s inadvertent actions amplify
the crescendo of climate’s impact, transposing its effects onto the
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melodies of plant life and the nuances of molecular
interactions.24 In this interplay, the discordant strains of
resource exploitation amid climate turbulence amplify the
turmoil of our current environmental overture.25

The urgency of addressing climate change and mitigating its
consequences has become paramount in safeguarding the
richness of plant biodiversity, intricate chemical harmonies,
and overall ecosystem vitality. This imperative calls for a global
coalition to reduce greenhouse gas emissions, adopt sustainable
practices, and preserve natural reservoirs. Through collaborative
efforts, we can aspire to mitigate the detrimental effects of
climate change on plant existence, paving the way for a more
sustainable and balanced trajectory for our planet. The essence
of this investigation revolves around two primary objectives:
providing guidance for adapting to climate change’s disruptions
and unraveling the mysteries of plants’ responses to climatic
oscillations, exploring the intricacies of their fundamental
processes and secondary metabolisms.
Recent research has closely examined the effect of water stress

on the primary and secondary metabolites of the plant
Rosmarinus officinalis, commonly known as rosemary. These
studies have revealed that when plants are subjected to water
stress conditions, their metabolism undergoes significant
changes. Primary metabolites, such as carbohydrates, proteins,
and amino acids, are often affected by water deficiency, as the
plant must reorganize its resources to survive under stress
conditions.53−57

The objective of this study is to assess the impact of water
stress on the primary and secondary metabolites, physical
properties, and antioxidant and antidiabetic activities of R.
officinalis essential oils (EO) at various levels of water stress.

2. MATERIALS AND METHODS
2.1. Methodology. The three planting samples were

subjected to varying degrees of water stress for a duration of
one year. The first sample experienced a water stress level of
40%, the second sample endured a water stress level of 60%, and
the third sample encountered a water stress level of 80%.
2.2. Phytochemical Screening. To conduct the phyto-

chemical screening, we employed well-established qualitative
analysis methods as referenced in.18−21 These methods are
widely recognized and utilized in the field of phytochemistry for
identifying the primary and secondary metabolite families
present in plant samples. The screening process enables the
determination of the presence or absence of specific compounds
or compound groups in the samples.
After identifying the major families of primary and secondary

metabolites through qualitative analysis, we performed
quantitative assays on the secondary metabolites. Reliable
methodologies cited in22−25 were applied to quantify these
metabolites. These established methodologies provide a robust
framework for accurately measuring and determining the levels
or concentrations of the identified metabolites in plant samples.
2.3. Essential Oil. The plant material utilized in this study

consisted of dried leaves that were subjected to shade drying. To
extract the EO, approximately 100 g of the dried leaves
underwent hydrodistillation using a Clevenger-type apparatus.26

2.4. Physical Properties. In our investigation, we assessed
the physicochemical attributes and the quantity of EOs obtained
from rosemary using a methodology outlined in the European
Pharmacopoeia. This approach is a standardized protocol that
defines the specific procedures for extracting EOs from
rosemary, ensuring consistency and reliability in the results.27

We determined the physicochemical characteristics of
rosemary EOs extracted according to the protocol described
in the European Pharmacopoeia (Ph. Euro, 2014). The
physicochemical characteristics sought are

• Density: using a METTLER TOLEDO 30 PX type
densimeter.

• Rotational power: using an ATAGO AP300 polarimeter.
• The refractive index: using a NAR-1TLIQUID type

refractometer.
2.5. Gas Chromatography−Mass Spectrometry. To

compare the chemical compositions of the three samples
obtained under distinct climatic conditions, we employed gas
chromatography (GC) coupled with mass spectrometry (MS).
The analysis was conducted using an Agilent 7890A Series
instrument equipped with a multimode injector and a 123-BD11
column (15 m × 320 μm × 0.1 μm).
To facilitate the separation of compounds present in the

samples, 4 μL of EOs were injected into the column using a split
1/4mode. Helium gas was utilized as the carrier gas at a flow rate
of 2 mL/min.
The compositions of the extracts and fractions were

determined by calculating the percentage of total compounds
detected in the sample. This was accomplished through full scan
mode analysis within the range of 30−1000 m/z with a gain
factor of 5 and electron impact ionization. The ion source and
quadrupole temperatures were maintained at 230 and 150 °C,
respectively.
For the temperature program, the oven was initially set at 30

°C and gradually increased until reaching a final temperature of
360 °C. This temperature gradient facilitated the separation and
detection of different compounds present in the samples,
enabling us to analyze and compare their chemical composi-
tions.29

2.6. Antioxidant Activity. The antioxidant potential of EO
was assessed through the β-carotene bleaching assay, a method
that measures its capacity to mitigate the oxidative degradation
of β-carotene within a linoleic acid β-carotene emulsion (Taga et
al., 1984). To perform the assay, β-carotene (10 mg) was
dissolved in 10mL of chloroform (CHCl3). Then, 0.2 mL of this
solution was added to a boiling flask containing 20 mg of linoleic
acid and 200 mg of Tween 40. The chloroform was eliminated
by evaporating it using a rotary evaporator set at 40 °C for 5 min.
Subsequently, distilled water (50 mL) was gradually introduced
to the resulting residue under vigorous agitation to form an
emulsion. This emulsion was combined with 0.2 mL of EO in a
tube. The absorbance of the mixture was promptly measured at
470 nm, and the test emulsion was incubated in a water bath at
50 °C for 5 min. Following incubation, the absorbance was
measured again. Butylated hydroxytoluene (BHT) served as a
positive control, while in the negative control, the EOs were
replaced with an equal volume of ethanol.
The antioxidant activity (%) of the oil was determined by

quantifying the extent of β-carotene bleaching, employing a
specific formula.

= ×i
k
jjj y

{
zzzA

inhibition %
CT

CO CT
100

In the study, A and CT symbolize the measured absorbances
for the oil and the control samples, respectively, following a 5
min incubation period. CO refers to the absorbance values of the
control sample measured at the beginning of the incubation. To
determine the concentration of EO that offers 50% antioxidant
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activity (EC50), the researchers plotted the antioxidant
percentage against the varying concentrations of the oil.28

2.7. Antidiabetic Activity. The primary objective of this
study was to investigate the inhibitory effects on the activities of
α-amylase and α-glucosidase using varying concentrations of
test substances. These enzymes break down starch and p-
nitrophenyl-α-D-glucopyranoside (p-NPG), respectively. The α-
amylase inhibition test followed the protocol established byNaja
et al. (2022). In this procedure, a mixture of the sample (250 μL)
and α-amylase enzyme (240 U/mL) in 0.02 M sodium
phosphate buffer (pH = 6.9) was incubated at 37 °C for 20
min. After the initial incubation, a 1% starch solution in the same
buffer was added, and the reaction continued at 37 °C for 15
min.
The percentage of inhibition was determined using the

formula: % inhibition = (AC − ACb) − (AS − ASb)/(AC −
ACb) × 100. Here, AC represents the control, ACb is the
control blank, AS signifies the sample, and ASb denotes the
sample blank. This formula allows for the accurate quantification

of inhibition caused by the test substances, providing insights
into their effectiveness against α-amylase.
The α-glucosidase inhibition test was carried out with

modifications to the method described by Asraoui et al.
(2021). A mixture of the extracts and fractions (150 μL) and
α-glucosidase enzyme (0.1 U/mL) in 0.1 M sodium phosphate
buffer (pH = 6.7) was incubated at 37 °C for 10 min. After
preincubation, a substrate solution (1 mM pNPG in 0.1 M
sodium phosphate buffer, pH = 6.7) was added, and the reaction
continued at 37 °C for 30 min. The reaction was halted by
adding 1 M Na2CO3, and the absorbance was measured at 405
nm by using a spectrophotometer. To ensure accuracy, all tests
were conducted in triplicate at various concentrations, allowing
for the determination of IC50 values. Acarbose was used as a
positive control for comparison.
These assays were designed to provide valuable insights into

the potential of Chenopodium ambrosioides extracts and fractions
as inhibitors of α-amylase and α-glucosidase, with potential
applications in the development of natural therapies for diabetes

Figure 1. Percentage of nutritional values.

Table 1. Differences in Mineral Composition among Various Samples and Plant Species

elements sample 1 sample 2 sample 3

Ca 6.57 6.11 4.88
P 2.46 2.1 1.58
K 4.37 4 3.65
Na 1.35 1.21 0.8
Cl 1.83 1.22 0.52
S 2.39 2 0.42
Mg 7.01 6.07 6.03
Fe 6.53 6.4 6.21
Mn 5.85 4.39 2.97
Zn 2.12 1.35 0.22
Pb 1.5 0.67 0.11
Se 1.35 1.01 0.19
Cu 1.2 1.19 0.61
Co 2.59 1.85 0.62

analysis of variance

source des variations sum of squares degree of freedom average square F probability critical value for F

elements 183.5952 13 14.12270769 96.12565774 1.45864 × 10−18 2.11916569
sample 12.0961 2 6.04805 41.16581586 8.76667 × 10−9 3.369016359
error 3.8199 26 0.146919231
total 199.5112 41
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management. The outcomes of these tests will assist in
evaluating the efficacy of these samples as natural inhibitors
for diabetes treatment, contributing to the advancement of
natural-based interventions for managing diabetes.29

2.8. Statistical Analysis. The data are expressed as the
mean ± standard error and underwent statistical analysis using
Graph Pad Prism 5 Software (San Diego, CA, USA) and Excel.
One-way analysis of variance (ANOVA) was employed for the
analysis of multiple-group comparisons (XLSTAT statistical
software).

3. RESULTS AND DISCUSSION
3.1. Phytochemical Screening. 3.1.1. Nutritional Values.

As evident from Figure 1, the composition of basic nourishments
displayed fluctuations across the trio of plants. Broadly, the
concentrations of their constituents dwindled progressively
from sample 1 through sample 2 to sample 3, aligned with the
prevailing climatic conditions marked by heightened temper-
ature and diminished precipitation. Yang et al. and Hessini et
al.30,31 substantiated that scarcity of water leads to diminished
biomass production.
3.1.2. Mineral Compositions. Table 1 reveals differences in

mineral composition among the various samples and plant
species. Predominantly, the highest mineral compound contents

include K, Mg, Fe, Mn, and Ca, while the remaining minerals
exhibit lower concentrations across all three samples of each
plant. These concentrations generally decline under precip-
itation-induced water stress. This pattern aligns with the findings
of Canarini et al.,32 who demonstrated the direct impact of water
scarcity on growth, photosynthetic activity, and the attenuation
of water transport to the roots, ultimately leading to diminished
nutrient uptake. This intricate interplay highlights a mutual
relationship.
Based on the analysis of variance (ANOVA) presented in the

table, it is observed that the observed F value for the three
samples exceeds the critical F value. This indicates that the
difference between the groups is significant.
3.1.3. Amino Acids. Table 2 illustrates the proportions of

amino acids influenced by three distinct treatments. It is
noteworthy that the following amino acids are conspicuously
absent: alanine, arginine, asparagine, glutamic acid, glycine,
glutamine, methionine, pyrrolysine, cysteine, threonine, tyro-
sine, and tryptophan. Zandalinas et al. and Ostadi et al.33,34

emphasize that climate change is detrimentally impacting plant
life, posing a severe threat to agricultural production and food
supplies.
Based on the analysis of variance (ANOVA) presented in the

table, it is observed that the observed F value for the three

Table 2. Portrays the Proportions of Amino Acids under the Influence of Three Distinct

amino acids sample 1 sample 2 sample 3

aspartic acid 0.35 0.33 0.29
cysteine 0.69 0.46 0.21
glycine 1.54 1.35 1.02
histidine 0.44 0.22 0.18
isoleucine 1.31 1.09 0.42
leucine 2.31 2.11 1.24
lysine 0.29 0.13 0.04
phenylalanine 1.45 1.31 1.11
proline 1.21 1.3 1.03
serine 2.01 1.11 0.2
tyrosine 0.13 0.05 0.03
valine 0.1 0.01 0.01

analysis of variance

source of variations sum of squares degree of freedom average square F probability critical value for F

elements 183.5952 13 14.12270769 96.12565774 1.45864 × 10−18 2.11916569
sample 12.0961 2 6.04805 41.16581586 8.76667 × 10−9 3.369016359
error 3.8199 26 0.146919231

Figure 2. Percentage of secondary metabolite.
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samples exceeds the critical F value. This indicates that the
difference between the groups is significant.
3.1.4. Secondary Metabolite. The graphical representation

in Figure 2 reveals an increase in the concentration of secondary
metabolites as water stress intensifies during the initial two years.
However, as the temperature rises, the content of secondary
metabolites diminishes. Furthermore, changes in solvent
composition induce variations in secondary metabolite content,
with alkaloids being the most prevalent in all three samples.
Findings byMarone et al.35 support these results, demonstrating
increased counts of secondary metabolites under abiotic stress.
Similarly, Shabankareh et al.36 indicate that stress conditions
trigger enhanced production of secondary metabolites, while
Applequist et al.37 emphasize that plants exposed to unfavorable
conditions exhibit higher proportions of secondary metabolites.
In a separate study, Li et al.38 confirm an increase in secondary
metabolite levels during abiotic stress. Notably, research by
Takshak et al. and Pang et al.39,40 illustrates that plants subjected
to water stress elevate their bioactive compound levels.
Consistent with this, Jactel et al.41 demonstrate that plants
under water stress increase their phenolic compound levels as a
defense mechanism or adaptive response to harsh climatic
conditions.
3.2. EO Yield. 3.2.1. Yield. Evident from Figure 3 is the

increased production of EOs in sample two in comparison to the

other samples. This observation aligns with the research findings
of Molotoks et al.,42 who determined that plants subjected to
mild stress display elevated concentrations of EOs compared to
those experiencing severe stress. Furthermore, Ni et al.43

demonstrated that rosemary under nonirrigated conditions
exhibits the highest EO content.
3.2.2. Physical Properties. EOs collectively exhibit organo-

leptic qualities, engaging our senses through taste, scent,
appearance, and texture. Significantly, they maintain a liquid
state at room temperature and possess high volatility, facilitating
rapid evaporation. This volatility enables them to be easily
carried by water vapor, enhancing their versatility for various
applications. Beyond their utilitarian functions, EOs create an
aromatic symphony, emitting alluring and distinct fragrances
that captivate our senses. Their visual diversity is equally
captivating and influenced by the specific extraction method
employed. Microwave distillation with the Clevenger apparatus
produces pale-yellow oils, while Clevenger-assisted distillation
yields oils with a faint, delicate yellow color. In contrast, EOs
obtained through simple hydrodistillation exhibit a striking and
vivid red chromaticity.

Turning attention to the physicochemical attributes of three
distinct rosemary EOs (outlined in Table 3), a panorama of

variation emerges. Density ranges between 0.80 and 0.81,
reflecting subtle differences. Similarly, the refractive index spans
from 1.368 to 1.371, indicating disparities in optical behavior.
The angle of rotation, indicating optical activity, varies within
the range of +2 to +3°. These nuanced variations, akin to
individual brushstrokes on a canvas, reveal intricate composi-
tions that are unique to each EO. This array of distinctions
carries significant implications, allowing researchers and
industries to unravel the multifaceted identities characterizing
each variant. Insights derived from these attributes deepen our
understanding of potential applications across diverse realms,
from perfumery to aromatherapy and pharmaceuticals.
Transitioning to the referenced studies, significant insights

into plant responses to drought conditions are presented.
Bettaib et al.44 elucidate that drought manifestation, marked by
elevated temperatures and limited water availability, induces
notable biochemical changes in plant leaves. Specifically, a
reduction in fatty acids and a decrease in the number of double
bonds indicate a tangible shift in the plant’s lipid composition
under water-deficit conditions, likely an adaptive response to
mitigate stress. Yang et al.’s45 study expands our understanding
of the far-reaching impacts of drought and water stress, revealing
physiological, morphological, chemical, and physical alterations.
These multifaceted adjustments underscore the plant’s dynamic
ability to respond to environmental challenges, optimizing
resource allocation, enhancing water-use efficiency, and
ensuring survival under adverse conditions. The collective
findings highlight the complex and interconnected nature of
plant responses to drought and water stress, providing insights
crucial for understanding fundamental processes and informing
strategies to enhance crop resilience and agricultural sustain-
ability amid changing environmental dynamics.
3.2.3. Gas Chromatography−Mass Spectrometry. Table 4

unveils that the primary compound prevailing in the three
examined EOs is 1,8-cineole, with varying percentages in each
sample (S1: 48.83%, S3: 41.28%, and S2: 51.77%). Following
1,8-cineole, the subsequent significant compounds are camphor
(S1: 17.35%; S3: 22.82%; S2: 22.31%) and α-pinene (S1:
10.66%; S3: 11.27%; S2: 9.84%).
It is noteworthy that the composition of constituents remains

consistent among the three types of EOs, with monoterpenes
encompassing all the identified compounds. Oxygenated
monoterpenes predominate, constituting 72 to 83% of the
compounds, while monoterpene hydrocarbons make up 16 to
27%.
However, the content of these compounds exhibits variability

based on the extraction method employed. EO from sample 2

Figure 3. EO yield (%).

Table 3. Physical Properties of EO under Climatic
Conditions Different

physical
properties sample 1 sample 2 sample 3 AFNOR standard

relative
density at
20 °C d

0.80 0.80 0.81 0.806−0.810

refractive
index at
20 °C n

+1.371 +1.370 +1.368 +1.3650 ≤ n ≤ +1.3701

rotary power
at 20 °C α

+2 +1 +1° −2° ≤ α ≤ +5°
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stands out as the richest in α-pinene (10.66%), camphene
(4.71%), p-cymene (2.44%), and β-myrcene (2.40%).
These findings illuminate the chemical composition of the

EOs, emphasizing the significant role of extraction methods in
determining their specific compound content. The presence of
common compounds across the samples underscores the
consistent nature of the EOs, rendering them suitable for
diverse applications in industries, such as cosmetics, aromather-
apy, and pharmaceuticals. This aligns with similar results
obtained by Sarmoum et al.,46 who observed substantial
variations in both qualitative and quantitative composition
when applying diverse stress conditions to different rosemary oil
plants. Minor constituents included camphor (1.159%) and
caryophyllene oxide (1.739%), highlighting the considerable
qualitative and quantitative divergence in chemical constituents
among distinct rosemary oil plants, reflective of specific stress
conditions imposed upon them.
Furthermore, in categorizing EO compounds into chemical

groups, the outcomes indicate the prevalent dominance of three
major groups: monoterpenes (31.41−35.57%), oxygenated
monoterpenes (31.04−34.45%), and ketones (8.08−29.71%)
in the oil composition across all experimental conditions. This
aligns with the findings of Garciá-Caparroś et al. and Haydari et
al.,47,48 who reported that water stress and salinity induce
changes in the chemical compositions of plant EOs.
3.3. Antioxidant Activity. In our investigation, three

samples of R. officinalis EO, namely S1, S3, and S2, were
examined, all displaying significant antioxidant capacity (Table
5). The calculated IC50 values, representing the concentration
needed to inhibit 50% of β-carotene, exhibited variations among
the samples, with S2 having the highest value (23.34 ± 0.15),
followed by S1 (23.02 ± 0.08) and S3 (18.56 ± 0.14). Notably,
the IC50 values of 1.8-cineole (17.11 ± 0.07) and BHT (12.52 ±
0.06) were lower than those of the rosemary EO.
Attributing the antioxidant effect of a complete EO to specific

active principles poses challenges, given that EOs consist of
complex mixtures of various chemical compounds. In addition

to major components, minor molecules may significantly
contribute to the oil’s antioxidant activity. Therefore, the
observed antioxidant properties of the oils from this plant likely
result from the combined activities of different major and minor
components within the oil.
These findings align with Mumivand et al.,49 confirming the

significant impact of both drought stress and the synergistic
interplay between drought stress and accessions on various
physiological parameters, including superoxide dismutase,
catalase, ascorbate peroxidase, guaiacol peroxidase, proline,
drug yield, and EO yield (observed only in the second year).
Additionally, Ghanbarzadeh et al., Kulak et al., and Ahmadi et
al.50−52 reported heightened activity in antioxidant enzymes,
such as ascorbate peroxidase, guaiacol peroxidase, and super-
oxide dismutase, in response to water deficit stress and
inoculations. These studies collectively underscore the intricate
relationship among environmental stressors, antioxidant en-
zyme activity, and the biochemical composition of EOs in plants
such as R. officinalis.
3.4. Antidiabetic Activity. The insights derived from the

data depicted in Figure 4 highlight the presence of significant
antidiabetic attributes within the three distinct samples, as
evidenced by their impact on the inhibition of crucial enzymes,
namely, α-amylase and α-galactosidase.
In terms of α-amylase inhibition, S2 demonstrates notable

efficacy, displaying robust antidiabetic activity. This suggests its
pronounced ability to impede the function of α-amylase, which
is a key enzyme involved in starch hydrolysis. S3 also exhibits a
commendable antidiabetic influence on α-amylase, albeit
comparatively less potent than S2. On the other hand, sample
one shows a relatively milder antidiabetic potential.
The shifting focus is shifted to α-galactosidase inhibition and

the dynamics change. S3 demonstrates a subdued antidiabetic
effect, indicating its limited ability to hinder α-galactosidase
activity. In contrast, sample two takes the lead with
conspicuously elevated antidiabetic efficacy against α-galactosi-
dase compared to the other two samples. This suggests that S2
has significant potential for attenuating α-galactosidase function,
making it a promising candidate for diabetes management.
In summary, the graphical representation in Figure 4 reveals

the multifaceted antidiabetic attributes of the three samples.
Sample two stands out for its formidable inhibitory impact on α-
amylase and its comparatively elevated hindrance of α-
galactosidase. Meanwhile, S3, while displaying modest inhib-
ition against α-amylase, presents limited effectiveness in
curtailing α-galactosidase. These findings provide valuable
insights into the potential utility of these samples for diabetes
modulation based on their intricate interactions with these
enzymes.
In Figure 5, the substance acarbose demonstrates significant

inhibitory effects on enzymatic activity. Specifically, its
inhibition of α-amylase, a key enzyme in starch breakdown,
resulted in an IC50 value of 0.285 mg/mL, indicating an effective
reduction of the enzyme’s activity. Acarbose also displayed the
inhibition of α-glucosidase, another crucial enzyme in
carbohydrate metabolism, with an IC50 value of 0.131 mg/mL,
emphasizing its potency in impeding α-glucosidase activity.

Table 4. Chemical Compounds of Three Samples under
Climatic Conditions Different (%)

S1 S2 S3

α-pinene 9.49 8.15 10.11
camphene 4.53 4.17 4.47
β-pinene 3.72 0.19 8.03
aTerpinene 0.18 Tr Tr
p-cymene 2.35 0.74 2.19
limonene Tr Tr Tr
cineole 49.09 53.21 42.12
β-myrcene 2.54 1.94 1.32
linalool 0.13 0.1 0.21
camphor 17.93 22.53 22.68
borneol 1.17 2.8 0.96
aTerpineole 3.24 5.04 1.76
verbone 0.61 0.11 0.39
bornyl acetate 4.89 1.02 5.46
B-caryophyllene Tr Tr 0.11
a-caryophyllene 0.05 Tr 0.08

Table 5. Antioxidant Activity of Three Samples

sample 1 sample 2 sample 3 cineole BHT

values of IC50 (mg/mL) 23.02 ± 0.08 23.34 ± 0.15 18.56 ± 0.14 17.11 ± 0,07 12.52 ± 0.06
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These findings underscore acarbose’s capability to modulate
carbohydrate metabolism by interfering with the actions of α-
amylase and α-glucosidase enzymes.

4. CONCLUSIONS
Water is a fundamental element for the survival of all living
organisms and the maintenance of cellular homeostasis.
However, the impacts of climate change and associated
exacerbations restrict the availability of water, particularly the
capillary water essential for plant survival. This results in various
challenges at the plant level, leading to alterations in the physical,
chemical, and morphological properties. This study was
conducted to investigate the effects of climate change,
manifested through drought and water scarcity, represented in
three water stress regimes: sample one under 40% stress, sample
two under 60% stress, and sample three under 80% water stress.
The results demonstrate that severe water stress causes a

decrease in the contents of primary and secondary metabolites,
EO yields, and major compounds. Additionally, water stress
induces changes in the physical properties of R. officinalis EOs as
well as their antioxidant and antidiabetic activities.
In conclusion, the remarkable findings of this study highlight

the significant impact of climate change on the intricate chemical
composition of plants, particularly in secondary metabolite
production. These discoveries offer valuable insights for
designing strategic interventions to mitigate the potential
disruptions caused by climate change to the nutritional and
medicinal values of these botanical constituents. However, as we

conclude, a clear call for further investigation emerges, aimed at
unraveling the complex mechanisms governing secondary
metabolite production. These efforts unveil the mysteries of
nature’s symphony, revealing harmonies that adapt and evolve in
response to the dynamic rhythms of the environment.
Finally, based on these results, our future line of research is to

evaluate the impact of climate change on the morphology and
IN VIVO activity of plants.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.4c00653.

(PDF)

■ AUTHOR INFORMATION
Corresponding Author
Amine Assouguem − Department of Plant Protection and
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