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Sparse sampling functional MRI (ssfMRI) enables stronger primary auditory cortex blood
oxygen level-dependent (BOLD) signal by acquiring volumes interspersed with silence,
reducing the physiological artifacts associated with scanner noise. Recent calculations
of type I error rates associated with resting-state fMRI suggest that the techniques
used to model the hemodynamic response function (HRF) might be resulting in higher
false positives than is generally acceptable. In the present study, we analyze ssfMRI to
determine type I error rates associated with whole brain and primary auditory cortex
voxel-wise activation patterns. Study participants (n = 15, age 27.62 ± 3.21 years,
range: 22–33 years; 6 females) underwent ssfMRI. An optimized paradigm was used
to determine the HRF to auditory stimuli, which was then substituted for silent stimuli
to ascertain false positives. We report that common techniques used for analyzing
ssfMRI result in high type I error rates. The whole brain and primary auditory cortex
voxel-wise analysis resulted in similar error distributions. The number of type I errors for
P < 0.05, P < 0.01, and P < 0.001 for the whole brain was 7.88 ± 9.29, 2.37 ± 3.54,
and 0.53 ± 0.96% and for the auditory cortex was 9.02 ± 1.79, 2.95 ± 0.91, and
0.58 ± 0.21%, respectively. When conducting a ssfMRI analysis, conservative α level
should be employed (α < 0.001) to bolster the results in the face of false positive results.

Keywords: sparse sampling fMRI, type I error rates, false positives, auditory cortex, null hypothesis

INTRODUCTION

Sparse sampling functional MRI (ssfMRI) refers to the acquisition of imaging volumes interspersed
with periods of no data acquisition (silent periods), in contrast to the typical continuous acquisition
(Edmister et al., 1999; Hall et al., 1999; Talavage et al., 1999). Sparse sampling experiments are
implemented in auditory-related paradigms to avoid acquisition noise during stimulus presentation
(Schönwiesner et al., 2007; Norman-Haignere et al., 2013). The optimized data acquisition occurs
when BOLD signal change is at its maximum due to the delay of the hemodynamic response
(∼4–6 s; Perrachione and Ghosh, 2013). Given the recent evidence of false-positive rates in resting
state fMRI data (rsfMRI; Eklund et al., 2016), we examined ssfMRI to determine the prevalence of
type I errors under an optimized auditory paradigm.
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The sparse sampling paradigm is dependent on different
repetition times (TR; Edmister et al., 1999; Hall et al., 1999;
Talavage et al., 1999). The first protocols were developed by
Hall et al. (1999) which acquired a volume every TR = 14 s
and Edmister et al. (1999) which acquired a volume every
TR = 8 s. Subsequently, Bunzeck et al. (2005) and Schwarzbauer
et al. (2006) acquired a series of 5 volumes per TR, and
Zaehle et al. (2007), Schmidt et al. (2008), and Liem et al.
(2012) acquired a series of 3 volumes per TR, termed
clustered sampling (Gaab et al., 2003, 2007a,b, 2008). The
study by Eklund et al. (2016) aggregated rsfMRI data from
three sites: Beijing (TR = 2 s, 198 subjects, 225 time-points),
Cambridge (TR = 3 s, 198 subjects, 119 time-points), and
Oulu (TR = 1.8 s, 103 subjects, 245 time-points), consisting
of different TR and volume numbers per subject. Their study
explored the familywise error rates for cluster-wise and voxel-
wise inferences, with the null hypothesis of no modulation
in blood oxygen level-dependent (BOLD) signal and a mean
of zero activation. The authors found conservative voxel-
wise, but invalid cluster-wise inference associated with the
common parametric methods for functional MRI (fMRI).
The current understanding of type I error rates in rsfMRI
research warrants the investigation of auditory paradigms for
false positives.

Here we asked would a sparse sampling paradigm, with a
long TR duration normal for fMRI auditory research, result
in significant BOLD signal during the presentation of silent
stimuli? In ssfMRI, the model is designed to capture auditory
stimuli. In the paradigm of the present study, silent stimuli
were presented after an auditory paradigm was optimized;
therefore, the experiment was done in two steps. We first
optimized the auditory experiment for BOLD activation, and
second, we substituted our auditory stimuli for the silent
stimuli. We explored the voxel-wise error rates associated
with the silent stimuli for whole brain activation and for
our region of interest (ROI), the primary auditory cortex.
The hemodynamic response function (HRF) model between
the experiments was identical and the null hypothesis of
no BOLD response, was used for the silent experiment.
False positives (type I errors) were finding BOLD response
in our silent stimuli assessment. Variables in the generic
sparse sampling protocol were manipulated to optimize the
paradigm (Perrachione and Ghosh, 2013). We excepted the
errors within the primary auditory cortex would mirror the
distribution of errors found in the whole brain analysis if
the model was unbiased for ROI. We anticipated finding
a similar number of errors as found in rsfMRI (Eklund
et al., 2016), because the only difference in ssfMRI is the
long TR value. Contrary to our assumptions, the results of
the present study indicate a high prevalence of type I error
at P < 0.05 in the voxel-wise analysis. The present study
recommends using conservative statistical inference for fMRI
in order not to breach the assumptions of the underlying
tests. Additionally, as previously recommend (Friston, 2012,
2013; Ingre, 2013; Lindquist et al., 2013), future studies should
explore false discovery rates (FDRs) and effect size statistics in
ssfMRI paradigms.

MATERIALS AND METHODS

The first series of experiments consisted of optimizing an ssfMRI
paradigm based on generic auditory stimuli (Figure 1). The
paradigm for auditory stimuli is under review in a subsequent
manuscript. Once the paradigm was optimized, the auditory
stimuli were substituted for silent stimuli. The experimental
paradigms were identical except for the stimuli.

Study Participants
The study consisted of 15 self-reporting right-handed volunteers
age 27.62 ± 3.21 years (range: 22–33 years; 6 females). All
volunteers gave informed consent (oral and written) and were
free of contraindications for MRI scanning. All individuals were
self-reporting right handers, filling forms with the right-hand.
Subjects were native Spanish speakers, reporting normal hearing
which was confirmed during an initial verbal screening and
audio level setting within the scanner. All participants underwent
audiometric testing, consisting of presenting and confirming the
hearing of a series of pure tones from 400 to 8,000 Hz, in
addition to linear sweeps, log sweeps, and white noise in the same
frequency range. No subject reported a history of neurological
or psychiatric illness. The research protocol was approved by the
Comite de Bioética del Instituto de Neurobiología (UNAM) on
the Use of Humans as Experimental Subjects in accordance with
the Declaration of Helsinki, 2013.

Stimuli for Optimizing the Sparse
Sampling Experimental Design
A variety of “test stimuli” were used in order to assess the HRF
and potential activation of auditory cortex. We used three specific
stimuli generated with Matlab to activate the auditory cortex
during our sparse sampling preliminary study. (1) Linear sweep
with frequency range of 440–7,040 Hz at the 16th Harmonic
of A4. (2) Log sweep with frequency range of 440–7,040 Hz
at the 16th Harmonic of A4. (3) White noise. All stimuli were
generated with Matab and tested on a HP pc (Intel Core i5-
4210U CPU @ 2.40GHz) with a RealTek High Definition Audio
card (Driver Version: 6.0.1.7535) using Stereo Mix (RealTek)
Driver. After the “test stimuli” were used to determine an
optimal paradigm for the sparse sampling experiment, the silent
stimuli were substituted for the previous “test stimuli” and
scanning was repeated.

Image Acquisition
Images were acquired bottom-up interleaved on a 3T MR750
scanner (General Electric, Waukesha, WI, United States). A fast-
spoiled gradient echo brain volume imaging (FSPGR BRAVO)
was obtained for co-registration, resolution = 1 × 1 × 1 mm3,
field of view (FOV) = 256 × 256 mm2, slice thickness = 1 mm,
TR = 8.156 s, echo time (TE) = 3.18 ms, inversion time
(TI) = 450 ms, and flip angle = 12◦. A single shot gradient-
echo echo-planar image (GE-EPI) was used for the fMRI BOLD
acquisition with the following parameters: TR = 15,000 ms,
TE = 30 ms, TA = 1.02 s, slices = 34, flip angle = 90◦,
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FIGURE 1 | Experimental design. (a) General linear model using double gamma function convolved to a canonical hemodynamic response function (b). Where there
is a sound stimulus presented, the model evaluates the relationship between our categories (i.e., EVs/regressors) and the dependent variable (BOLD signal). The
stimuli are represented as a spectrogram with time on the x-axis and frequency on the y-axis. The color bar represents high frequency in red and low frequency in
blue. Each red dashed line represents a putative hemodynamic response function. A model above the red dashed line is represented by a colorbar with high BOLD
signal in red (+) and low BOLD signal in yellow (−). For a block of sound presentation, varying the model would tentatively capture the hemodynamic response
function. For the presentation of a silent stimulus, seen to the right of the sound stimulus, varying the model should capture resting state or error associated with the
model since no sound stimulus exists. (c) Below the time line, two volumes were acquired per block separated from the stimuli presentation by gap times from 0.1 to
2.0 s. The TA is 1.02 s and the TR = 15,000 ms. Each volume was acquired in 1.02 s and separated from the preceding volume by 1 s. The remaining time within a
block was the silent period consisting of background scanner noise in the MRI room (i.e., the helium pump of the cryomagnetic; Hoiting, 2005). (d) From the two
volume acquisitions, regions of interest were extracted pertaining to Heschl’s gyrus for the left and right hemisphere. The color bar represents activation from 0 to 15
t-value and deactivation from 0 to -10 t-value. The Heschl’s gyri were extracted based on probabilistic maps (e), where the color bar represents the probability of
finding Heschl’s gyrus within that location from 0 to 100%. From the activation/deactivation maps, average t-values were calculated (f).

FOV = 256 × 256 mm2, matrix = 128 × 128 (yielding voxel
size = 2 mm× 2 mm× 3 mm).

Sparse Sampling Trials to Capture the
HRF
To determine the most robust HRF to our 3 s stimuli, a two-
volume clustered sparse sampling paradigm was employed, and
three variables were optimized for auditory stimuli (Figure 1;
Perrachione and Ghosh, 2013). (1) The gap delay, occurring
between the end of our 3 s silent stimuli and the beginning
of the acquisition time (TA). (2) The duration of the silent
period, occurring after the TA and prior to the new stimuli
presentation. (3) The TR was the entire block containing the
stimulus presentation. The gap delay and silent period were
manipulated by changing the onset of stimulus presentation. The
gap delay (between stimuli presentation and volume acquisition)
was altered from 1 to 3.5 s by 0.1 s intervals. The TR was unaltered
for the gap delay manipulations. The silent period durations were
between≈9 and 5 s. Periods of TR were for TR = 15 s to TR = 10 s.

In the second series of experiments, we used the optimized
paradigm, but substituted the auditory stimuli with silent stimuli

(Figure 1b right side panel). All aspects of the experimental
design for optimization and for silent stimuli type I error rate
assessment were identical. A false positive (type I error) was
finding BOLD signal response for a voxel during the silent stimuli
presentations. The final run paradigm for our sparse sampling
of silence to ascertain type I errors consisted of the following
parameters: TR = 15,000 ms, gap delay = 0.100 s, 3 s silent
stimuli presentation, TA = 1.02 with 34 slice acquisition, Volume
1 (VL1 = 1.02 s), 1 s separation between volumes, Volume 2
(VL2 = 1.02 s), and the reaming time of the TR period, 8.86 s
of silence. The silent paradigm was repeated for 74 blocks for
two separate runs.

Our design matrix for analyzing the auditory sparse sampling
data from the first series of experiments was to aggregate all
alike stimuli events together (Norman-Haignere et al., 2013; see
Figure 1b). Subsequently, silent stimuli were substituted, and an
identical design matrix was implemented for the second series
of experiments. For visualization in the figures, the average of
12 blocks with 2 blocks discarded (first and last) was presented
in 6 blocks (74 blocks total). Volumes within a TR (Figure 1)
were aggregated together by blocks (Blk) based on a generic
auditory paradigm (Norman-Haignere et al., 2013; See Figure 1
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FIGURE 2 | Whole brain sparse sampling of silence, derived BOLD signal average and range. A sparse sampling paradigm was conducted and whole brain
activation/deactivation maps were derived for t-value difference from the auditory evoked paradigm (Figures 1a,b). (a) The entire brain activation/deactivation
t-values were mapped (unthresholded) for each block (column) by the first volume (VL1) or second volume (VL2). The color bar denotes the t-value range for the
paradigm. Here, the t-values were taken to derive type I errors. (b) The table represents average ± standard deviation and maximum to minimum t-values for the
entire acquired volume.

FIGURE 3 | Whole brain sparse sampling of silence average type I error percentage derived from activation/deactivation maps (Figure 2a). The bars are observed
type I errors from the blocks grouped by P-values. The x-axis is grouped volume, represented by VL1 (#98f5ff cadet blue) or VL2 (#ffa298 Salmon pink), by P-values
(P < 0.05, P < 0.01, and P < 0.001) and by block (Blk). The y-axis is percentage of false positives found if accepting a specific alpha (α) value where the lines
represent α = 0.05 (#ff98f5 light magenta), α = 0.01 (#f5ff98 light yellow), and α = 0.001 (#98ffa2 light green). The expected type I error rate α is found by dashed
lines for α = 0.05, α = 0.01, and α = 0.001. Above these lines for an accepted P-value, a type I error has been committed. Therefore, rejecting the null hypothesis
(indicating there is a difference) when no relevant BOLD activation/deactivation is present.

for design; Figures 2–5; see Supplementary Tables SI1, SI2).
Here we modeled the most robust HRF (Figure 1a) to 3 s auditory
and silent stimuli (Figure 1b blue box). Normally, sound stimuli
are modeled within 4–6 s after their presentation (Figure 1b) to
capture the most robust BOLD signal (Edmister et al., 1999; Hall
et al., 1999; Talavage et al., 1999; Gaab et al., 2003, 2007a,b, 2008;

Bunzeck et al., 2005; Schwarzbauer et al., 2006; Zaehle et al., 2007;
Schmidt et al., 2008; Liem et al., 2012). A two-volume cluster
sparse sampling acquisition was employed with 1 s separation,
TR = 15 s, and with different gap periods between the stimuli and
volume acquisition (Figure 1c). Here we varied the model of the
putative fMRI response for a BOLD signal (Figure 1a; red dashed
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FIGURE 4 | Auditory cortex sparse sampling of silence, derived BOLD signal average and range. A sparse sampling paradigm was conducted and auditory cortex
activation/deactivation maps were derived for t-value difference during the auditory evoked paradigm (Figures 1a,b). (a) The entire auditory cortex
activation/deactivation t-values were mapped (unthresholded) for each block (column), by the sub-column first volume (VL1) or second volume (VL2), and by the left
and right hemisphere for each row of brains. The color bar denotes the t-value range for the paradigm. Here, the t-values were taken to derive type I errors. (b) The
table represents average ± standard deviation and maximum to minimum t-values for the entire auditory cortex volume. Blocks are represented in columns with
sub-column delineations for the first and second auditory cortex volume acquired. The left and right hemisphere is represented by the row on the table.

line is the variation). A ROI pertaining to the auditory cortex was
delineated (Figure 1d), based on a probabilistic map for Heschl’s
gyrus (HG; Figure 1e; Morosan et al., 2001; Rademacher et al.,
2001). Once the HG was extracted, we calculated average ROI
activation and error rates (Figure 1f). We present the type I error
rates associated with this activation.

Image Processing
Image processing used FSL tools (fMRIB, University of Oxford,
United Kingdom) using FEAT (FMRI Expert Analysis Tool)
version 5.98. The general linear model (GLM) was used to
assess the relationship between the sound or silent stimuli and
the BOLD signal using the double gamma function convolved
with the HRF (Leaver and Rauschecker, 2010). Functional
volumes were preprocessed for motion correction, linear trend
removal, spatial smoothing using a 5 mm FWHM Gaussian
kernel, and elimination of low-frequency drifts using a temporal
high-pass filter with a cutoff of 100 s. Preprocessing of the
fMRI statistical maps included spatial realignment, coregistration
with anatomical data using FSL FLIRT, spatial normalization
and alignment with MNI 152 T1-weighted MRI scans. Further
image analysis was performed using custom scripts in Matlab to
segment ROI from the Jülich histological atlas (Morosan et al.,
2001). For the first and second series of experiments, two different
runs of 74 blocks were collected for a total run time of 18 min
and 30 s. A 5 min rest period was given between the two runs.
A fixed-effects analysis averaged the two runs and a mixed-
effects higher level analysis was performed to average the data
associated with the silent stimuli across subjects (n = 15). For
the first series of experiments using auditory stimuli to optimize
the paradigm, multiple comparisons for averaging volumes were
controlled for by using random field theory. Here, a cluster-
defining threshold (CDT) of P < 0.05 was used (voxel z > 2.3).

For the second series of experiments using silence, finalized
volumes were visualized and assessed by plotting all t-values
by voxel data unthresholded, but using the same model as the
auditory paradigm. The t-value by voxel for a certain α level
was used to determine significance (unthresholded). Finalized
volumes and ROI were mapped to the Conte69 atlas in MNI
space using CARET v5.65 (Van Essen et al., 2012). Auditory
stimuli, as described above, and actual silent stimuli devoid of
fine structure and envelope sound information were delivered
via Matlab (Statistics Toolbox Release 2012b, The MathWorks,
Inc., Natick, MA, United States) with the Psychophysics Toolbox
extension1 on a HP pc (Intel Core i5-4210U CPU at 2.40GHz)
with a RealTek High Definition Audio card.

Definitions
The P-value, assuming the null hypothesis is true, is the
probability of obtaining a result as extreme or more extreme
than the observation (Zar, 1999). The P-values for the present
study were P < 0.05, P < 0.01, P < 0.001. Type I error
(α), assuming the null hypothesis is false, is the probability of
making this error. That is, rejecting the null hypothesis when it
is true (Zar, 1999). The type I error (α) for the present study
were α = 0.05, α = 0.01, α = 0.001. Therefore, inference for
significance for the present manuscript was performed using
voxels passing specific α levels (α = 0.05, α = 0.01, α = 0.001).
Above these levels for a specific P-value was erroneously
concluding BOLD activation/deactivation was present, when no
activation/deactivation (i.e., modulation) should occur. Were
presented results in percentages associated with the false
positive conclusion.

1http://psychtoolbox.org/
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FIGURE 5 | Auditory cortex sparse sampling of silence. Average type I error
percentage derived from activation/deactivation maps (Figure 4a). The bars
are observed type I errors from the left and right hemisphere grouped by
P-values. The x-axis is grouped volume, represented by VL1 (#98f5ff cadet
blue) or VL2 (#ffa298 Salmon pink) and by P-values (P < 0.05, P < 0.01, and
P < 0.001). The y-axis is percentage of false positives found if accepting a
specific alpha (α) value where the lines represent α = 0.05 (#ff98f5 light
magenta), α = 0.01 (#f5ff98 light yellow), and α = 0.001 (#98ffa2 light green).
The expected type I error α rate is found by dashed lines for α = 0.05,
α = 0.01, and α = 0.001. Above these lines for an accepted P-value, a type I
error has been committed. Therefore, rejecting the null hypothesis (indicating
there is a difference) when no relevant BOLD activation/deactivation is present.

RESULTS

Figure 1 presents a summary of the experimental design. Table 1
presents summary findings of P-value by type I error percentage.
Figure 2 presents unthresholded t-values for the whole brain
sparse sampling of silence analysis. Figure 3 presents the whole
brain sparse sampling of silence average type I error percentage
by P-value for a specific α level. Figure 4 presents unthresholded
t-values for the auditory cortex sparse sampling of silence ROI
analysis. Figure 5 presents the auditory cortex sparse sampling
of silence average type I error by P-value for a specific α

level. Supplementary Table SI1 presents the whole brain sparse
sampling of silence average type I error percentage by P-value for
each Block by VL1 and VL2. Supplementary Table SI2 presents
the auditory cortex sparse sampling of silence average type I error
percentage by P-value for each Block by VL1 and VL2 for left and
right hemisphere.

General BOLD Signal
Activation/Deactivation
The average BOLD signal was calculated separately for the left
and right hemisphere modeled on silent stimuli (Figure 1b).
Left and right hemispheres of the primary auditory cortex

where delineated separately (Figure 1d). No difference was
found between the first or second volume acquisitions (Table 1).
The left and right hemisphere t-value was non-significantly
different when assessing the run by block (P = 0.587, t = 0.569
and P = 0.376, t = 0.945, respectively). Although considerable
activation for some time-points can be visualized (i.e., moving
across a block Figure 2a), the average activation was non-
significant. The difference between the left and right hemisphere
assessing the run by block was non-significant (P = 0.358,
t = 0.985, df = 1.7; Figure 2a); nevertheless, the right hemisphere
had greater activation over the left. The mean absolute t-value
difference in BOLD activation between the left and right
hemisphere was t = -0.128, with 95% confidence interval of this
difference: from t = -0.435 to 0.179, respectively. Average left and
right hemisphere activation over the run was t = 0.143 ± 0.709
and t = 0.271 ± 0.810. Here we presented the left hemisphere
view for ease of visualization (Figure 2a).

Whole Brain Type I Errors
Figure 2a demonstrates the activation/deactivation maps by
block and volume for the entire brain. Figure 2b is a table of
the average and range of BOLD signal by block and volume. The
average whole brain BOLD signal t-value for the all the blocks
was -0.168 ± 0.929 (SD), 0.003 (sem). The whole brain range of
activation/deactivation was minimum t-value = -4.398 ± 0.803
SD to maximum t-value 3.879 ± 0.731 SD. A paired t-test
of the average change in activation/deactivation by volume
acquisition within a block to determine if the first or second
volume was different, was non-significant (t5 = 2.129, P = 0.087,
mean difference 0.541, CI: -0.113 to 1.195, correlation coefficient
r = 0.514, P = 0.148). Therefore, the first volume acquisition was
not significantly different from the second volume acquisition
(Table 1). Nevertheless, note the wide range in activation and
deactivation values (Figure 2b). The average number of voxels
analyzed was 105,543± 1,907. Figure 3 demonstrates the average
type I errors. The following are the average combined left/right
hemisphere percent false positives. The average number of false
positives for P < 0.05 were for VL1, 6.813% ± 10.047%,
and for VL2, 8.939% ± 8.529%. The average number of false
positives for P < 0.01 were for VL1 = 2.735% ± 4.714%, and
for VL2 = 2.005% ± 2.369%. Accepting a more conservative
probability P < 0.001, the average number of false positives for
VL1 = 0.873%± 1.691% and for VL2 = 0.188%± 0.226%.

Auditory Cortex Type I Errors
Figure 4a demonstrates the activation/deactivation maps by
block and volume for the left and right auditory cortex. Figure 4b
is a table of the average and range of BOLD signal by block
and volume for the left and right auditory cortex. For VL1 left
hemisphere auditory cortex, the average BOLD signal t-value for
all the blocks was 0.047 ± 0.908 (SD), 0.017 (sem). For VL1
left hemisphere auditory cortex, the minimum and maximum
t-values were -2.891 and 3.109. For VL1 right hemisphere
auditory cortex, the average BOLD signal t-value for all the blocks
was -0.090 ± 0.870 (SD), 0.019 (sem). For VL1 right hemisphere
auditory cortex, minimum and maximum t-values were -2.9717
and 2.416. For VL2 left hemisphere auditory cortex, the average
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TABLE 1 | Summary findings of P-value by type I error percentage for whole brain and auditory cortex.

P-value threshold P < 0.05 P < 0.01 P < 0.001

Whole brain VL1 6.813% ± 10.047% 2.735% ± 4.714% 0.873% ± 1.691%

VL2 8.939% ± 8.529% 2.005% ± 2.369% 0.1878% ± 0.226%

Auditory cortex VL1 9.088% ± 0.137% 3.692% ± 0.327% 0.971% ± 0.254%

VL2 8.948% ± 3.440% 2.201% ± 1.494% 0.185% ± 0.162%

Errors for P < 0.05, P < 0.01, and P < 0.001, are higher than acceptable by a factor of 1.69, 2.66, and 5.54, respectively, than the α level. The difference between whole
brain and auditory cortex errors for P < 0.05, P < 0.01, and P < 0.001, were 1.14, 0.58, and 0.05%, respectively greater for the auditory cortex.

BOLD signal t-value for the all the blocks was -0.583 ± 0.651
(SD), 0.012 (sem). For VL2 left hemisphere auditory cortex,
minimum and maximum t-values were -2.771 and 1.767. For
VL2 right hemisphere auditory cortex, the average BOLD signal
t-value for all the blocks was -0.584± 0.741 (SD), 0.016 (sem). For
VL2 right hemisphere auditory cortex, minimum and maximum
t-values were -2.820 and 1.826. A paired t-test of the average
change in activation/deactivation by volume acquisition within
a block, to determine if the first or second volume was different,
was significant (t12 = 2.863, p = 0.015, mean difference -0.562,
CI: -0.994 to -0.130, correlation coefficient r = 0.593, P = 0.021).
Therefore, the first volume acquisition was significantly different
from the second volume acquisition. Nevertheless, accepting a
more conservative probability P < 0.01, the volumes were not
different. Note the wide range in activation and deactivation
values (Figure 4b).

The first volume from the left and right auditory cortex were
not significantly different (t6 = 0.950, P = 0.386, mean difference
0.138 CI: -0.235 to 0.511, correlation coefficient r = 0.915,
P = 0.005). For VL1, left and right hemisphere were highly
significantly correlated in their BOLD signal response. For the
second volume, the left and right auditory cortex were not
significantly different (t6 = 0.002, P = 0.998, mean difference
0.001 CI: -0.560 to 0.561, correlation coefficient r = 0.926,
P = 0.004). For VL2, left and right hemisphere were highly
significantly correlated in their BOLD signal response. Note the
wide range in activation and deactivation values (Figure 4b). The
average number of voxels analyzed was 2,767 and 2,040 for the
left and right hemisphere, respectively. Figure 5 demonstrates
the average type I errors. The following are the average combined
left/right hemisphere percent false positives. The average number
of false positives for P < 0.05 was for VL1 = 9.088% ± 0.137%,
and for VL2 = 8.948% ± 3.44%. The average number of false
positives for P < 0.01 was for VL1 = 3.692% ± 0.327% and
for VL2 = 2.201% ± 1.494%. Accepting a more conservative
probability P < 0.001, the average number of false positives was
for VL1 = 0.971%± 0.254% and for VL2 = 0.185%± 0.162%.

DISCUSSION

The present study analyzed type I errors during a ssfMRI
paradigm using silent stimuli with the null hypothesis of no
BOLD response. Here, we sought to determine if auditory cortex
activation/deactivation could be modeled by a HRF in a sparse
sampling paradigm using silent stimuli, where no auditory task
existed. We report type I errors associated with sparse sampling

of silence in the whole brain and in the ROI most commonly
used during ssfMRI, the primary auditory cortex (Table 1).
These errors result in false positives, rejecting the null hypothesis
in favor of the alternative hypothesis, when this conclusion is
false. Similar error rates are distributed evenly across the brain
and primary auditory cortex. The present study recommends
conducting further assessments in ssfMRI paradigms such as
FDRs and effect size statistics. Conservative statistical inference
for fMRI should be used in order not to breach the assumptions
of the underlying the tests.

Acoustic Noise During fMRI
Acoustic scanner noise results from the gradient magnetic
field and radiofrequency pulses used to generate sequences for
scanning (Hoiting, 2005). The most common pulse sequences
used in fMRI, such as echo planar imaging (EPI), consist of
the fast succession of alternating readout and phase encoding
gradient currents which result in high amplitude and frequency
acoustic noise (Moelker and Pattynama, 2003). The current
study optimized the ssfMRI to minimize acoustic scanner noise
contributions to the BOLD signal during the auditory paradigm.
After the optimization, silence was substituted for auditory
stimuli and here the experiment examined the null hypothesis of
no effect (Figure 1b right side). No difference in BOLD signal
was found by hemisphere assessing the run by block of volume
acquisitions. No difference in BOLD signal was found between
volume acquisitions (VL1 and VL2). Despite these findings, high
false positives were found (Table 1), which are unlikely due
to acoustic noise, but rather aspects of the resting state BOLD
response (i.e., undershoot or overshoot), processing steps, or
breaching the assumptions of the model. Normally, the gradient
currents are the primary sources of acoustic noise during MRI
(McJury and Shellock, 2000; Moelker and Pattynama, 2003;
Hoiting, 2005). It is the task of a ssfMRI acquisition to minimize
acoustic scanner noise contributions to the auditory paradigm.
Different acquisition paradigms are employed to optimize the
BOLD response to the auditory task under investigation (Amaro
et al., 2002). Most protocols intersperse periods of silence in a
block design (Amaro et al., 2002; Liem et al., 2012) to maximize
the volume acquisition to when the BOLD signal is strongest
(Perrachione and Ghosh, 2013). In the present protocol, we were
interested in type I errors associated with the null hypothesis
of no BOLD activation. While we cannot completely rule out
background scanner noise contributions, the present study took
care to eliminate these artifacts by devising a protocol with a long
TR (here TR = 15 s) to allow the BOLD signal to reach baseline
before acquiring a subsequent volume.
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Scanner Noise Inducing Auditory
Activation
Ulmer et al. (1998) mimicked the MRI environment by using
taped scanner noise consisting of 60–80 db (decibels, peak tone
frequencies ranging between 500 and 4,000 Hz) delivered in four
20 s intervals alternating with five 20 s “rest” intervals. The study
by Ulmer et al. (1998) found significant activation within the
right or left transverse temporal gyrus, planum polare, planum
tempolare, middle temporal gyrus and superior temporal sulcus.
Bandettini et al. (1998) found the hemodynamic response signal
falls from about 7% to zero in the first 5–7 s after acoustic
noise (i.e., gradients). With a TR = 9 s using 100 ms syllables
and 4-slice, 16-slice, and 64-slice acquisitions, Shah et al. (1999)
found a greater number of activated voxels in the auditory
cortex during the quieter periods of the 4-slice and 16-slice.
This was likely because more target syllables fell in the quiet
periods. Di Salle et al. (2001) determined that the BOLD signal
reached a stable baseline within the primary auditory cortex
approximately 4–5 s after stimulation with 10 s sine tones at
1,000 Hz, amplitude-modulated 10 Hz square waves (rise/fall
time = 5 ms, plateau = 40 ms, duty cycle = 0.5, interstimulus
interval = 50 ms, output 70 sb SPL). Interestingly, they noted in
one pattern of response, a BOLD signal decay continued with a
prolonged undershoot until the end of the sampling period (Di
Salle et al., 2001). Zaehle et al. (2007) and Schmidt et al. (2008)
compared continuous acquisition with clustered acquisition and
found significantly greater activation in primary auditory regions
(Heschl’s gyrus, planum polare and planum temporale of each
hemisphere) during the clustered temporal acquisition compared
to the sparse (single volume) paradigm. The purposes of sparse
sampling is to minimize acoustic noise contributions to the
BOLD signal; nevertheless, we note the model still results in high
false positives at the traditional P< 0.05 level. These errors could
be due to aspects of the BOLD signal, underlying assumptions
of the model being breached, or aspects in processing images
which introduce noise. We note, realigning individual subject
data to correct for motion during scanning, transforming images,
resampling estimates of the signal, smoothing which involves
averaging voxels (Eklund et al., 2016; Cox et al., 2017a,b; Flandin
and Friston, 2017) and increases spatial correlation, registration
to a common template (normalization; Mueller et al., 2017)
etc., all preprocessing steps could potentially cause errors and
introduce noise (see textbooks for review: Frackowiak et al., 2003;
Buxton, 2009).

Optimizing BOLD Signal in ssfMRI
Paradigms
The first sparse sampling protocols where Hall et al. (1999)
acquiring a volume every TR = 14 s or Edmister et al. (1999)
acquiring a volume every TR = 8 s. Perrachione and Ghosh
(2013) recommended a “sweet spot” TR = 6 s per volume.
Further, Bunzeck et al. (2005) and Schwarzbauer et al. (2006)
acquired a series of 5 volumes per TR, and Zaehle et al. (2007),
Schmidt et al. (2008), and Liem et al. (2012) acquired a series of
3 volumes per TR. This process was termed clustered sampling
(Gaab et al., 2003, 2007a,b, 2008). These protocols revealed the
underlying contributions to scanner noise when modeling the

noise of the scanner as the underlying explanatory variable.
The present study modeled a non-existent 3 s silent stimuli as
the explanatory variable and we found significant BOLD signal
present. The high false positives we reported could be due to
our model assessing different aspects of the BOLD response
(based on the delay ∼4–6 s; Perrachione and Ghosh, 2013). For
example, using the finger tapping task, the BOLD signal time
course at the cortical surface had a stronger overshoot after the
task onset and a stronger undershoot proceeding the task offset
(Huber et al., 2015). We cannot rule out our optimized paradigm
was assessing aspects of the overshoot or undershoot features of
BOLD. Here, an assumed false-positive would be confounded
(i.e., overestimated) due to the remaining BOLD signal. These
factors such as designing adequate TR to capture the BOLD
response at its height, could mean aspects of the overshoot or
the prolonged post-stimulus undershoot are contributing to type
I errors in the current paradigm. To design a better paradigm,
the overshoot and prolonged post-stimulus undershoot should
be considered to estimate these features of a stimulus response
(van Zijl et al., 2012).

Type I Errors in fMRI Paradigms
Several studies utilizing fMRI have highlighted the errors
associated with using non-conservative α-values or rejecting the
null hypothesis in favor of the alternative, due to paradigm
design (Bennett et al., 2010; Fisher and Student, 2012). Broadly,
a previous critique has recommended reporting effect size
estimations of the measure of interest, conducting sample size
statistics to protect against trivial effects, and using conservative
hypothesis testing (Friston, 2012, 2013; Ingre, 2013; Lindquist
et al., 2013). The present study chose a common sample size
(n = 15) and different P-values to explore type I errors in ssfMRI
data. Here, we found that to minimize type I errors and ensure
sufficient power of the study, a more conservative α level needs
to be utilized (Benjamin et al., 2018; Trafimov et al., 2018).
Nevertheless, there is an ongoing debate as to whether it is a
valid assumption to changing the alpha level (as an example,
α = 0.05 to α = 0.01) used for determining significance to reduce
false positives (Benjamin et al., 2018; Trafimov et al., 2018).
Controlling for false positive (Genovese et al., 2002), and using
a threshold to specify a large cluster of voxels (Friston et al.,
1996), can be methods to ensure conservative data reporting.
The most in-depth study to-date found family-wise error rates
(FWER) for cluster-wise inference far exceeded their nominal 5%
level, whereas voxel-wise inferences were valid, but conservative,
often falling below 5% (Eklund et al., 2016). Reassessments of the
Eklund et al. (2016), for example, using the non-parametric FDR-
based method, found that using CDT = 0.001 and RFT–FWE
correction was “trustworthy” whereas a CDT = 0.01 depended on
the corrected P-value (Kessler et al., 2017). In the present study,
we analyzed voxel-wise error rates and found that in ssfMRI, they
were far higher than expected by approximately 4% for P < 0.05.
Future studies need to conduct preliminary assessments using
robust experimental designs with clear hypothesis statements.
Alternative methods such the FDR can be implemented, which
assumes false positives will be detected and controls that
type I errors make up no more than α of the discoveries
(Genovese et al., 2002; Schwartzman et al., 2009). The FDR is
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defined as the proportion of false positives among all rejected
tests (Lindquist and Mejia, 2015), therefore is done after deriving
the imaging data, i.e., post hoc. Changing α level and using
more conservative P-values are steps implemented prior to
deriving your functional maps. Each of these approaches could
be implemented, and a recent review recommends using both
FWER and FDR (Lindquist and Mejia, 2015).

Study Limitations and Future Directions
The limitations of the protocol were methodological. There were
two volume acquisitions separated in time by 1 s. Our model
was based on a 3 s stimuli contained within a TR = 15 s.
The second acquired volume due to the RF pulse of the first
volume was not acquired in a fully relaxed state, which could
potentially contribute to second volume BOLD signal and errors.
We note, activation and type I errors were not significantly
different between volumes for the whole brain or auditory
cortex. Nevertheless, during different sparse sampling paradigms
this could be an issue. The optimized model employed could
be assessing different aspects of the undershoot or overshoot
(Perrachione and Ghosh, 2013). For example, there could be
a chance for all the BOLD signal to be outside the model,
if during the optimization this occurred for all the averaged
blocks of the entire fMRI run. Here the model could miss
the peak HRF and be modeling undershoot or overshoot. This
would overestimate or underestimate the BOLD signal to silence
causing false positives. Although this is unlikely, if the flawed
optimization to the HRF were consistent across the 18 min
and 30 s run, it could confound the results significantly. Future
studies should examine different silent stimuli lengths with
different TRs and assess scanning sequences such as continuous
or interleaved paradigms with a greater number of volume
acquisitions. For example, Mueller et al. (2011) used 10 s musical
stimuli to determine the difference between continuous (36 slice,
TR = 2.5 s, TE = 30 ms, TA = 1.08 s), sparse sampling (15
slice, TR = 11 s, TE = 29 ms, TA = 0.435 s) and interleaved
silent steady fMRI (5 sequential volumes, 15 slice, TR = 15 s,
TE = 27 ms, TA = 0.405 s). The authors indicated interleaved
silent steady fMRI provided increased sensitivity compared to
continuous and sparse sampling for auditory stimuli (Mueller
et al., 2011). We note, no difference was found between the first
and second volume in the present paradigm (Figures 2, 4). The
paradigm was not considered a pure sparse sampling (one volume
acquisition), nor a pure interleaved silent steady state paradigm
(several volume acquisitions), since 2 volumes were acquired.
Mueller et al. (2011) had 5 volumes per stimuli and a long
duration auditory stimulus was used (10 s). Here we used a short
stimulus (3 s) and our two volume acquisitions based on ∼4–6 s
delay of the BOLD signal (Perrachione and Ghosh, 2013), and
our optimization procedure. With a greater number of volume
acquisitions, we would anticipate only a slight difference between
volume responses (Figures 2, 4), therefore, similar type I error
rates. Lastly, because we delivered actual silent stimuli via the
Psychophysics Toolbox in Matlab. Here, the on/off pressure wave
of queuing the auditory signal, when no-auditory signal existed,
could have elicited the activation witnessed due to the ramp
up function in the MRI-compatible headphones (AudioSystem,

Nordic NeuroLab). However, due to the noise attenuation
headphones (30 db) being equivalent to background noise in the
MRI environment (≈29 db), it is unlikely (see Hoiting, 2005 for
review of acoustic noise contributions in the MRI environment).
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TABLE SI1 | Type I errors observed for P-values for whole brain. Blocks are
organized by column with sub-column delineations for the first volume (VL1) or
second volume (VL2) and rows for P-value. The number of voxels within the entire
brain exhibiting type I error are indicated by 30,894 of 107,598 voxels, for example
as found in Block 1, VL1 for P < 0.05. Below the number of voxels is the
percentage of type I errors found for the specific P-value.

TABLE SI2 | Type I errors observed for P-values within auditory cortex. Blocks are
organized by column with sub-column delineations for volumes (VL1 and VL2) and
rows for left and right hemisphere auditory cortex parcellation. The number of
voxels within auditory cortex exhibiting type I error are indicated by, for example,
839 of 2767 voxels found in Block 1, VL1 left hemisphere for P < 0.05. Below the
number of voxels is the percentage of type I errors found for the specific P-value.
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