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 13 

Abstract 14 

As the most common pediatric malignancy, B-cell acute lymphoblastic leukemia (B-ALL) 15 
has multiple distinct subtypes characterized by recurrent and sporadic somatic and 16 
germline genetic alterations. Identification of B-ALL subtypes can facilitate risk stratification 17 
and enable tailored therapeutic approaches. Existing methods for B-ALL subtyping 18 
primarily depend on immunophenotypic, cytogenetic and genomic analyses, which would 19 
be costly, complicated, and laborious in clinical practice applications. To overcome these 20 
challenges, we present RanBALL (an Ensemble Random Projection-Based Model for 21 
Identifying B-Cell Acute Lymphoblastic Leukemia Subtypes), an accurate and cost-22 
effective model for B-ALL subtype identification based on transcriptomic profiling only. 23 
RanBALL leverages random projection (RP) to construct an ensemble of dimension-24 
reduced multi-class support vector machine (SVM) classifiers for B-ALL subtyping. Results 25 
based on 100 times 5-fold cross validation tests for >1700 B-ALL patients demonstrated 26 
that the proposed model achieved an accuracy of 93.35%, indicating promising prediction 27 
capabilities of RanBALL for B-ALL subtyping. The high accuracies of RanBALL suggested 28 
that our model could effectively capture underlying patterns of transcriptomic profiling for 29 
accurate B-ALL subtype identification. We believe RanBALL will facilitate the discovery of 30 
B-ALL subtype-specific marker genes and therapeutic targets, and eventually have 31 
consequential positive impacts on downstream risk stratification and tailored treatment 32 
design.  33 
 34 

Background 35 

B-cell Acute Lymphoblastic Leukemia (B-ALL) is a hematological malignancy that 36 
originates from the precursor B-cells of the bone marrow. As the most common acute 37 
lymphoblastic leukemia (ALL) type, B-ALL was diagnosed among 6,000 ALL patients each 38 
year especially for children younger than 5 years of age (1,2), manifests through the 39 
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abnormal proliferation of immature B-cells. The clinic diagnostic and biologic heterogeneity 40 
of B-ALL present a significant challenge in terms of subtype classification and therapy 41 
stratification (3,4) for the disease. In addition, studies have also highlighted the requirement 42 
of precise subtype identification for highly diverse therapeutic approaches according to 43 
each patient (5), since they have specific responses to treatment and prognoses (6–8). So 44 
far, multiple distinct B-ALL subtypes have been characterized through recurrent and 45 
sporadic somatic and germline genetic alterations, (e.g., BCR-ABL1 (Philadelphia (Ph) 46 
chromosome), TCF3-PBX1 (9), hypodiploid (10), etc.), and the survival rates of this 47 
malignancy in children can be dramatically increased to more than 90% (11,12) with 48 
effective identification and tailored treatment of different subtypes (13). However, the 49 
heterogeneity of B-ALL presents a significant challenge in terms of subtype classification 50 
and treatment stratification (3,4). The study comprehensively reviewed the etiologic 51 
heterogeneity of childhood acute lymphoblastic leukemia across different subtypes, 52 
highlighting the critical need for further investigations into risk factors that are specific to 53 
each subtype (14). Another research focused on BCR/ABL1-like ALL, a high-risk subtype 54 
distinguished by specific genetic alterations, emphasizing the importance of refined 55 
diagnostic algorithms and the development of targeted therapies to improve treatment 56 
outcomes (15). Based on integrated genomic analysis of 1,988 childhood and adult cases, 57 
23 B-ALL subtypes have been identified by chromosomal rearrangements (16), sequence 58 
mutations (17,18) and heterogeneous genomic alterations (19–21).  59 
 60 
The conventional methods for B-ALL subtype identification primarily depends on a 61 
combination of morphological, immunophenotypic, cytogenetic, and molecular 62 
characteristics (22,23). Given the advancements in next-generation sequencing (NGS) 63 
(24,25), transcriptome profiling is found to be an informative tool to unveil chromosomal 64 
rearrangements in individual tumors for genetic or clinical marker discovery (21,26). The 65 
study explored practical considerations for utilizing RNA sequencing in managing B-66 
lymphoblastic leukemia, underscoring RNA-Seq's capability to accurately assign specific 67 
molecular subtypes in the majority of patients (27). In addition, large cohort studies for new 68 
subtype detection and rapid classification with large-scale datasets raise more interest in 69 
the progress of precision medicine (12,28,29). For similar case as B-ALL under the 70 
category of leukemia, Umeda et. al (30) have identified the genomic atlas of pediatric acute 71 
myeloid leukemia (pAML) and determined 23 distinct molecular subtypes through large-72 
scale gene alteration analysis. Although genetic quantification presents baseline 73 
parameters needed, it is difficult and costly for systematic analysis linking existing B-ALL 74 
subtypes with expression profiles (31) or classifying rare subtypes with standard laboratory 75 
tests, cause these methods typically involve integrating different forms of NGS 76 
methodologies (32) like whole-genome sequencing (WGS) (33), whole-exome sequencing 77 
(WES) (34), cytogenetic assays (35) etc. Moreover, extensive manual curation of the 78 
results is required before being considered as standard identification. 79 
 80 
In recent years, machine learning (ML) has emerged as a powerful tool in the field of 81 
biomedical research, enabling the analysis of complex datasets and the discovery of 82 
hidden patterns. The high volume of RNA-seq data calls for cost-effective processing 83 
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algorithms like machine learning to reveal the inner relationship between genomics and 84 
clinical conditions. The application of ML models to the identification of B-ALL subtypes 85 
has the potential to revolutionize our understanding of this disease and improve patient 86 
outcomes (36). Unsupervised clustering was first applied to microarrays for prediction yet 87 
had low performance considering individual heterogeneity will result in variable group 88 
assignments under different gene set definitions among different research institutions (37). 89 
In recent years, more presented machine learning tools have started to train reliable 90 
classifiers with well-defined terms of B-ALL subtype allocation from WHO-HAEM5 (38), 91 
and ICC (39) classifications before applying the model to systematic research like new 92 
biomarker detection (40) and risk parameter recognition (41) in unknown datasets. For 93 
instance, Allspice R package was developed to predict the B-ALL subtypes and driver 94 
genes based on centroid model (26). ALLSorts introduced by Schmidt et. al (42) 95 
demonstrate high accuracy and probability of subtype classification when attributing 18 96 
previously defined groups to more than 1200 samples with logistic regression. Beder et. al 97 
(37) then expend the possibility of multi-class and novel subtype identification with 98 
ALLCatchR while underlying development trajectories of BCP-ALL. However, the evolving 99 
landscape of B-ALL subtypes has currently encompassed 26 distinct subcategories (38,39), 100 
combining a continuously expanding, not to mention those uncharted categories that hold 101 
crucial clinical significance. Under these circumstances, fast and precise computational 102 
tools adept at subtype classifying from vast and intricate datasets are needed (43). 103 
 104 
Here we introduce RanBALL (an Ensemble Random Projection-Based Model for 105 
Identifying B-Cell Acute Lymphoblastic Leukemia Subtypes), an accurate and cost-106 
effective model for B-ALL subtype identification based on transcriptomic profiling only. High 107 
robustness and consistency were achieved in 1743 samples with 93.35% accuracy through 108 
100 times 5-fold cross-validation. Moreover, RanBALL has superior improvement over 109 
state-of-art classifiers, which indicates that this model will have huge potential for further 110 
clinical application. It represents a significant advancement in the precision identification 111 
of B-ALL subtypes, offering a powerful tool for clinical applications. The development of 112 
RanBALL not only improve risk stratification and optimize treatment strategies but also 113 
opens new possibilities for personalized medicine in the future. 114 
 115 

Methods 116 

B-ALL dataset 117 
The RNA-seq data and clinical information of B-ALL samples were obtained from St. Jude 118 
Cloud (https://pecan.stjude.cloud/static/hg19/pan-all/BALL-1988S-HTSeq.zip). The 119 
dataset includes 1988 samples that were classified as 23 B-ALL subtypes from the study 120 
(21). In data processing, samples with two subtypes and those identified as “other” 121 
categories were filtered out. Additionally, the samples were processed by referring to the 122 
classification architecture outlined in the ALLSorts classifier (42). Due to the limited number 123 
of samples in subtypes “ZNF384-like” and “KMT2A-like” that could potentially compromise 124 
the effectiveness of the model training, they were grouped together with subtypes “ZNF384” 125 
and “KMT2A” into categories “ZNF384 Group” and “KMT2A Group”, respectively. Samples 126 
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classified as the “CRLF2(non-Ph-like)” subtype were excluded, as their identification is 127 
more appropriately addressed through alternate analysis. Finally, the B-ALL dataset 128 
contains a total of 1,743 samples across 20 distinct categories. The pie chart (Fig. 1A) 129 
illustrates the distribution of these samples among the various subtypes. The age 130 
distribution and numbers for different age group of B-ALL dataset is shown in the Fig. 1B. 131 
The distribution showed a higher concentration of B-ALL cases in younger age groups, 132 
with notable peaks in childhood and young adulthood. 133 

 134 
Figure 1. Overview of B-ALL subtype identification study using RanBALL framework. 135 
(A) B-ALL dataset composition. The pie chart shows the distribution of 1,743 B-ALL 136 
samples across 20 molecular subtypes, each represented by a distinct color. Percentages 137 
reflect the relative prevalence of each subtype within the dataset. (B) The age distribution 138 
and numbers for different age group of B-ALL dataset. Age distribution across B-ALL 139 
patients. The histogram illustrates the number of patients within each age group across 140 
three categories: childhood (red), adolescent and young adult (AYA, green), and adult 141 
(blue). (C) Transcriptomic data preprocessing pipeline. The flowchart outlines the multi-142 
step preprocessing applied to the RNA-seq data, starting with raw read counts and ending 143 
with log-transformed TPM values for 21,365 genes from 1,743 selected samples. (D) The 144 
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framework of RanBALL. The preprocessed data is dimensionally reduced using random 145 
projection (RP), and an ensemble of multi-class Support Vector Machines (SVMs) is 146 
trained on multiple reduced matrices. The symbol m represents the m-th reduced-147 
dimensional data matrix. We predefined dimension of 1000 in this framework. The symbol 148 
n indicates the n-th predicted subtype. The RanBALL possesses the capability to predict 149 
20 distinct subtypes. The final prediction is an aggregated output from the ensemble. In 150 
addition to subtype prediction, RanBALL supports enhanced visualization of subtype 151 
clusters and identification of subtype-specific markers. 152 
 153 

The RanBALL framework 154 
RanBALL is an ensemble-based model, designed to assist healthcare professionals in 155 
accurately identifying B-ALL subtypes using RNA-seq data (Fig. 1D). Leveraging the 156 
random projection and SVM techniques, our current model enables to identify accurately 157 
and efficiently 20 distinct B-ALL subtypes, which could provide reliable diagnostic insights 158 
that can significantly aid clinical decision-making processes. The RanBALL model accepts 159 
different types of gene expression data as input data, including gene raw counts, 160 
Fragments Per Kilobase of transcript per Million mapped reads (FPKM) and Transcripts 161 
Per Million (TPM). The different data types would be uniformly transformed into log2(TPM 162 
+1) for predicting the B-ALL subtypes. Following data preprocessing and normalization, 163 
RanBALL conducts random projection to lower data dimensions. Multi-class SVM models 164 
serve as classifiers on the reduced-dimensional data in each iteration. Finally, ensemble 165 
predictions are generated by averaging probabilities across multiple runs, yielding the 166 
highest probability subtype prediction for each sample.  167 

 168 
Data Preprocessing  169 
The data preprocessing steps are illustrated as Fig. 1C. For the raw gene expression 170 
counts of 1988 B-ALL samples, only the gene expressed in at least 75% of the samples 171 
were retained, resulting in and final 21635 of the 52007 original genes were kept. The gene 172 
Ensembl IDs were kept in the study. Subsequently, we normalized the raw read counts to 173 
Transcripts Per Million (TPM). The total exon length of gene was calculated as effective 174 
length of the gene and the information of gene exons was extracted from the gtf file 175 
(http://ftp.ensembl.org/pub/release-176 
109/gtf/homo_sapiens/Homo_sapiens.GRCh38.109.gtf.gz). After sequencing depth 177 
normalization, TPM values were log-transformed using the formula log2(x+1). Ultimately, 178 
the B-ALL subtype clinical information was combined with the log-transformed TPM for 179 
subsequent training and analysis. 180 
 181 

Random Projection 182 
Random Projection is a dimensionality reduction technique that aims to reduce the 183 
dimensionality of high-dimensional data while approximately preserving pairwise distances 184 
between data points. It is based on the Johnson–Lindenstrauss lemma (44). The Johnson–185 
Lindenstrauss lemma provides a theoretical justification that a high-dimensional dataset 186 
can be approximately projected into a low-dimensional space while approximately 187 
preserving pairwise distances between data points. Specifically, the original D-dimensional 188 
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data are projected onto a d-dimensional subspace through multiplying the original D-189 
dimensional data matrix by the d	×	N random projection matrix. Namely, 190 

𝚨 =
1
√𝑑

𝐑𝐓 ∈ ℝ!×# , 	 𝚻 ∈ ℝ!×# , 	 𝐑 ∈ ℝ!×$ (1) 

The random projection matrix R should conform to any distributions with zero mean and 191 
unit variance, so that the random projection matrix R will give a mapping that satisfies the 192 
Johnson–Lindenstrauss lemma. In the study, the matrix T represents the original 193 
transcriptomic dataset, with D corresponding to the number of gene Ensembl ID and N 194 
denoting the number of B-ALL samples. For computational efficiency and the requirement 195 
of sparseness, we implemented a highly sparse RP method (45) This method determines 196 
the elements of R (i.e., ri,j) as follows:  197 

𝑟%,' = .𝑝

⎩
⎪⎪
⎨

⎪⎪
⎧ 1,			𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	

1
2𝑝
,

			0,			𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	1	 −	
1
𝑝 ,

−1,				𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	
1
2𝑝 ,

 

 

where	𝑖 = {1, … , 𝑑}, 
𝑗 = {1, … , 𝐷} (2) 

In accordance with the recommendation (45), we selected 𝑝 = √𝐷. 198 
 199 

Ensemble RP Model 200 
After data preprocessing, the transcriptomic profiling of B-ALL samples was projected to 201 
low dimensional space by random projection. To obtain reliable and robust performance, 202 
we selected 30 subspace dimensions 1000. The transformed low dimensional data matrix 203 
was used for training an ensemble of multi-class support vector machine (SVM) classifiers, 204 
each corresponding to one of the RP matrices of various dimensions. In the training 205 
process, the “linear” kernel was chosen in the SVM classifier. To develop a robust model, 206 
we ensembled the predicted probability scores of each B-ALL subtype for different low-207 
dimensional data matrix and obtained an ensemble model. Fig. 2B shows that the 208 
ensemble method has better and stable performance than individual method. The 209 
ensemble score 𝑺𝒎𝒆𝒏  for each subtype was calculated by averaging all the prediction 210 
probability scores from each 𝑚-th SVM model in the ensemble:  211 

𝑆()* =
1
𝑀 K K K𝛼(,+𝑦(,+

#

*,-

𝛫(𝚨, 𝚨.),
	

+∈1!

	
2

(,-

 (3) 

where Sm	is the set of support vector indexes corresponding to the 𝑚-th SVM, αm,γ are the 212 
Lagrange multipliers, 𝑁 is the number of predicted subtypes, 𝑦m,γ is the class label for each 213 

subtype, 𝛫(∙, ∙) is the linear kernel function. The 𝚨 represents the projected RNA-seq 214 
data, and the 𝑘 correspond to the B-ALL sample. In addition, 𝑀 is the ensemble size. 215 
 216 

Performance Evaluation 217 
This study applies 10 times 5-fold cross-validation (46) during the model training and 218 
testing. For model performance, we measure accuracy (Acc), F1-Score (F1), and Matthews 219 
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correlation coefficient (MCC) (47) as follows: 220 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 

 
(4) 

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (5) 

  

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

.(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (6) 

True positives (TP) denote the count of samples predicted to possess the specific subtype, 221 
which aligns with clinical documentation. False positives (FP) represent the count of 222 
samples incorrectly classified into different categories. True negatives (TN) indicate the 223 
count of samples predicted as 'other' that genuinely do not belong to the specified subtype 224 
category, while false negatives (FN) refer to the count of samples predicted as 'other' but 225 
are indeed found within the specified subtype category. The F1-Score is a statistical 226 
measure used to evaluate the accuracy of a classification model, which is a way to balance 227 
the trade-off between precision and recall. A high precision might indicate a low tolerance 228 
for false positives, while a high recall might indicate a low tolerance for false negatives. 229 
The F1-Score helps to find a balance between these two factors, making it a useful metric 230 
for evaluating the overall quality of a classification model. It is particularly useful in 231 
situations where the class distribution is imbalanced. In addition, MCC is a balanced 232 
measure that takes into account true and false positives and negatives. This makes it 233 
particularly helpful in imbalanced datasets where the number of positive instances may be 234 
very different from the number of negative instances. 235 
 236 

Visualization 237 
RanBALL utilizes a weighted combination of two key matrices: a dimension-reduced 238 
feature matrix and a sample-to-subtype matrix derived from prediction results. The 239 
dimension-reduced feature matrix is obtained through Random Projection technique. This 240 
matrix is then normalized using Z-Score, centering and scaling the data along each 241 
dimension across samples. The prediction subtype for each sample is encoded by one-hot 242 
encoding to create a sample-to-subtype matrix, where each row corresponds to a sample, 243 
and each column represents a subtype. This matrix was then normalized using a Z-Score 244 
transformation across all samples to ensure that the data is centered and scaled, making 245 
the features comparable with the dimension-reduced matrix. These two matrices are then 246 
combined with different weights to formulate the final visualization matrix, combining the 247 
predicted subtype information with the dimensional features. We defined w as the weight 248 
ratio of the dimension-reduced feature matrix over the sample-to-subtype matrix. This 249 
weight can be adjusted to emphasize either the reduced feature space (w > 1) or the 250 
predicted subtype information (0 < w < 1) in the final visualization. This combined matrix 251 
serves as the input for t-SNE visualization, allowing for a more informative and potentially 252 
more biologically relevant representation of the data. 253 
 254 
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Differential gene expression analysis 255 
Differential gene expression analysis was performed by edgeR package (3.40.2) (48). The 256 
voom method was applied to model differential gene expression. The raw counts were 257 
transformed to log2(CPM) for differential gene expression analysis. The cutoffs of FDR < 258 
0.05, and absolute log2FC > 1 were applied to define significantly differentially expressed 259 
genes (DEGs). The heatmap plot was generated by Pheatmap package (1.0.12) (49). 260 
 261 

Results 262 

RanBALL applies ensemble random projection for multi-class prediction 263 
RanBALL is an ensemble random projection-based multi-class classification model 264 
specifically designed for B-ALL subtyping using gene expression profiling. Employing 265 
random projection (RP) as its dimensionality reduction technique, RanBALL operates on 266 
gene expression data organized in a matrix format, where rows correspond to genes and 267 
columns represent cells. The processing pipeline encompasses four main steps: (1) data 268 
preprocessing and normalization, (2) RP-based dimension reduction, (3) multi-class 269 
classification, and (4) ensemble-based result determination, as depicted in Fig. 1D. In the 270 
step of data preprocessing and normalization, raw counts were converted to log-271 
transformed Transcripts Per Million (TPM) values (Fig. 1C). This step is crucial for 272 
normalizing the data across different samples and reducing the impact of technical 273 
variations. RP is then applied to reduce the dimensionality of the processed data matrix. 274 
RP offers several key advantages that make it a valuable technique, particularly when 275 
working with high-dimensional data. First, RP provides significant computational efficiency 276 
(50), which is crucial for reducing the computational burden in large-scale datasets. 277 
Moreover, it approximately preserves the distances between data points (51), ensuring that 278 
the intrinsic data structure remains largely intact. This property allows RP to effectively 279 
maintain the relationships within the original data, even after dimensionality reduction. 280 
Finally, RP is theoretically grounded in the Johnson-Lindenstrauss lemma (45), which 281 
guarantees that the projection can preserve pairwise distances with high probability, 282 
making it both a practical and theoretically effective method for dimensionality reduction. 283 
In this process, a random matrix is generated to project the high-dimensional data onto a 284 
lower-dimensional space. The original data is multiplied by this random matrix, creating a 285 
lower-dimensional representation. We randomly generated 30 different low-dimensional 286 
representations, each with 1,000 dimensions. This multiple projection approach contributes 287 
to the ensemble nature of the model, increasing robustness and reducing the impact of 288 
any single projection. After dimensionality reduction, the multi-class SVM was trained on 289 
the reduced-dimension data to classify samples into different B-ALL subtypes. By 290 
aggregating the outcomes from various runs within the same dimension, the ensemble 291 
approach is applied to consolidate results, leading to the assignment of final prediction 292 
labels to samples. In addition, the predicted subtypes can provide additional information 293 
with the original gene expression profiling data for grouping data points in visualizations, 294 
aiding in the identification of clusters or patterns. In summary, RanBALL is particularly 295 
suited for the high-dimensional nature of gene expression data and the complex task of B-296 
ALL subtyping, offering both accurate classification and improved visualization capabilities. 297 
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RanBALL preserves sample-to-sample distance 298 
To explain the contribution of RP for dimension reduction in RanBALL, we investigated the 299 
degree of distortion caused by dimension reduction and compared the correlation of 300 
sample-to-sample distances after shrink with PCA (52), t-SNE (53) and UMAP (54), 301 
respectively, in different levels. We conducted Pearson correlation analysis to assess the 302 
similarities in sample-to-sample distances between the original and dimension-reduced 303 
data. As depicted in Fig. 2A, random projection achieves nearly perfect similarities in 304 
sample-to-sample distance, with correlation coefficients exceeding 0.93. For example, 305 
when reducing the data to 1000 dimensions (from 21,635 to 1000), the correlation remains 306 
high at 0.94, indicating the preservation of almost all embedded information post-307 
dimension reduction. The remarkable performance of random projection (RP) can be 308 
attributed to several key factors. One critical factor is RP's ability to preserve pairwise 309 
distances (51), which plays a central role in maintaining high correlation coefficients 310 
between the original and projected data. This property is theoretically supported by the 311 
Johnson-Lindenstrauss lemma (45), which guarantees that a set of points in high-312 
dimensional space can be projected onto a lower-dimensional space while approximately 313 
maintaining relative distances with high probability. Furthermore, RP's linear 314 
transformation ensures that the overall structure of the data (55), including relative 315 
distances between samples, is preserved without introducing complex non-linear 316 
distortions. This simplicity not only enhances computational efficiency but also minimizes 317 
the risk of overfitting to specific data patterns. In contrast, correlations observed with PCA, 318 
t-SNE, and UMAP are notably lower (overall below 0.67, with a minimum of 0.32). This 319 
disparity in performance can be explained by the inherent characteristics of these methods. 320 
While effective for linear dimensionality reduction, PCA focuses on preserving directions of 321 
maximum variance, potentially losing information crucial for maintaining sample-to-sample 322 
distances but not significantly contributing to overall variance. As non-linear techniques 323 
designed for dimension reduction and low-dimensional visualization, t-SNE and UMAP 324 
focus on preserving local structure and often distort global structure. These could be the 325 
reasons to explain their poor performance in preserving overall sample-to-sample 326 
distances in this context. RP's exceptional performance in preserving sample-to-sample 327 
distances while significantly reducing dimensionality makes it particularly well-suited for 328 
the high-dimensional, complex nature of gene expression data in B-ALL subtyping. 329 
  330 
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 331 
Figure 2. Comparative analysis of random projection with PCA, t-SNE, and UMAP for 332 
dimensionality reduction. This figure compares the performance of random projection 333 
(RP) with other widely used dimensionality reduction techniques across different 334 
dimensions (400 to 2000). The upper triangular section of each matrix displays the Pearson 335 
correlation coefficients (PCC) between the sample-to-sample distances in the original high-336 
dimensional space (Ori.) and the corresponding reduced-dimensional space for each 337 
method. Higher PCC values indicate better preservation of the original data structure. RP 338 
consistently achieves higher PCCs (highlighted in red), where it outperforms PCA, t-SNE, 339 
and UMAP. The lower triangular section provides scatter plots of pairwise distances 340 
between samples before and after dimensionality reduction, illustrating how well each 341 
method preserves the relative distances between points. 342 
 343 

Ensemble method has better performance than individual method 344 
To ensure the robust and stable performance of RanBALL, we applied ensemble learning 345 
to the predicted results obtained after dimensionality reduction with multi-class SVM. By 346 
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aggregating predictions from multiple models, ensemble methods typically lead to better 347 
performance than relying on individual models. Additionally, ensemble methods help to 348 
reduce overfitting by averaging the biases of different models, thus providing a more 349 
generalizable solution. The Fig. 3A shows the performance between ensemble and 350 
individual methods with repeated 100 times experiments. Focusing on overall accuracy 351 
metrics, the result revealed that the ensemble method’s prediction exhibited greater 352 
performance and stability with statistical significance compared to individual tests across 353 
all dimensions, indicating its superiority in generating stable and trustworthy prediction 354 
outcomes. The original dimension was reduced from 400 to 2000, with an interval of 200, 355 
to test the performances of different dimensions. It also helps in finding the optimal reduced 356 
dimensionality that balances model performance and computational efficiency. The results 357 
show that there is no significant difference across conditions (Fig. 3B). Based on that the 358 
dimension of 1000 provides a substantial reduction from the original dimension while 359 
maintaining performance, 1000 was chosen for the subsequent model training. Next, we 360 
compared the performance with different ensemble sizes. Fig. 3C demonstrates that the 361 
ensemble size of 30 has better and more stable performance in term of accuracy. Based 362 
on this finding, we selected the ensemble size of 30 for the model training. The empirical 363 
approach to determining these parameters ensures that the final model configuration is 364 
well-suited to the B-ALL subtyping with complex gene expression data. 365 

 366 
Figure 3. The performance evaluation of ensemble learning in RanBALL. (A) 367 
Comparative analysis of overall accuracy between ensemble and individual methods 368 
across different reduced dimensions. Red boxes represent the accuracy distribution of the 369 
ensemble method aggregating 30 random projections, while green boxes denote the 370 
accuracy distribution of individual classifiers on single random projections. Statistical 371 
significance was assessed using the Wilcoxon signed-rank test, with p-values displayed 372 
above each comparison. (B) The model performance across different reduced dimensions. 373 
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The violin plot illustrates the distribution of accuracy scores for dimensions ranging from 374 
100 to 2000, with an interval of 200. (C) The model performance across different ensemble 375 
sizes. Violin plots depict the distribution of accuracy scores for ensemble sizes ranging 376 
from 5 to 50. Black dots represent individual data points, while the violin shape shows the 377 
probability density of the data. 378 
 379 

RanBALL outperforms existing model  380 
To assess the performance of the RanBALL model and its potential generalizability to 381 
unseen data, we employed a rigorous 10 times 5 folds cross-validation methodology on an 382 
RNA-seq dataset comprising 1743 B-ALL samples with 20 subtypes as described in Fig. 383 
1A. Our RanBALL model yields notable average results exhibiting an accuracy of 93.35% 384 
(± 0.23%), an F1 score of 93.10% (± 0.25%) and a MCC of 92.62% (± 0.25%) (Fig. 4A). 385 
These metrics collectively offer a comprehensive evaluation of the model's efficacy. Given 386 
its exceptional performance across these metrics, the RanBALL model demonstrates 387 
significant promise for enhancing B-ALL clinical diagnosis. Additionally, we conducted a 388 
comparative analysis of the performance between RanBALL and ALLSorts (42), a well-389 
established logistic regression classifier for B-ALL subtyping with the same data. As 390 
illustrated in Fig. 4A, RanBALL exhibited superior performance compared to ALLSorts in 391 
terms of Accuracy (improved by 3%), F1 Score (improved by 1%) and MCC (improved by 392 
3%). Notably, the superior F1 score of RanBALL suggests a more balanced trade-off 393 
between precision and recall relative to ALLSorts. The MCC performance matrix offers a 394 
balanced assessment even in scenarios where classes exhibit disparate sizes, indicating 395 
that RanBALL excels particularly in multiclass classification settings with imbalanced class 396 
distributions compared to ALLSorts. 397 
 398 
Subsequently, we applied the RanBALL model to a hold-out test set derived from the B-399 
ALL dataset. This test set, comprised of 521 samples, generated by randomly sampling 400 
30% of the entire B-ALL dataset. The RanBALL model demonstrated a commendable 401 
accuracy of 94.24% on this held-out test subset. The prediction probabilities of each test 402 
sample are shown in Fig. 4B, demonstrating the model's consistent ability to maintain high 403 
confidence levels for accurate predictions. The robust performance of the model, 404 
evidenced by high-probability predictions, underscores its proficiency in discerning intrinsic 405 
data patterns, thereby yielding confident and reliable outcomes. Notably, it exhibits the 406 
capability to deliver accurate predictions even for subtypes characterized by limited sample 407 
sizes. However, it's important to acknowledge that prediction probabilities for such 408 
subtypes may not attain exceptionally high levels. The 30% held-out test was also 409 
performed with the ALLSorts with an accuracy of 89.64% on the same test dataset. The 410 
confusion matrices are illustrated in Fig. 4C, D, provide a detailed breakdown of the 411 
model’s prediction ability for each subtype in test data. Some subtypes (9/20) have been 412 
correctly classified with no misclassifications observed for two computational models, such 413 
as PAX5alt, KMT2A, DUX4, TCF3-PBX1, Low hypodiploid, MEF2D, PAX5 P80R, 414 
BCL2/MYC and HLF Group. For some subtypes with similar characteristics and features, 415 
the model may have a certain possibility to predict the sample to be another class. For 416 
RanBALL, 2 samples were wrongly predicted as the Ph subtype in the Ph-like Group (97 417 
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samples), while 3 were wrongly classified as the Ph subtype in the Ph-like Group with 418 
ALLSorts. This situation also occurs in the subtypes related to chromosome number (Near 419 
haploid, Low hyperdiploid, and High hyperdiploid), suggesting that future research 420 
directions should improve the prediction accuracy in these subtypes with similar 421 
characteristics and features to achieve better clinical applications. 422 

 423 
Figure 4. Comprehensive performance analysis of RanBALL in comparison with 424 
ALLSorts for B-ALL subtyping. (A) Comparative performance metrics of RanBALL and 425 
ALLSorts. Accuracy, F1 Score and MCC were used for evaluating model performance. Box 426 
plots illustrate the distribution of Accuracy, F1-Score, and MCC across 100 times 5 folds 427 
cross validation. (B) Prediction probability distribution for the 30% held-out test set using 428 
RanBALL. Each point represents the probability of a sample (out of 521) being classified 429 
into a specific B-ALL subtype. Specifically, the blue dots indicate the specific subtype that 430 
the RanBALL model predicts to align with the categories on the horizontal axis. (C, D) 431 
Confusion matrices for the 30% held-out test set, comparing RanBALL (C) and ALLSorts 432 
(D) performance. Each cell shows the number of samples classified, with the diagonal 433 
representing correct classifications (True Positives). Color intensity correlates with the 434 
number of samples. 435 
 436 

RanBALL visualizes data better than state-of-the-art methods  437 
RanBALL demonstrates superior visualization capabilities compared to traditional methods 438 
by incorporating predicted subtype information. Specifically, the predicted subtype 439 
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information for each sample was encoded using one-hot encoding and normalized by Z-440 
score. This normalization process was applied both to the reduced dimensionality matrix 441 
and the one-hot encoded subtype information. These two matrices were then concatenated 442 
for visualization using t-SNE. We selected the t-SNE, one of the powerful and 443 
representative methods for visualizing high-dimensional data, to compare the performance 444 
of visualization. 445 
 446 
Fig. 5A illustrates the effectiveness of RanBALL in visualizing B-ALL samples, where 447 
distinct subtypes are well-clustered, reflecting the model's capability to maintain and 448 
highlight the inherent structure in the data. This visualization allows for easy identification 449 
and interpretation of the 20 different subtypes, ranging from common subtypes like 450 
BCL2/MYC and DUX4 to rarer subtypes such as ZNF384 Group and iAMP21. Each 451 
subtype, represented by different colors and labels, forms tight, distinct clusters. In contrast, 452 
Fig. 5B presents a t-SNE visualization without the integration of predicted subtype 453 
information. This results in a less structured and more dispersed representation of the data, 454 
where subtype boundaries are less distinct and overlap more significantly. Subtypes such 455 
as High hyperdiploid, KMT2A Group, PH and Ph-like do not cluster as clearly, indicating 456 
that key relationships between subtypes may be obscured without the subtype prediction 457 
information. The difference between these two visualizations underscores the value of 458 
RanBALL's approach in enhancing the interpretability and informative visual 459 
representations of complex transcriptomic data. By leveraging predicted subtype 460 
information, RanBALL not only improves visual clarity but also potentially reveals 461 
biologically meaningful relationships between subtypes. This enhanced visualization 462 
technique could provide valuable information for researchers in identifying patterns, 463 
outliers, and potential new subgroups within B-ALL samples, ultimately leading to better 464 
understanding and classification of this complex disease. 465 

 466 
Figure 5. Comparative visualization of B-ALL subtype clustering using RanBALL-467 
derived features and traditional t-SNE. (A) Enhanced t-SNE visualization of the reduced 468 
dimension matrix incorporating predicted subtype information. (B) t-SNE visualization of 469 
the reduced dimension matrix without incorporating RanBALL's predicted subtype 470 
information. The same color scheme was used in the two plots. 471 
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Differential expression analysis for B-ALL subtypes 473 
To investigate the gene expression patterns for each B-ALL subtype, we performed 474 
differential expression analysis. Fig. 6A illustrates the differential expressed genes (DEG) 475 
between Ph-like B-ALL and the rest subtypes. The expression plots of the upregulated 476 
DEG ENAM across all B-ALL samples are shown in Fig. 6C, highlighting its specific 477 
overexpression in the Ph-like subtype.  The ENAM gene was specifically expressed at the 478 
samples with Ph-like subtype. The heatmap displays the expression profiles of top 20 DEG 479 
(Fig. 6B). It indicates the potential differences among subtypes within the biological 480 
functions and processes. Among the most upregulated genes, CRLF2, one of the most 481 
important genes in Ph-like ALL, is consistent with its known role in activating JAK-STAT 482 
signaling in a subset of Ph-like cases (56,57). Other significantly overexpressed genes, 483 
including GPR110, ENAM, LDB3, and IGJ, suggesting alterations in cell adhesion, 484 
signaling, and immunoglobulin production (56,58–60). Notably, SPATS2L overexpression 485 
has been associated with poor prognosis (61,62). We also conducted differential 486 
expression analysis on the PAX5alt subtype (Fig. 6D~F). These upregulated genes may 487 
play crucial roles in promoting cell proliferation, survival, and signaling pathways in PAX5alt 488 
B-ALL. For instance, TPBG is upregulated in high-risk cytogenetic subgroups and 489 
overexpressed on the plasma membrane of lymphoblasts collected at relapse in patients 490 
with B-cell precursor ALL (63). Similarly, KSR2, a kinase suppressor of Ras 2, has been 491 
implicated in dysregulation of multiple signaling (64), suggesting a similar altered signaling 492 
pathway in PAX5alt B-ALL. Additionally, TIFAB has been shown to regulate USP15-493 
mediated p53 signaling in stressed and malignant hematopoiesis (65). Interestingly, 494 
NFATC4 significant upregulation in PAX5alt B-ALL contrasts with its significant 495 
downregulation in Ph-like B-ALL, highlighting distinct transcriptional programs between 496 
these subtypes. For differential expression analysis between High hyperdiploid and other 497 
subtypes (Fig. 6G~I), the upregulated gene DDIT4L has been identified as therapeutic 498 
targets in PDX ALL carrying the recently described DUX4-IGH translocation (66). Notably, 499 
the upregulated gene OVCH2 was observed that it was downregulated in ALL (67,68). 500 
Additionally, S100A16 has been implicated in suppressing the growth and survival of 501 
leukemia cells in adults with Ph-negative B-ALL (69).  502 
 503 
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 504 
Figure 6. Differential expression analysis within B-ALL subtypes. (A, D, G) Volcano 505 
plots illustrating differential gene expression between specific B-ALL subtypes and all other 506 
subtypes. The x-axis represents log2 fold change, while the y-axis shows -log10(p-value). 507 
Red dots indicate 20 significantly up-regulated genes, blue dots represent 20 significantly 508 
down-regulated genes. Top 20 DEGs are labeled, with the most significant gene circled in 509 
red. (A) Ph-like vs. rest; (D) PAX5alt vs. rest; (G) High hyperdiploid vs. rest. (B, E, H) 510 
Heatmaps displaying expression patterns of the top 20 DEGs for each subtype comparison. 511 
Rows represent genes, columns represent samples. Color scale ranges from blue (low 512 
expression) to red (high expression). Hierarchical clustering dendrograms are shown for 513 
both genes and samples. Sidebar annotations indicate sample subtypes and relative level 514 
of gene expression. (B) Ph-like vs. rest; (E) PAX5alt vs. rest; (H) High hyperdiploid vs. rest. 515 
(C, F, I) The expression plot of the up-regulated DEG for Ph-like subtype. RanBALL plots 516 
visualizing the expression levels of the significantly up-regulated gene for each subtype 517 
across all B-ALL samples. Each point represents a sample, colored by expression intensity 518 
(red: high, grey: low). Numbers indicate different B-ALL subtypes. (C) DEG for Ph-like 519 
(ENAM); (F) DEG for PAX5alt (TPBG); (I) DEG for High hyperdiploid (LOXHD1). 520 
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Discussion 524 

In this study, we introduced an ensemble-based model, RanBALL, which integrates 525 
Random Projection and Support Vector Machine (SVM) techniques to accurately identify 526 
B-cell Acute Lymphoblastic Leukemia (B-ALL) subtypes using solely RNA-seq data. 527 
Random Projection demonstrates efficacy in reducing the dimensionality of high-528 
dimensional data while retaining informative features present in RNA-seq data. The 529 
experiments indicated that the ensemble method achieve superior stability and better 530 
performance than individual method. The RanBALL model runs independent from prior 531 
genomic knowledge for B-ALL subtype identification. Our results underscored the 532 
robustness of the proposed model, attaining high levels of accuracy, F1 score, and MCC 533 
value, indicating promising prediction capabilities of RanBALL for B-ALL subtyping. The 534 
application of ML models in B-ALL subtype identification demonstrates the feasibility of 535 
leveraging complex datasets to discover subtle differences among patients. This approach 536 
overcomes the limitations of traditional subtyping methods, which often rely on a limited 537 
set of markers and may not capture the full spectrum of disease heterogeneity. 538 
 539 
Compared to existing methods for B-ALL subtyping, RanBALL consistently exhibited 540 
superior performance metrics over ALLSorts, particularly in terms of Accuracy, F1 Score 541 
and MCC value. However, there is still room for improvement in certain B-ALL subtypes, 542 
necessitating further enhancement of prediction capabilities. First, the generalizability of 543 
our findings may be limited by the composition of the training datasets, which were derived 544 
from specific patient populations. Future studies should aim to validate our models in 545 
diverse and independent cohorts to ensure their broad applicability. Second, the predictive 546 
performance of our models could be influenced by technical and biological confounders 547 
(70), such as batch effects and sample quality. Rigorous data preprocessing and quality 548 
control measures will be essential to mitigate these factors in future work. Advanced 549 
computational methods can be applied to remove the batch effects to improve the 550 
performance of model. Finally, the observed imbalance among B-ALL subtypes within the 551 
dataset may also potentially impede model performance. To address this issue, data 552 
augmentation techniques (71) can be applied to augment the representation of minority 553 
subtypes.  554 
 555 
Additionally, future research efforts may focus on mitigating batch effects between different 556 
B-ALL clinical cohorts to better address real-world challenges and facilitate clinical 557 
applications (72). Furthermore, the integration of additional data types, such as genetic 558 
(73,74), epigenetic (75,76) and imaging data (43,77), may further enhance the accuracy 559 
and reliability of ML models in B-ALL subtype identification. The advent of single cell 560 
sequencing technologies has revolutionized our ability to dissect heterogeneity of B-ALL, 561 
enabling the characterization of cellular subpopulations and their functional states at an 562 
unprecedented resolution (78–82). The integration of multi-scale multi-omics and multi-563 
modality can provide valuable insights into the molecular landscape of B-ALL subtypes and 564 
inform personalized therapeutic approaches.  565 
 566 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2024. ; https://doi.org/10.1101/2024.09.24.614777doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.24.614777
http://creativecommons.org/licenses/by-nc-nd/4.0/


We anticipate that the deployment of RanBALL will yield significant positive impacts on 567 
clinical diagnosis, personalized treatment strategies, and risk stratification within the realm 568 
of biomedical research and practical clinical settings. This is particularly critical as distinct 569 
B-ALL subtypes may respond differentially to various treatments, and precise subtype 570 
identification can aid clinicians in selecting the most efficacious treatment regimen for 571 
individual patients. Moreover, the diverse outcomes and survival rates associated with 572 
different B-ALL subtypes underscore the importance of accurate subtype classification. To 573 
facilitate further extending and accessibility of RanBALL, we have developed an open-574 
source Python package, available at https://github.com/wan-mlab/RanBALL. 575 
 576 
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