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marine environment. We believe that the discoveries 
made herein lay theoretical and practical foundations 
for the development of novel bioremediation systems 
for marine plastispheres and help mitigate the envi-
ronmental pollution issues related to plastic wastes.
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Introduction

Plastic products are extensively and widely used, and 
the plastic polymer compositions vary depending on 
the intended applications of the products they are 
used to fabricate. Common plastics include high-den-
sity polyethylene (HDPE), low-density polyethylene 
(LDPE), and polyethylene terephthalate (PET) (Plas-
tics Europe, 2021). As of 2020, approximately 367 
million tonnes of plastic products were produced. The 
plastic production volume has substantially increased 
since the 1990s (Plastics Europe, 2021). However, 
only about 9% of all plastic waste is recycled, and as 
much as 60% of it is buried in a landfill or discarded 
as litter in terrestrial environments (Geyer et  al. 
2017). Most marine plastic waste consists of improp-
erly disposed terrestrial plastic waste that has entered 
the oceans via rivers, wastewater outflows, wind, and 
tides. In 2010, 4–12 million tonnes of marine plas-
tic waste originated from land (Jambeck et al. 2015). 

Abstract Plastic waste has a negative impact on 
marine ecosystems and the quantity of this source 
of anthropogenic pollution continues to increase. 
Several studies have investigated plastic biodegrada-
tion using various microorganisms. In this study, we 
isolated fungi from polyethylene terephthalate (PET) 
waste on Korean seacoasts and evaluated their abil-
ity to degrade plastic by comparing the diameters 
of the clear zones they formed on polycaprolactone 
(PCL) agar. We isolated 262 strains from 47 plastic 
waste sources and identified 108 fungal species via 
molecular methods. The PCL agar assay revealed 
that 87 species presented with varying degrees of 
PCL degradation capacity. Among them, certain fun-
gal species were strong PCL degraders. The present 
study demonstrated the possibility that some fungi 
inhabiting plastic could potentially degrade it in the 

Supplementary Information The online version 
contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10482- 022- 01782-0.

S. H. Kim · J. W. Lee · J. S. Kim · W. Lee · M. S. Park · 
Y. W. Lim (*) 
School of Biological Sciences and Institution 
of Microbiology, Seoul National University, Seoul 08826, 
Republic of Korea
e-mail: ywlim@snu.ac.kr

M. S. Park 
Department of Crops and Forestry, Korea National 
College of Agriculture and Fisheries, Jeonju 54874, 
Republic of Korea

http://orcid.org/0000-0002-5505-9451
http://orcid.org/0000-0003-2864-3449
http://crossmark.crossref.org/dialog/?doi=10.1007/s10482-022-01782-0&domain=pdf
https://doi.org/10.1007/s10482-022-01782-0
https://doi.org/10.1007/s10482-022-01782-0


1380 Antonie van Leeuwenhoek (2022) 115:1379–1392

1 3
Vol:. (1234567890)

Additionally, about 1.15–2.41 million tonnes of 
marine plastic waste originated from river (Lebreton 
et al. 2017).

Plastic waste accumulation has had a direct and 
indirect negative impact on marine ecosystems. Plas-
tic pieces are ingested by marine animals and dam-
age their internal organs (Ahrendt et al. 2020; Wright 
et  al. 2013). Furthermore, wave action, weathering, 
and other processes break down plastic pieces into 
microplastics which are the plastic wastes that were 
degraded into smaller fragments and fibers (Thomp-
son et al. 2004), causing other more hazards. Micro-
plastics float on ocean surfaces and contain Persistent 
Organic Pollutants (POPs), which are endocrine dis-
ruptors that hinder the survival rate of marine organ-
isms (Rios et  al. 2007). Microplastics also transport 
microbial pathogens and alien species, hazardous to 
marine ecosystems in other regions (Arias-Andres 
et  al. 2018; Beloe et  al. 2022; Bowley et  al. 2021). 
Thus, plastic in marine ecosystems has become a seri-
ous environmental issue. However, there are no poli-
cies or solutions in place that effectively mitigate the 
plastic waste problem. Recent studies have explored 
chemical degradation, recycling, and biodegrada-
tion as potential marine plastic waste remediation 
measures.

Much research attention has been directed toward 
plastic waste degradation by microorganisms. Plas-
tic waste has persisted in natural environments for 
decades. Plastic debris that is inhabited and partially 
decomposed by the microbial community is now 
referred to as the “plastisphere” (Zettler et  al. 2013) 
and numerous different microorganisms are found 
in it (Hirota et al. 2021; Amaral-Zettler et al. 2020). 
Some of them were reported to degrade plastic by 
various kinds of tests (Badahit et al. 2018; Sangeetha 
Devi et al. 2019; Hou et al. 2022; Kumari et al. 2019; 
Muhonja et  al. 2018; Yamada-Onodera et  al. 2001): 
and enzymatic activities involved in plastic degrada-
tion have been investigated extensively (Temporiti 
et al. 2022). Nevertheless, prior research has focused 
mainly on plastic-decomposing bacteria. Fungi com-
prise only about 3% of all eukaryotic organisms in the 
plastisphere, although they play a vital role as decom-
posers in the environment (Rogers et  al., 2020). 
Numerous plastic-degrading fungi have been detected 
and identified in the landfill (terrestrial) plastisphere 
including Aspergillus spp. (Cosgrove et  al. 2007; 
Muhonja et  al. 2018; Zahra et  al. 2010), Fusarium 

spp. (Kanelli et al. 2015; Zahra et al. 2010), and Peni-
cillium simplissimum (Yamada-Onodera et al. 2001). 
Previous studies on plastic-degrading fungi in marine 
environments concentrated primarily on several spe-
cific taxa such as Aspergillus sp. (Sarkhel et al. 2020) 
and Zalerion maritimum (Paço et al. 2017).

Previously, we isolated different fungi from vari-
ous substrates in marine environments such as sail-
fin eggs (Park et al. 2018) and microalgae (Lee et al. 
2019; Park et al. 2016). Many of these fungi had high 
enzymatic activity (Lee et al., 2019; Park et al. 2015a, 
2019). Since these studies detected the fungal ability 
to degrade complex organic matter, it was expected 
that plastic-isolated fungi could decompose plastic 
substrates. A metabarcoding analysis revealed that 
a wide array of fungi survived on plastics collected 
from seawater (Lacerda et  al. 2020, Davidov et  al. 
2020) and the sea floor (De Tender et al. 2017). We 
hypothesized that different fungi can inhabit plastic 
waste and most of them actively participate in plastic 
degradation. In the present study, therefore, we inves-
tigated fungal diversity in PET waste collected from 
seacoasts and used a polycaprolactone (PCL) deg-
radation assay to evaluate their capacity to degrade 
plastic. PCL is a biopolymer that has been extensively 
used in biodegradation research as a surrogate for 
non-degradable polymers. Its usage in fungal incuba-
tion varies from film/sheet form (Benedict et al. 1983; 
Fukushima et  al. 2010), or agar from as emulsified 
substance (Lee et al. 2021).

Materials and methods

Sampling

Forty-seven PET wastes such as PET bottles and PET 
cups were collected from 15 sites along the western 
and southern sea coast of the Republic of Korea in 
April, 2018 (Fig.  1). We collected PET bottles and 
PET cups with intact shape to prevent wrong sam-
ple collection. The PET surfaces were cleansed of 
debris by washing with artificial seawater (ASW). 
Each PET waste sample was cut with sterilized scis-
sors into 27 pieces each 1  cm2 in area. To isolate the 
fungi, nine pieces per sample were placed in dichlo-
ran rose bengal chloramphenicol agar (DRBC; Difco, 
Sparks, MD, USA), glycerol yeast extract agar (GYA; 
1  g  L−1 glucose, 0.1  g  L−1 yeast extract, 0.5  g  L−1 
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peptone, and 15 g  L−1 agar), and potato dextrose agar 
(PDA; Difco, Sparks, MD, USA) supplemented with 
ASW (purified from seawater in South Korea; salin-
ity = 32.0%). The plates were incubated at 25 °C for 
7–14  d. Pure fungal colonies were then transferred 
to new PDA + ASW plates. Pure fungal strains were 
stored in 20% (v/v) glycerol at –80 °C and deposited 
in the Seoul National University Fungus Collection 
(SFC).

Molecular identification

The fungal isolates on PDA were grouped accord-
ing to their morphological characteristics such 
as texture, color, colony size, and sporulation. 
At least one strain was selected from each group 
for molecular identification. Genomic DNA was 
extracted by a modified cetyltrimethylammonium 
bromide (CTAB) method (Rogers and Bendich 
1994). PCR amplification of the internal transcribed 
spacer (ITS) region was performed using ITS1F/
ITS4 primers (Gardes and Bruns 1993; White et al. 
1990) and AccuPower PCR Master Premix (Bioneer 
Co., Daejeon, Republic of Korea). All representa-
tive strains were identified down to the genus level 
based on their ITS sequences. The strains within 
certain genera were identified to the species level 
using various protein-coding gene analyses and 

different primer sets. Actin (act) was amplified 
using ACT-512F/ACT-783R (Carbone and Kohn 
1999) or ACT1Fd/ACT1Rd (Aveskamp et al. 2009; 
Groenewald et  al. 2013) whilst β-tubulin (BenA) 
was amplified using Bt2a/Bt2b (Glass and Donald-
son 1995). PCR was performed in a C1000 Ther-
mal Cycler (Bio-Rad Laboratories, Hercules, CA, 
USA) under previously described conditions (Park 
et  al. 2015b). PCR amplicons were checked with 
1% agarose gel and purified with an Expin™ PCR 
Purification Kit (GeneAll Biotechnology, Seoul, 
Korea) according to the manufacturer’s instructions. 
DNA was sequenced at Macrogen (Seoul, Republic 
of Korea) in an ABI PRISM 3700 Genetic Analyzer 
(Life Technologies, Gaithersburg, MD, USA).

All sequences were proofread and edited with 
MEGA7 (Kumar et al. 2016) and deposited in Gen-
Bank (Supplementary Table  2). For the phyloge-
netic analysis, the type sequences of the reference 
species were retrieved from GenBank (Supplemen-
tary Table 3) and aligned with the sample sequences 
for each locus with MAFFT v. 7 (Katoh and Stand-
ley 2013) using the default parameters. Maximum 
likelihood phylogenetic analyses were performed on 
each gene (ITS, act, BenA) using RAxML (Stamata-
kis 2006), the GTRGAMMA evolution model, and 
1,000 bootstrap replicates.

Fig. 1  Sampling site of plastic waste along Korean seacoasts and number of fungal strain isolated (A). Example of plastic wastes 
collected from mudflats and sand (B)
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PCL degradation test on agar plate

The PET-degrading ability was determined for one 
to nine representative strains of each fungal species 
(Table  1) by measuring the clear zones formed in 
polycaprolactone (PCL) media. The PCL agar was 
prepared according to a previously reported method 
(Lee et al. 2021) and consisted of a 1% (w/v) emulsi-
fied PCL suspension (pellet form, 3 mm in diameter; 
Sigma-Aldrich., St. Louis, MO, USA) in acetone plus 
distilled water (10% of acetone volume). The PCL 
suspension was added to an autoclaved medium com-
prising a 0.8% (w/v) yeast nitrogen base (Difco-Bec-
ton Dickinson, Broken Bow, NE, USA), 1.5% (w/v) 
agar, and distilled water, then poured into 90  mm-
Petri dishes.

Representative strains of each fungal species iden-
tified were inoculated with a 4-mm hole punch at the 
center of each agar plate. Clear zone formation was 
evaluated by measuring the distance between the 
margin of the clear (transparent) zone and that of the 
colony after 7 d incubation at 25 °C. All clear zones 
were measured in triplicate and averaged. PCL deg-
radation by each species was determined from the 
averages of the clear zone lengths of all representative 
strains of the same species. For species with multiple 
tested strains, the standard deviations of the average 
clear zone lengths of all strains within the same spe-
cies were also calculated.

Results

Identification and diversity analysis

A total of 262 fungal strains were isolated from 47 
PET wastes. Multiple strains of the same species 
derived from a single PET waste were treated as a 
single strain. One to nineteen fungal strains were iso-
lated per PET. Depending on the isolation medium 
used (DRBC, GYA, or PDA), different numbers of 
fungal strains were isolated from the same PET waste 
(Fig. 1, Supplementary Table S1). All fungal strains 
were grouped into 108 taxa based on their morpho-
logical features and ITS sequencing results (Fig.  2). 
Forty-seven taxa were identified to the species level 
based on their protein-coding genes. The actin gene 
was used to identify Cladosporium species whilst 
the β-tubulin gene was used to identify Aspergillus, 

Diaporthe, Didymella, Epicoccum, Juxtiphoma, Neo-
didymelliopsis, Nothophoma, Penicillium, Pestalo-
tiopsis, Remotididymella, and Talaromyces species 
(Table  1, Supplementary Figure S1). Based on the 
ITS sequences alone, 47 taxa were confirmed to the 
species level whilst 14 others were identified to the 
genus, family, and order levels.

All 108 species detected belonged to the Ascomy-
cota and were classified into 15 orders and 46 gen-
era (Table 1, Fig. 2). Pleosporales was the dominant 
order and included 44 species. It was followed by 
Cladosporiales and Eurotiales with 13 species each 
(Fig.  3A). Cladosporiales only included the genus 
Cladosporium whereas Eurotiales comprised the 
genera Penicillium, Aspergillus, and Talaromyces. 
The latter two included three and one species, respec-
tively, and nine Penicillium species were identified 
(Fig. 3B, Table 1). Eleven different species were iso-
lated from at least five PET wastes (Fig. 3C). Alter-
naria alternata was isolated from 21 different PET 
waste sources followed by Cladosporium ramotenel-
lum (16 PET wastes) and Paradendryphiella arenar-
iae (14 PET wastes).

Fungal PCL degradation activity

A PCL degradation test was performed on 146 
representative strains of 108 species (Supple-
mentary Table  S3). The clear zone lengths of the 
fungal strains were in the range of 0–13.96  mm. 
Based on the average clear zone lengths, fungal 
PCL degradation ability was categorized into four 
levels, namely, no degradation (0  mm: 0), weak 
(0 < ( +) ≤ 5  mm), moderate (5 < (+ +) ≤ 10  mm), 
and strong (10 < (+ + +) ≤ 15 mm) (Fig. 4). Five spe-
cies exhibited strong PCL degradation, 18 species 
showed moderate PCL degradation, 64 species pre-
sented with weak PCL degradation, and 21 species 
did not degrade PCL at all (Table 1). There was also 
intraspecies variation. The PCL degradation capaci-
ties of eight Alternaria alternata strains ranged from 
12.88  mm (NP321) to 3.32  mm (NP044). In most 
cases, however, all tested strains of the same spe-
cies were similar in terms of their PCL degradation 
ability.
Phaeophleospora eucalypticola had the strongest PCL 
degradation ability (clear zone length = 13.96  mm). 
Four Cladosporium species also showed strong 
PCL degradation activity. Cladosporium allicinum 
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Table 1  Fungi isolated from PET wastes and their PCL degradation assay results. Fungal orders are in bold font. Averages and SD 
of clear zone lengths are presented and categorized into four levels

Species Total no. 
strains

PCL tested 
strains

Clear zone length (mm) Degradation level*

Amphisphaeriales
 Morinia cf. acaciae 1 1 1.55 ( +)
 Neopestalotiopsis sp. 2 1 0 0
 Pestalotiopsis cf. anacardiacearum 1 1 0.88 ( +)
 Pestalotiopsis cf. australasiae 2 1 0.34 ( +)
 Pestalotiopsis sp. 2 1 0.9 ( +)
 Pestalotiopsis thailandica 1 1 1.35 ( +)

Botryosphaeriales
 Botryosphaeria dothidea 1 1 0.37 ( +)
 Sphaeropsis sapinea 1 1 6.94 (+ +)

Capnodiales
 Neodevriesia cf. metrosideri 1 1 6.08 (+ +)

Cladosporiales
 Cladosporium allicinum 2 1 13.92 (+ + +)
 Cl. anthropophilum 7 1 9.74 (+ +)
 Cl. cf. halotolerans 2 1 8.6 (+ +)
 Cl. cf. cladosporioides 1 1 8.22 (+ +)
 Cl. funiculosum 1 1 1.66 ( +)
 Cl. halotolerans 1 1 2.46 ( +)
 Cl. perangustum 2 2 6.76 (± 4.19) (+ +)
 Cl. pseudocladosporioides 3 2 7.74 (± 6.84) (+ +)
 Cl. ramotenellum 16 6 4.85 (± 2.17) ( +)
 Cl. rectoides 5 2 10.34 (± 3.28) (+ + +)
 Cl. tenuissimum 7 3 10.21 (± 0.82) (+ + +)
 Cl. xanthochromaticum 2 1 11.37 (+ + +)
 Cl. xylophilum 4 2 0.57 (± 0.11) ( +)

Diaporthales
 Diaporthe cf. arecae 3 2 1.33 (± 0.4) ( +)
 Diaporthe cf. hungariae 5 2 2.48 (± 0.95) ( +)
 Diaporthe cf. pseudooculi 1 1 2.18 ( +)

Diaporthe cf. sojae 1 1 1.09 ( +)
 Cytospora ceratosperma 1 1 6.17 (+ +)

Dothideales
 Aureobasidium melanogenum 1 1 8.28 (+ +)
 Au. namibiae 1 1 6.24 (+ +)
 Au. pullulans 2 1 0.56 ( +)

Eurotiales
 Aspergillus ochraceus 1 1 2.19 ( +)
 As. oryzae 1 1 4.8 ( +)
 As. tritici 1 1 2.03 ( +)
 Penicillium charlesii 2 1 0 0
 Pe. commune 4 2 0 (± 0) 0
 Pe. crustosum 3 1 0 0
 Pe. echinulatum 1 1 0.37 ( +)
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Table 1  (continued)

Species Total no. 
strains

PCL tested 
strains

Clear zone length (mm) Degradation level*

 Pe. expansum 1 1 0 0
 Pe. exsudans 1 1 0 0
 Pe. javanicum 1 1 0 0
 Pe. oxalicum 1 1 0 0
 Pe. roqueforti 1 1 0.07 ( +)
 Talaromyces rugulosus 1 1 3.31 ( +)

Glomerellales
 Plectosphaerella cucumerina 1 1 0.39 ( +)

Helotiales
 Botrytis cinerea 1 1 1.03 ( +)

Hypocreales
 Acremonium cf. fuci 12 3 0 (± 0) 0
 Ac. fuci 8 2 0 (± 0) 0
 Fusarium equiseti 4 2 0.63 (± 0.21) ( +)
 Fusarium fujikuroi 1 1 0.73 ( +)
 Hypocreales sp. 1 1 2.43 ( +)
 Parasarocladium cf. gamsii 2 2 3.38 (± 4.08) ( +)
 Parengyodontium album 1 1 0 0
 Sarocladium strictum 1 1 7.63 (+ +)
 Trichoderma harzianum 1 1 0.41 ( +)
 Tr. fomiticola 1 1 0.3 ( +)

Mycosphaerellales
 Phaeophleospora eucalypticola 2 1 13.96 (+ + +)

Pleosporales
 Alternaria alternata 21 8 6.14 (± 3.28) (+ +)
 Al. cf. rosae 2 1 5.82 (+ +)
 Al. chlamydospora 3 1 1.7 ( +)
 Didymella cf. macrophylla 1 1 1.28 ( +)
 Didymosphaeriaceae sp. 1 1 1 6.1 (+ +)
 Didymosphaeriaceae sp. 2 1 1 3.33 ( +)
 Epicoccum cf. duchesneae 3 1 3.58 ( +)
 Epicoccum cf. hordei 1 1 0 0
 Epicoccum cf. sorghinum 1 1 2.65 ( +)
 Epicoccum dendrobii 2 1 6.26 (+ +)
 Epicoccum duchesneae 3 2 0.43 (± 0.61) ( +)
 Epicoccum sorghinum 2 1 1.5 ( +)
 Epicoccum sp. 1 1 0.35 ( +)
 Epicoccum tritici 2 1 2.34 ( +)
 Juxtiphoma cf. eupyrena 1 1 0 0
 Kalmusia araucariae 1 1 0 0
 Neocamarosporium betae 3 1 0 0
 Neocamarosporium solicola 2 1 0.55 ( +)
 Neocamarosporium sp. 3 2 0.86 (± 0.72) ( +)
 Neodidymelliopsis cf. longicolla 6 3 2.61 (± 3.37) ( +)
 Neodidymelliopsis longicolla 2 1 0.77 ( +)
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had the widest clear zone (13.92  mm) followed by 
C. xanthochromaticum (11.37  mm), C. rectoides 
(10.34 mm), and C. tenuissimum (10.21 mm). Seven-
teen species of moderate PCL-degrading fungi were 
classified into ten genera including two Alternaria 
spp., two Aureobasidium spp., two Phaeosphaeria 
spp., five Cladosporium spp., and each one species of 

Cytospora, Epicoccum, Neodevriesia, Nothophoma, 
Sarocladium, Sphaeropsis (Table  1). Cladosporium 
species showed relatively high PCL degradation 
activity among the moderate PCL degraders.

Weak PCL-degrading fungi included 64 spe-
cies. They were classified as 30 genera (Table  1). 
Didymella, Epicoccum, and Remotiodidymella 

Table 1  (continued)

Species Total no. 
strains

PCL tested 
strains

Clear zone length (mm) Degradation level*

 Neosetophoma cf. poaceicola 1 1 2.31 ( +)
 Neosetophoma poaceicola 1 1 0.94 ( +)
 Neosetophoma rosigena 1 1 0.58 ( +)
 Nothophoma quercina 1 1 7.67 (+ +)
 Paraconiothyrium brasiliense 1 1 0 0
 Paradendryphiella arenariae 14 3 0.17 (± 0.3) ( +)
 Paraphoma radicina 1 1 0.77 ( +)
 Parathyridaria cf. tyrrhenica 2 2 0.73 (± 1.03) ( +)
 Phaeosphaeria culmorum 1 1 0 0
 Phaeosphaeria spartinicola 1 1 5.27 (+ +)
 Phaeosphaeria oryzae 1 1 6.42 (+ +)
 Pleosporaceae sp. 1 1 1 0.42 ( +)
 Pleosporaceae sp. 2 1 1 2.07 ( +)
 Pleosporales sp. 1 12 2 0 (± 0) 0
 Pleosporales sp. 2 3 2 1.33 (± 1.15) ( +)
 Pleosporales sp. 3 1 1 0.93 ( +)
 Pleosporales sp. 4 2 2 3.37 (± 1.52) ( +)
 Pyrenochaetopsis microspora 2 1 1.24 ( +)
 Pyrenochaetopsis paucisetosa 1 1 0.69 ( +)
 Remotididymella cf. capsici 3 2 0.51 (± 0.72) ( +)
 Remotididymella sp. 1 1 2.78 ( +)
 Stemphylium lycopersici 1 1 1 ( +)
 St. vesicarium 2 2 1.66 (± 0.07) ( +)

Sordariales
 Chaetomium globosum 1 1 0.93 ( +)

Thelebolales
 Pseudogymnoascus pannorum 2 1 0.89 ( +)

Xylariales
 Eutypella cf. persica 1 1 0.69 ( +)

Others (incertae sedia)
 Apiospora marii 1 1 0.51 ( +)
 Ap. rasikravindrae 1 1 0.85 ( +)
 Nigrospora cf. oryzae 2 1 0 0
 Sedecimiella taiwanensis 1 1 0.19 ( +)
 Septoriella cf. hubertusii 1 1 0.33 ( +)

* 0 mm: (0), 0 < ( +) ≤ 5 mm, 5 < (+ +) ≤ 10 mm, 10 < (+ + +) ≤ 15 mm
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(Didymellaceae) showed relatively weak PCL deg-
radation as no strain produced a clear zone wider 
than 5  mm. The species in the Eurotiales exhibited 
very weak PCL degradation ability. None of the 
Penicillium strains produced clear zones wider than 
1 mm (Fig. 4, Table 1). Aspergillus and Talaromyces 
showed higher PCL-degrading activity than Peni-
cillium. The lengths of the average clear zones pro-
duced by Aspergillus and Talaromyces were 2.30 and 
3.31 mm on average, respectively. Most species in the 
Order Amphisphaeriales were weak PCL degraders 
(Table 1).

Whereas most fungi could degrade PCL, certain 
species isolated from 27 PET waste sources failed 
to form clear zones on PCL agar. Most of them 
were isolated along with other PCL-degrading fungi 
(Fig.  5). Weak and moderate PCL-degrading fungi 
were detected in most samples. Weakly PCL-degrad-
ing fungi were particularly abundant in PET samples 
Nos. 20, 36, 37, 43, and 44. By contrast, strong PCL 
degrading fungi did not predominate in any PET 
samples and always co-occurred either with weak or 
moderate PCL-degrading fungi or with those that did 
not degrade PCL at all.

Discussion

We isolated fungi from marine PET wastes and 
tested PCL degradation to discover competent plas-
tic-degrading fungi in the marine plastisphere and 
determined whether they could degrade PET. Numer-
ous fungi were isolated despite the limited number 
of PET wastes examined here. They resembled that 
reported in a previous study on fungal diversity in the 
marine environment (Jones et  al. 2015; Kwon et  al. 
2021). Acremonium fuci was isolated from seaweed in 
Europe and North America (Zuccaro et al. 2004), and 
several Cladosporium species, such as C. perangus-
tum, C. tenuissimum, and C. xanthochromaticum were 
found in marine sediments (Luo et  al., 2020). Para-
dendryphiellla arenariae were reported from various 
microalgae in Europe (Dela Cruz et al. 2006), and a 

number of other fungal species including Fusarium 
equiseti, Nigrospora oryzae, Penicillium oxalicum, 
and Trichoderma harzianum were found in sea sand, 
mudflats, and seaweeds (Heo et al. 2019; Park et al. 
2019). The fungal species detected in this research 
were also similar to those in other marine and terres-
trial plastisphere. Many species in Pleosporales were 
detected in plastisphere of the Antarctic Ocean (Lac-
erda et al. 2020) and the North Sea (De Tender et al. 
2017). The Aspergillus, Chaetomium, Epicoccum, 
Fusarium, and Trichoderma species were identified in 
the terrestrial plastisphere (Kemona and Piotrowska 
2016; Ye et al., 2021).

Several putative plastic-degrading fungi were 
identified by the PCL agar degradation test. Approxi-
mately 81% of all identified species formed clear 
zones and were, therefore, potential plastic biode-
graders. PET degradation-associated enzyme activ-
ity was detected in PCL-degrading fungus (Nyyssölä 
et al. 2013). Hence, the species identified here could 
conceivably decompose PET and other plastics as 
well. Cladosporium included 13 PCL-degrading spe-
cies of which four and nine had strong and moderate 
PCL-degrading activity, respectively. Prior research 
confirmed that several Cladosporium strains effec-
tively degraded other substrates, such as polyurethane 
(Bonhomme et al. 2003; Brunner et al. 2018; Srikanth 
et  al. 2022). Therefore, Cladosporium species could 
degrade plastic wastes in the marine environment. 
Aureobasidium pullulans, which displayed relatively 
good polyurethane degradation were also reported 
previously (Crabbe et  al. 1994). Phaeophleospora 
eucalypticola showed the strongest PCL-degrading 
activity, but this species has not been given much 
attention to its degrading abilities. Further research 
on P. eucalypticola may reveal its full potential for 
the degradation of plastics. It is reported that various 
enzymes, such as cutinase, laccase, and esterase from 
fungi were used in degradation of PET (Anbalagan 
et  al. 2021; Khan et  al. 2022), and this may explain 
the high biodiversity in relatively small number of 
plastic samples.

In this study, most of the highly abundant spe-
cies showed low levels of PCL degradation abil-
ity. Paradendryphiella arenariae, Pleosporales 
sp.1, and Acremonium cf. fuci were very abundant 
but relatively weak PCL degraders. In contrast, the 
fungi with the strongest degradation ability were far 
less abundant. Phaeophleospora eucalypticola and 

Fig. 2  Phylogenetic tree of fungi isolated from marine plastic 
waste based on ML analysis of ITS. Bootstrap scores > 70 are 
presented at nodes. Scale bar indicates the number of nucleo-
tide substitutions per site. Representative strains of each taxon 
based on ITS sequences are shown in bold font

◂
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C. xanthochromaticum showed strong PCL degra-
dation capacity, but only two strains were isolated 
from 47 plastic wastes. Each PET waste had many 
fungal species with low level of PCL degradation 
but generally possessed only one fungal species 
that was highly effective. This result allowed us to 
infer that varying fungal species on plastic waste 
performed different roles. The abundant weak plas-
tic degraders may grow on plastic wastes to utilize 
materials primarily degraded by mechanical or bio-
logical process. The initial breakdown mechanism 
of plastics may include polymer oxidation, which 
increases the hydrophilicity of plastics, weakens 
their bonds and mechanical structures, and facili-
tates secondary colonizer access (Oberbeckmann 
and Labrenz 2020). Microorganisms also gradually 
degrade other complex molecules such as lignin 
(Janusz et  al. 2017) and anthropogenic (synthetic) 
polymers (Chen et al. 2020). Hence, the colonizing 
mechanisms of various microbes strongly influence 
fungal diversity on plastic wastes. Species with 
weak or no PCL-degrading ability may have been 
isolated from the primary colonizers as fungicolous 
fungi. The inhabitation of fungal species on other 

plastic-colonizing microorganisms has previously 
been reported (Webb et  al. 2000). Some Hypocre-
ales and Pleosporales species are known to obtain 
their nutrients either commensally or parasitically 
from other fungi (Sun et  al. 2019). Most species 
in Hypocreales and Pleosporales showed low PCL 
degradation ability, proving that they get their nutri-
ents from alternative sources.

In conclusion, the present study showed that 
numerous fungi inhabit PET wastes in the marine 
environment. Certain fungal taxa including Phae-
ophleospora eucalypticola, Alternaria spp., Aureoba-
sidium spp., and Cladosporium spp. have strong 
PCL degrading activity. Fungi with low level of PCL 
degrading ability were abundant and co-occurred 
with one of strong PCL degrader. The wide diver-
sity and ranges of abundance, and plastic-degrading 
capacity of fungi even on small quantities of PET 
suggest that the various fungal taxa play different 
roles in marine plastic waste decomposition. In future 
research, we will aim to clarify the functions of each 
of these fungal taxa in order to develop a strategy for 
effective and efficient plastic waste degradation in the 
marine environment.

Fig. 3  Proportions of fungi isolated from plastic waste. Order (A), genus (B), and species (C) levels
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Fig. 4  Boxplot of PCL-degrading ability of all tested strains 
with the genera detected in the present study. Boxplot con-
structed based on average clear zone length of each species. 

Clear zone lengths are distances between colony margins and 
transparent areas. Inset: photograph of Cladosporium rectoides 
(SFC2022_NP016) culture

Fig. 5  Fungal species isolated from collected plastic wastes. Color intensity is commensurate with PCL degradation level
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