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Abstract: This paper presents an image reconstruction method to monitor the temperature
distribution of electric generator stators. The main objective is to identify insulation failures that
may arise as hotspots in the structure. The method is based on temperature readings of fiber optic
distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure
are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by
finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation
faults in real stator structure, experimental tests were performed using a prototype similar to the
real structure. The results demonstrate the ability of the proposed method to reconstruct images of
hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when
compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect
hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator
stators can contribute to the identification of insulation faults in early stages, thereby avoiding
catastrophic damage to the structure.
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1. Introduction

Stator temperature is one of the most influential parameters in the degradation of hydroelectric
generators [1]. High temperatures, above 100 ◦C, can accelerate the wear of the insulation layer of
the windings, leading to premature failure and compromising the integrity of the generator [1,2].
Figure 1 shows some examples of faults that can occur due to insulation wear of the stator. Figure 1a
presents a failure caused by defects in insulation between the core and the bars, which can cause
partial discharges by corona effect due to potential difference between core and bars [3]. Figure 1b
shows a failure caused by defects in insulation between bottom and top bars, which can also cause
partial discharges due to the phase difference between the bars, increasing risk of short circuit in the
stator [4,5]. In both examples, the faults cause areas of high temperature near the defect location.
Thus, these faults can be identified as hotspots in certain parts of the structure. However, if the defect is
not identified and repaired in the early stages, the hotspots can propagate over the structure, affecting
the life expectancy of the insulation layer, leading in extreme cases to a catastrophic failure of the
generator [3–5].
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Figure 1. Examples of insulation faults in the generator stator. (a) Isolation fault between core and 
bars; (b) Isolation fault between bars. 

Usually, stator temperature measurements are performed through conventional localized 
sensors such as PT100 (Platinum Thermo-resistance) or RTD (Resistance Temperature Detector). 
These sensors are suitable for monitoring temperature changes during standard operation (no 
failure), given that the temperature distribution is considered to be rather uniform [6,7]. On the other 
hand, they are not able to identify hotspots that may arise in the stator coils as a result of insulation 
breakdown. Generally, the stator is instrumented with a few tens of localized sensors, which are not 
sufficient to monitor the entire structure containing hundreds of bars. Furthermore, the use of 
conventional electronic transducers in generators presents additional drawbacks because of their 
sensitivity to electromagnetic interference [6,7]. These factors motivate the use of other sensing 
technologies, aiming at monitoring the temperature distribution over the stator structure [8]. 

Recent research has shown that the distributed optical sensor technology (DTS) has great 
potential for applications related to monitoring of generator stator temperature [6–10]. DTS systems 
measure temperatures by means of optical fibers. These optoelectronic devices provide a continuous 
profile of the temperature distribution along the fiber cable [11]. Thus, the complete stator 
instrumentation can be carried out using only one optical fiber as a sensor, which is also immune to 
electromagnetic interference from the hostile environment inside the generator [11,12]. The main DTS 
technologies are those based on Raman and Brillouin scattering. Raman DTS systems have become 
popular for practical application due to their low cost and great stability when compared to equipment 
based on Brillouin scattering [12]. Typically, commercial Raman DTS equipment is able to provide a 
temperature profile along an optical fiber with over 30 km length, with accuracy of 0.1 °C and spatial 
resolution of 1 m [13]. The spatial resolution is defined as the spatial distance between the 10% and 90% 
levels of response to a temperature step. In general, for a temperature profile described by a step 
pulse with length smaller than the spatial resolution, the measured temperature is lower than the real 
temperature by a ratio of temperature step length and spatial resolution [12,13]. This parameter can 
be a disadvantage of Raman DTS, and sometimes limits its use in certain applications where the 
thermal variations occur in regions with dimensions less than 1 m. In the case of stator temperature 
monitoring, hotspots with dimensions in the order of centimeters are either undetected by the Raman 
DTS or measured incorrectly, compromising the identification of some insulation faults at an early 
stage. 

In the last years, several studies for improvement in spatial resolution of Raman DTS systems 
have been presented in the literature. From the hardware viewpoint, methods based on a more 
efficient use of optoelectronic devices have shown significant results regarding the DTS spatial 
resolution (about 10 cm) [14–17]. However, such techniques often present higher costs, besides other 
complications that prevent their use in commercial equipment, such as increments in response time 
and in measurement uncertainty. Therefore, another alternative that has been investigated is the use 
of signal processing techniques [18–21]. These techniques have shown enhancement in DTS 
performance without increasing equipment costs, as this does not require physical changes in the 
device. Recently, the method proposed by Bazzo et al. [21], based on Total Variation deconvolution, 
presented great potential with regard to spatial resolution. The results showed that it is possible to 

Figure 1. Examples of insulation faults in the generator stator. (a) Isolation fault between core and bars;
(b) Isolation fault between bars.

Usually, stator temperature measurements are performed through conventional localized sensors
such as PT100 (Platinum Thermo-resistance) or RTD (Resistance Temperature Detector). These sensors
are suitable for monitoring temperature changes during standard operation (no failure), given that the
temperature distribution is considered to be rather uniform [6,7]. On the other hand, they are not able
to identify hotspots that may arise in the stator coils as a result of insulation breakdown. Generally,
the stator is instrumented with a few tens of localized sensors, which are not sufficient to monitor
the entire structure containing hundreds of bars. Furthermore, the use of conventional electronic
transducers in generators presents additional drawbacks because of their sensitivity to electromagnetic
interference [6,7]. These factors motivate the use of other sensing technologies, aiming at monitoring
the temperature distribution over the stator structure [8].

Recent research has shown that the distributed optical sensor technology (DTS) has great potential
for applications related to monitoring of generator stator temperature [6–10]. DTS systems measure
temperatures by means of optical fibers. These optoelectronic devices provide a continuous profile
of the temperature distribution along the fiber cable [11]. Thus, the complete stator instrumentation
can be carried out using only one optical fiber as a sensor, which is also immune to electromagnetic
interference from the hostile environment inside the generator [11,12]. The main DTS technologies are
those based on Raman and Brillouin scattering. Raman DTS systems have become popular for practical
application due to their low cost and great stability when compared to equipment based on Brillouin
scattering [12]. Typically, commercial Raman DTS equipment is able to provide a temperature profile
along an optical fiber with over 30 km length, with accuracy of 0.1 ◦C and spatial resolution of 1 m [13].
The spatial resolution is defined as the spatial distance between the 10% and 90% levels of response to
a temperature step. In general, for a temperature profile described by a step pulse with length smaller
than the spatial resolution, the measured temperature is lower than the real temperature by a ratio
of temperature step length and spatial resolution [12,13]. This parameter can be a disadvantage of
Raman DTS, and sometimes limits its use in certain applications where the thermal variations occur
in regions with dimensions less than 1 m. In the case of stator temperature monitoring, hotspots
with dimensions in the order of centimeters are either undetected by the Raman DTS or measured
incorrectly, compromising the identification of some insulation faults at an early stage.

In the last years, several studies for improvement in spatial resolution of Raman DTS systems have
been presented in the literature. From the hardware viewpoint, methods based on a more efficient use
of optoelectronic devices have shown significant results regarding the DTS spatial resolution (about
10 cm) [14–17]. However, such techniques often present higher costs, besides other complications that
prevent their use in commercial equipment, such as increments in response time and in measurement
uncertainty. Therefore, another alternative that has been investigated is the use of signal processing
techniques [18–21]. These techniques have shown enhancement in DTS performance without increasing
equipment costs, as this does not require physical changes in the device. Recently, the method proposed
by Bazzo et al. [21], based on Total Variation deconvolution, presented great potential with regard to
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spatial resolution. The results showed that it is possible to measure accurately temperature variations
in lengths as short as 15 cm, and to obtain significant improvements for lengths down to 5 cm.

This work proposes an image reconstruction scheme for improving the response of the thermal
imaging system for generator stator using Raman DTS. The thermal images are generated by
a reconstruction algorithm based on a DTS acquisition model and sparse representation theory. In this
representation method, using a dictionary that contains prototype signal atoms, images are described
by sparse linear combinations of these atoms. Lately, sparse representations have been successfully
applied in many areas of image processing, such as denoising, inpainting and super-resolution [22,23].
To monitor the temperature distribution of the stator, we employ a sparse representation because the
system can be considered a large structure at a uniform temperature, with occasional hotspots spread
out in case of insulation failure (see Figure 1). The DTS readings can be viewed as degraded observation
(blurred and downsampled) of the temperature distribution on stator surface. This distribution is
assumed to have a sparse representation with respect to a dictionary of hotspots, which is built based on
physical properties of the structure [23]. The principle of the image reconstruction ensures that under
mild conditions, the sparse representation can be correctly recovered from the degraded observation
(sensor readings) [23]. Due to the difficulty for reproducing insulation faults in real stator structure,
the experimental tests were performed using a prototype to generate the hotspots in a similar structure.
The proposed technique permits a more precise monitoring of the stator temperature distribution,
facilitating the identification of insulation faults at an early stage, and preventing further damage to
the generator.

This paper is organized into seven sections: Section 2 presents an overview of a thermal
imaging system for generator stator, with details of real stator structure and stator prototype used in
experimental tests. The details of DTS acquisition model are presented in Section 3. The dictionary
of hotspots used to generate thermal images is presented in Section 4. The details of the image
reconstruction algorithm are presented in Section 5, and the results are shown in Section 6. Finally,
Section 7 presents the main conclusions on the results obtained.

2. Overview of Thermal Imaging System

In a previous work [6], Bazzo et al. presented a thermal imaging system for stator using DTS
that was tested in a 200 MW hydroelectric generator. The main details of the structure and DTS
installation on the stator surface are shown in Figure 2. As can be seen, the structure is basically
composed of stacked 5 cm high bars with air gaps of 1 cm through which cooling air flow generated
by the rotor circulates. The winding bars are installed in vertical slots spaced by approximately 10 cm.
A distributed sensor based on fiber optics (DTS) was positioned on each slot that accommodates
the winding bars, as the bars are the main source of heat structure [24,25]. Although this system
has shown satisfactory results, the limitations of DTS spatial resolution impede the identification
of hotspots with dimensions of less than 1 m. A similar work presented by Hudson et al. [7] also
reports the need for a DTS equipment with spatial resolution about 10 cm for a more accurate thermal
mapping of a generator stator. This motivates the development of an image reconstruction algorithm
to improve system response, and to enable the identification of hotspots with dimensions at the order
of centimeters.

To evaluate the performance of the proposed method, we developed a prototype with similar
structure of the stator surface, as shown in Figure 3. The tests on the prototype were necessary since
it is not possible to generate insulation faults in the generator stator. Moreover, it is noteworthy that
the generator was in perfect condition and in full operation at the power plant. The stator prototype
was assembled with 35 aluminum plates with dimensions 200 × 5 × 1.5 cm, stacked with air gap of
1 cm, similar to the stator core plates (Figure 2). Each plate has holes spaced at 10 cm similarly to
the stator slots, and the stator bars were represented by resistances that can be embedded into the
holes. Resistances with different lengths were used, and these were driven by a Proportional Integral
Derivative (PID) controller. Thus, it was possible to simulate hotspots with dimensions 5 to 209 cm,
in a similar structure of stator surface. The optical fiber used as distributed sensor was installed



Sensors 2016, 16, 1425 4 of 16

the same way as the real stator structure. As the fiber must be positioned on the main heat sources
of the structure, which must be previously known, the maximum lateral displacement between the
fiber loops should be 10 cm, which is a critical system parameter to ensure the resolution of thermal
images. Although this structure is simple compared with the real stator structure, it reproduces the
contact surface and the position where the sensor was installed in the real generator stator. Tests in
the laboratory also allowed the use of a thermal camera Fluke® Ti25 (Fluke Corporation, Everett,
MA, USA) as a comparison reference to the thermal images generated by the image reconstruction
algorithm. In the real stator structure, this would not be possible, as there is not enough space to install
a camera after the rotor engagement.

The proposed image reconstruction algorithm was based on a DTS acquisition model and
a dictionary of hotspots to generate thermal images. Section 3 presents more details about sensor
model development.
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reconstruction algorithm performance.

3. Distributed Temperature Sensing (DTS) Acquisition Model

In a previous work [21], we showed that a linear model is suitable to represent the DTS response
if one aims to reconstruct hot steps. In this work, we employ the same acquisition model, which
was obtained by linear system identification techniques [26]. The input f (z) is the real temperature
profile and the output g (z) is the DTS temperature readings. As we are considering the steady state,
i.e., no time variations, the only independent variable is z which represents the distance (cm) along the
optical fiber sensor. The response g (z) is obtained by the convolution of the DTS impulse response
h (z) with input f (z), as shown in Equation (1) [26]:

g (z) = h (z) ∗ f (z) , (1)

by applying the Laplace transform we obtain Equation (2):
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G (s) = H (s) F (s) . (2)

The system identification consists in estimating the poles and zeros of a transfer function H (s),
as shown in Equation (3) [26]:

H (s) =
b0sm + b1sm−1 + . . . + bm

sn + a1sn−1 + . . . + an
=

∏m
i=1 (s− βi)

∏n
i=1 (s− αi)

, (3)

where βi are the zeros and αi are the poles.
The DTS equipment used in this work was an AP Sensing® N4385B (AP Sensing GmbH,

Böblingen, Germany) model. This model features a spatial resolution of 1 m, acquisition time of
30 s, sample interval down to 15 cm, and temperature resolution of 0.04 ◦C for fibers of up to
2 km. To evaluate the equipment response, an experimental test was carried out in a thermal bath
LAUDA®ECO RE415G model, with stabilized temperature at 50 ◦C, providing hotspots of different
lengths. The ambient temperature was 21.7 ◦C. The input f (z) and output g (z) were obtained for
hotspots at 50 ◦C with lengths from 5 cm to 4 m with intervals of 5 cm, as shown in Figure 4. As can
be seen, for hotspots of 5 cm the measured temperature was only 24.7 ◦C. From 1 m and above,
the temperature is measured correctly (50 ◦C), confirming the spatial resolution specification of the
DTS equipment.
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Figure 4. Experimental results used to identify the DTS system model, where the hotspots were at
50 ◦C with lengths from 5 cm to 4 m, with intervals of 5 cm.

We employed the prediction error minimization (PEM) approach to estimate the transfer function
coefficients. In this case, from initial estimates, the parameters are updated using a nonlinear least-squares
search method, where the objective is to minimize the weighted prediction error norm [26]. As a result,
we obtained a transfer function with nine poles and four zeros (determined empirically) and 98%
accuracy. The comparison between experimental data and model simulation is shown in Figure 5.
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Taking the inverse Laplace transform of the transfer function, we get the impulse response of the
system h (z), presented in Figure 6. The DTS impulse response h (z) is used to assemble a sensitivity
matrix H, which represents the DTS acquisition model. The matrix-vector notation of H is presented
in Equation (4):

H =


h (z0)

...

...
h (zk)

h (z0−1)

h (z0)
...

h (zk−1)

· · ·
· · ·
. . .
· · ·

h (z0−k)
...
...

h (z0)

 . (4)
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Although the matrix H has proven suitable for representing the sensor acquisition, the DTS model
contains errors and is itself a source of noise, as can be seen in Figure 5. To develop an efficient
reconstruction algorithm, a statistical analysis of the noise is fundamental to set the norm in the data
term of the cost function [22,27]. Thus, an analysis of the residuals was performed by the histogram
g-Hf, where g is a vector formed by the sensor data (DTS readings), and f is a vector representing
the temperature profile. Figure 7 summarizes the analysis results. Although the histogram presents
a slight skew toward high residual values, thereby indicating large model errors, this misfit is relatively
rare (see bar height). This behavior is expected when adopting linear models (for tractability purposes)
where the underlying physics is potentially nonlinear. To accommodate this inaccuracy, we performed
the following statistical analysis, similarly to [28]. Assuming a generalized Gaussian distribution,
we obtained a shape parameter p ≈ 1 using the method described in [27], indicating that the residuals
have a Laplacian distribution. This information will be further exploited in Section 5.
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4. Dictionary of Hotspots

We assume that the thermal system for generator stator can be modeled through a sparse
representation. The reason is that it can be considered a large structure with uniform distribution
temperature, where occasional hotspots may arise in case of insulation failure (Figure 1). Using
a dictionary matrix D ∈ Rm×n that contains n prototype image atoms in the columns {di} n

j=1, a thermal
image f ∈ Rm can be represented by sparse linear combinations of the dictionary atoms, as shown in
Equation (5) [29]:

f = Dα, (5)

where the vector α ∈ Rn contains the coefficients. Each atom is the thermal image of the whole
structure when only one possible heat source is active at a time. In this representation α is sparse,
i.e., it is assumed to contain mostly zeros. The representation of f may either be exact f = Dα or
approximate f ≈ Dα, satisfying Equation (6) [29]:

‖ f−Dα ‖p ≤ ε, (6)

where ε is the minimum residual error desired, and p is the norm used for measuring the deviation.
Figure 8 shows an example of the sparse representation of an imaging system using a dictionary. In this
example, a combination of three atoms of the dictionary D was used to form the image f [29,30].
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Figure 8. Example of the sparse representation of an imaging system using a dictionary.

We built a dictionary of hotspots through simulation using the COMSOL® (Comsol, Stockholm,
Sweden) multiphysics tool. In the simulations, we considered the physical properties of the materials,
geometry and environment boundary conditions. Each atom was generated considering the position
of the resistances in each plate. As the prototype has 35 plates at 5 cm high, and 19 positions for
resistance, considering 1 atom for each 1 cm, we generated 3325 atoms (35 × 5 × 19) to model the
system. Although this representation of 1 cm results in a large number of atoms, it was necessary to
reconstruct hotspots with more accurate dimensions, also preventing alignment problems of the sensor
installation. Since the total size of the image 209 × 200 cm, the vector length of each atom is 41,800,
forming a dictionary matrix D of 41,800 × 3325.

The columns of the dictionary matrix, or atoms, were formed by the temperature distribution
values generated by power of 1 W/cm3 applied to a resistance of 5 cm in each position along the
plates, considering steady state. We set the resistance of 5 cm as a minimum condition, because
of the plate dimensions and difficulty in using tubular resistances with lower length. However,
the temperature data is sampled every 1 cm for forming atoms, as explained in the previous paragraph.
Thus, the vector α represents the values of the thermal power that generate the hotspots in the structure.
Therefore, by estimating α, we obtain the location and the amount of thermal power that causes each
hotspot. Figure 9a shows details of the mesh geometry used in the simulations, and Figure 9b shows
the temperature distribution for total power of 1 W/cm3 at 26 ◦C ambient temperature, in steady
state. The results show a variation of 2.62 ◦C with decreasing temperature of e−x/45, where x is the
distance from the heat source. This decreasing function is a parametric fit of the numerical simulations,
which was used to ease the construction of the dictionary. The application of the dictionary D in the
image reconstruction algorithm is discussed in more detail in Section 5.
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5. Imaging Reconstruction Algorithm

First, considering the basic model of image reconstruction theory, the acquisition system can be
represented by Equation (7) [22]:

g = Hf + n, (7)

where g is a vector formed by DTS readings, H is the sensitivity matrix, f is a vector representing
the temperature distribution in stator surface, and n is a vector representing all sources of additive
noise. Considering that the thermal image has a sparse representation in the constructed dictionary,
the acquisition system can be rewritten substituting Equation (5) into Equation (7), as shown in
Equation (8) [22]:

g = HDα+ n. (8)

As shown in Figure 6, the DTS “spreads” the impulse, which is a characteristic of low-pass
systems. This is translated into an ill-conditioning of matrix H. Thus, the recovering of the temperature
distribution by simple inversion of Equation (8) yields high noise amplification, generating poor
results [21]. This problem requires regularization, which stabilizes the reconstruction and improves
the results. Although the dictionary has been built with the hotspots of 1 cm to improve representation,
we expected them to occur with 5 cm or more (see Figure 9), because of the minimal condition of
structure prototype and steady state, as explained in Section 4. Therefore, the most appropriate
regularization is Total Variation, as it privileges piece-wise constant signals. Thus, the cost function to
solve the inverse problem is given by Equation (9) [21,22]:

α̂ = argmin
α

‖ g−HDα ‖p
p +λ ‖ Qα ‖1, (9)

where α̂ is a vector with the values of the thermal power that generate the hotspots in the structure, p is
the norm used in the data-fidelity term, λ is the regularization parameter which controls the sensitivity
of the solution to the noise, and Q is a finite difference matrix. In approximation methods, typical
norms used for measuring the deviation are the Lp-norms for p = 1, 2 and ∞. It is common to use the
L2 norm in the data term because the noise is usually well represented by a normal distribution [27,29].
However, according to the statistical analysis presented in Section 3, the DTS acquisition model contains
residual errors with Laplacian behavior, which indicates that the L2 norm should be replaced by an L1

norm, i.e., p = 1 [27]. To solve Equation (9) with p = 1, we used the Interactive Reweighted Least Squares
(IRLS) approach. This method consists of approximating the cost function by weighted quadratic L2

norms, updating the solution by solving a least squares problem and reiterating those two steps until
some stop criterion is attained, usually defined by a minimum update rate [31]. The implementation
details in Matlab® (R2014a, MathWorks, Natick, MA, USA) are shown in Algorithm 1.
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Algorithm 1: Image Reconstruction Algorithm

Require: g% DTS readings, H% sensitivity matrix, D% Dictionary of hotspots, Q% finite difference matrix
Require: λ % Regulariztion parameter (set empirically)
Require: e = 10–9 % avoids zero division
Require: HD = H × D % impulse response of the dictionary
Require: α̂ = HD

′ × g % intial solution
Require: ε % minimum update to stop

1: while stop > ε

2: α̂0 = α̂

3: Wh = diag(1 ./ (abs(g − HD × α̂) + e)) % data term weights
4: Wl = diag(1 ./ (abs(Q × α̂) + e)) % penalization term weights
5: α̂= (HD

′ ×Wh × HD + λ × (Q′ ×Wl × Q))\(HD
′ ×Wh × g) % least-squares

6: stop = norm(α̂ − α̂0)/norm(α̂0) % stopping criterion

7: end while

8: f = reshape(D × α̂,209,200) % thermal image

The proposed image reconstruction algorithm was evaluated with simulated data to assess the
robustness to different noise levels, and with experimental data through the stator prototype (Figure 3).
The results are shown in Section 6.

6. Results

This section is organized into two subsections: Subsection 6.1 presents the results obtained
simulating the response g by sensitivity matrix H for a given hotspot Dα, in order to assess the
algorithm robustness applying different noise levels; Subsection 6.2 shows the results obtained
by the experimental tests with the stator prototype, using resistances to emulate heat sources of
different lengths.

6.1. Simulated Results

The evaluation of the algorithm performance with respect to noise level was conducted
simulating a hotspot with the dictionary D. The simulated hotspot covered a region of three plates,
with a maximum temperature of 80 ◦C and ambient temperature of 26 ◦C, which represents a length of
approximately 15 cm, considering the fiber installation (Figure 3). This length was chosen based
on spatial resolution achieved with the Total Variation deconvolution method proposed in [21].
The simulated hotspot image f is shown in Figure 10.

Based on the image of Figure 10, the response g was obtained using the sensitivity matrix H of
the DTS acquisition model presented in Section 3. Thus, the algorithm performance was evaluated
by adding white Gaussian noise at different levels to the simulated DTS readings. The images
reconstructed for each noise level were compared with the ground-truth hotspot images. We employed
the mean square error (MSE) and the maximum temperature difference (MTD) as figures of merit.

The reconstructed images are shown in Figure 11, and a brief analysis of results is presented in
Table 1. In the first test, Figure 11a, no noise was added to the simulated DTS readings, and the
reconstructed image presented reduced errors relative to simulated hotspot, with only 0.1 ◦C
uncertainty. In tests adding a certain noise level (Figure 11b–f), it can be seen that is possible to
obtain, from data with SNR up to 40 dB, acceptable images for application in the stator, with less
than 4 ◦C uncertainty for hotspots of 15 cm. However, from data with SNR between 30 dB and 10 dB
(Figure 11d–f), besides large errors (up to −23.7 ◦C) in the temperature estimation, other parameters
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such as location and dimension become affected. As can be observed, the reconstructed hotspot
covered four plates instead of threee plates of the original hotspot.Sensors 2016, 16, 1425 10 of 16 
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40 dB; (d) Reconstructed hotspot with SNR 30 dB; (e) Reconstructed hotspot with SNR 20 dB; (f) 
Reconstructed hotspot with SNR 10 dB. 

Another numerical analysis was performed to assess the minimum length of a detectable hotspot 
given a maximum acceptable temperature difference of ±1 °C and different SNR levels. Table 2 
summarizes the results, where it can be seen that the minimum length for the given conditions was 
15 cm with SNR 50 dB. For other SNR levels, 40 dB and 30 dB, the performance was affected and the 
minimum length increased to 22 cm and 27 cm, respectively. Subsection 6.2 presents the results of 
the experimental tests’ performance using the stator prototype.  
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Figure 11. Simulated hotspot image on three plates, where the ambient temperature was 26 ◦C,
the maximum temperature was 80 ◦C and the length approximately 15 cm. (a) Reconstructed hotspot
without adding noise; (b) Reconstructed hotspot with SNR 50 dB; (c) Reconstructed hotspot with
SNR 40 dB; (d) Reconstructed hotspot with SNR 30 dB; (e) Reconstructed hotspot with SNR 20 dB;
(f) Reconstructed hotspot with SNR 10 dB.

Table 1. Algorithm performance with respect to the noise level.

Noise Level (SNR) MSE (MEAN SQUARE ERROR) MTD (Maximum Temperature Difference)

Noiseless 0.5657 0.1 ◦C
50 dB 2.0921 −0.5 ◦C
40 dB 6.9929 −3.6 ◦C
30 dB 9.3758 −12.1 ◦C
20 dB 16.595 −20.9 ◦C
10 dB 21.8149 −23.7 ◦C

Another numerical analysis was performed to assess the minimum length of a detectable hotspot
given a maximum acceptable temperature difference of ±1 ◦C and different SNR levels. Table 2
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summarizes the results, where it can be seen that the minimum length for the given conditions was
15 cm with SNR 50 dB. For other SNR levels, 40 dB and 30 dB, the performance was affected and the
minimum length increased to 22 cm and 27 cm, respectively. Subsection 6.2 presents the results of the
experimental tests’ performance using the stator prototype.

Table 2. Algorithm performance with respect to the hotspot length and SNR level.

SNR Hotspot Length MTD (Maximum Temperature Difference)

50 dB 15 cm −0.5 ◦C
50 dB 14 cm −3.7 ◦C
50 dB 13 cm −5.1 ◦C
40 dB 22 cm −0.9 ◦C
40 dB 21 cm −1.6 ◦C
40 dB 20 cm −2.4 ◦C
30 dB 27 cm −0.7 ◦C
30 dB 26 cm −1.8 ◦C
30 dB 25 cm −2.6 ◦C

6.2. Experimental Results

The experimental results were obtained by tests with the stator prototype (Figure 3) and a thermal
camera Fluke® Ti25 (Fluke Corporation, Everett, MA, USA), which was used as reference for the
reconstructed images. In addition to the comparison with the thermal camera, the images generated
by the sparse reconstruction algorithm were also compared with the linear interpolation method used
in the thermal imaging system presented in [6]. Three resistances with different lengths were used as
heat sources, which produced hotspots with approximately 100 cm, 15 cm and 5 cm.

The test results for a hotspot of 100 cm is shown in Figure 12. In this test, the ambient temperature
was 27.8 ◦C; the total power applied to the resistance was 680 W (∼=12 W/cm3), generating a hotspot
with maximum temperature of 63.7 ◦C after entering in steady state. The image taken by the thermal
camera is presented by Figure 12a, where the temperature distribution in 17 plates of the stator
prototype is observed. Figure 12b shows the image generated by linear interpolation of raw DTS
readings, where it can be seen that the maximum temperature was measured in an approximate way
for only seven plates (MTD of −2.8 ◦C), while for the rest of the plates, the MTD was up to −14 ◦C.
This is because the unprocessed DTS readings are strongly influenced by spatial resolution (Figure 4),
generating a blurred image. The image reconstructed by the proposed algorithm is represented in
Figure 12c. In this result, the maximum temperature was 63.2 ◦C (MTD of −0.5 ◦C), and both length
and location of the hotspot were in accordance with the image of thermal camera. As can be seen,
the sparse reconstruction showed significant improvements when compared to the linear interpolation
method, even for a hotspot with dimensions in line with the DTS spatial resolution (1 m). Although
there are some differences in the temperature distribution along the plates, the main parameters
of interest for application on stator structure are quite accurate, namely the location, length and
maximum temperature.

Another test was conducted using a hotspot with dimensions smaller than the DTS spatial
resolution. In this experiment, we applied a total power of 120 W (∼=15 W/cm3) at a resistance of 15 cm,
for which the minimal length estimated in the tests is presented in Section 6.1. The generated hotspot
was of 67.5 ◦C and an ambient temperature of 25.9 ◦C, as shown in Figure 13a. Figure 13b shows
the image generated by the linear interpolation method, where the maximum temperature measured
was only 46.1 ◦C (MTD −21.4 ◦C), and both the dimensions and the location of the hotspot were not
correctly identified. This poor result is expected because this method uses the raw sensor readings
and the hotspot length was only 15 cm, i.e., considerably lower than the spatial resolution of 1 m.
The image generated by the proposed reconstruction algorithm is represented in Figure 13c. In this
result, the maximum temperature was 66.8 ◦C (MTD of −0.7 ◦C), and location of the hotspot was in
accordance with the image of the thermal camera. The length measured was about 22 cm, which can be
considered a small difference, since that the dimension of the hotspot was six times smaller than DTS
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spatial resolution. Regarding the application in the generator stator, the proposed algorithm provides
a great improvement when compared with the linear interpolation method, because the insulation
faults can occur in just a few core plates (Figure 1), so it is important to perform reliable measurements
for hotspots with dimensions less than 1 m.Sensors 2016, 16, 1425 12 of 16 
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Figure 12. Experimental results for hotspot of 100 cm, with maximum temperature of 63.7 °C and 
ambient temperature of 27.8 °C; (a) Reference image taken by thermal camera; (b) Image generated 
by the linear interpolation method using raw DTS readings [6]; (c) Image reconstructed by proposed 
algorithm. 
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Figure 13. Experimental results for hotspot of 15 cm, with maximum temperature of 67.5 °C and 
ambient temperature of 25.9 °C. (a) Reference image taken by thermal camera; (b) Image generated 
by the linear interpolation method using raw DTS readings [6]; (c) Image reconstructed by proposed 
algorithm. 

A test to evaluate an extreme case for the image reconstruction algorithm was performed 
producing a hotspot of only 5 cm. In this test we applied a total power of 25 W (≅9 W/cm3) on a 
resistance positioned in one of the plates, which generated a hotspot with maximum temperature of 
50.6 °C and an ambient temperature of 22.8 °C. The thermal image taken by the thermal camera is 
presented in Figure 14a. The result of the linear interpolation method is shown in Figure 14b. As can 
be seen, the generated image is extremely blurred and it was not possible to identify the hotspot. This 
result shows that the use of Raman DTS becomes impractical for measurements in the order of 5 cm 
without using signal reconstruction techniques. The image generated by the reconstruction algorithm 
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A test to evaluate an extreme case for the image reconstruction algorithm was performed
producing a hotspot of only 5 cm. In this test we applied a total power of 25 W (∼=9 W/cm3) on
a resistance positioned in one of the plates, which generated a hotspot with maximum temperature of
50.6 ◦C and an ambient temperature of 22.8 ◦C. The thermal image taken by the thermal camera is
presented in Figure 14a. The result of the linear interpolation method is shown in Figure 14b. As can
be seen, the generated image is extremely blurred and it was not possible to identify the hotspot.
This result shows that the use of Raman DTS becomes impractical for measurements in the order of 5 cm
without using signal reconstruction techniques. The image generated by the reconstruction algorithm
is represented in Figure 14c. In this result, the maximum temperature was 41.5 ◦C (MTD of −9.1 ◦C).
Besides the large difference in temperature, the hotspot length was also measured incorrectly, which
was 25 cm instead of 5 cm. As can be seen, the hotspot is spread on five plates when it should be only
on one plate. This is mainly due to the DTS spatial resolution that affects the signal-to-noise ratio (SNR),
spreading and attenuating the sensor response, as already shown in Subsection 6.1, more specifically in
Figure 11e,f. Although in this case the algorithm does not provide precise measurements of temperature
and dimension, it is possible to identify the existence and approximate location of a fault, even for
hotspots with dimensions up to 20 times smaller than the DTS spatial resolution. Section 7 presents
the main conclusions on the proposed reconstruction method for thermal imaging of generator stators.
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Figure 14. Experimental results for a hotspot of 5 cm, with maximum temperature of 50.6 ◦C.
(a) Reference image taken by thermal camera; (b) Image generated by the linear interpolation method
using raw DTS readings [6]; (c) Image reconstructed by proposed algorithm.

7. Conclusions

This paper presented an image reconstruction method that can be a promising solution for thermal
imaging systems based in Raman distributed temperature sensing (DTS). The reconstruction was based
on sparse representations, which has proved suitable for the application. The main advantage is the
possibility to correctly identify heat sources and hotspots smaller than the DTS spatial resolution (1 m).
To reconstruct the thermal images, we employed a dictionary of hotspots built from a multiphysical
model of the monitored structure. Tests were performed using a prototype with structure similar to
surface of a 200 MW hydroelectric generator stator. This facilitated the laboratory tests and allowed
the comparison between reconstruction images and images from a thermal camera used as reference.
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The evaluation of the algorithm performance with respect to noise level was conducted through
simulations with the DTS model and dictionary of hotspots. These simulations shown that when
signal-to-noise ratio (SNR) is up to 40 dB it is possible to obtain acceptable images for application
in the stator, with less than 4 ◦C uncertainty. However, with SNR between 30 dB and 10 dB besides
the uncertainty in the temperature measurement, other parameters such as location and dimension
become affected. This provides a lower bound to which the proposed method is applicable.

The experimental results were achieved by generating hotspots of different dimensions in the
stator prototype. These results show that it is possible to identify hotspots with dimensions as short as
15 cm, with temperature uncertainty of less than ±1 ◦C, which represents a great advance considering
the DTS spatial resolution. It was also observed significant improvements for hotspot down to 5 cm.
In this critical case, despite a maximum temperature difference of almost −10 ◦C, it was possible to
identify the existence and approximate location of hotspots with dimensions up to 20 times smaller
than the DTS spatial resolution.

Regarding the application for imaging system for generator stators, improvements in image
resolution can help identify wear on the insulation layer in early stages, facilitating maintenance and
avoiding further damage to the structure, such as short circuit in the stator windings. The accurate
temperature monitoring of the stator structure can be a fundamental tool of predictive maintenance,
to ensure the performance and operational availability of the generator.
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