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Abstract 

Tumorigenesis is closely related to the loss of control of many genes. Urokinase-type plasminogen 
activator receptor (uPAR), a glycolipid-anchored protein on the cell surface, is controlled by many factors 
in tumorigenesis and is expressed in many tumor tissues. In this review, we summarize the regulatory 
effects of the uPAR signaling pathway on processes and factors related to tumor progression, such as 
tumor cell proliferation, adhesion, metastasis, glycolysis, tumor microenvironment and angiogenesis. 
Overall, the evidence accumulated to date suggests that uPAR induction by tumor progression may be 
one of the most important factors affecting therapeutic efficacy. An improved understanding of the 
interactions between uPAR and its coreceptors in cancer will provide critical biomolecular information 
that may help to better predict the disease course and response to therapy. 
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Introduction 
Tumors are the result of uncontrolled 

proliferation of cells in different organs. Tumor 
development is a multistage process, that includes the 
generation of primary tumors, separation of tumors 
from primary sites, degradation of extracellular 
matrix (ECM), and distant metastasis of tumors. A 
variety of genes play important roles in the 
development of tumors [1-3], including the cell 
surface receptor urokinase-type plasminogen 
activator receptor (uPAR). uPAR is highly expressed 
in a variety of tumor cells, and a variety of signals 
regulated by uPAR play significant roles in tumor cell 
proliferation and metastasis, tumor-related glycolysis, 
the tumor microenvironment and angiogenesis [4-6]. 
Studies have found that some specific drugs and 
antibodies have unique inhibitory effects on uPAR. 
This review intends to deliver an overview of current 
knowledge about the role of uPAR in cancer 
progression and attempts to provide a theoretical 

basis for tumor therapy. 

Structural characteristics of uPAR 
uPAR, also known as CD-87, was discovered by 

Vassalli et al. in 1985 [7]. uPAR is a cysteine-rich 
glycosylated single-chain protein with a relative 
molecular weight of 50 kD-60 kD [8]. uPAR encodes a 
protein of 335 amino acids comprising 22 amino acids 
(secreted signal peptides) at the N-terminus and 30 
amino acids at the C-terminus, which is bound to the 
cell membrane via a glycosyl phosphatidyl inositol 
(GPI) anchor [9] (Fig. 1A). As reported, uPAR consists 
of three domains ranging in size from 81 to 87 amino 
acids, namely D1, D2 and D3 [10], which are 
connected by short linker regions [11, 12] (Fig. 1B). 
The D1 block binds to urokinase-type plasminogen 
activator (uPA), the D3 region anchors uPAR to the 
membrane surface via a GPI, and the D2 sector joins 
the D1 and D3 sectors together. The N-terminus of the 
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arginine-glycine-aspartic acid (RGD) or somato-
medin-B (SMB) structure binds to the hydrophobic 
chamber of uPAR [13, 14] (Fig. 1B). 

Transmembrane glycerophosphodiesterase 
GDE3, as a GPI-specific phospholipase C, cleaves and 
releases uPAR from the cell membrane surface to 
produce the soluble type of uPAR (suPAR) [9, 15, 16]. 
suPAR contains the ligand binding sites of uPAR and 
is present in plasma, urine, blood, serum and 
cerebrospinal fluid [17]. uPAR cleavage results in the 
hydrolysis of the specific SMB-binding site between 
D1 and D2 in the uPAR structure [18]. Consequently, 
there are three different structural forms of suPAR: 
the complete D1+D2+D3 structure, the D2+D3 
structure and the free D1 fragment [11, 12, 19-21] (Fig. 
1C). 

The uPA/uPAR system 
The uPA/uPAR system is composed of uPA, 

uPAR, plasminogen activator inhibitor-1 (PAI-1), 
endogenous plasminogen activator inhibitor-2 (PAI-2) 
and plasminogen [4, 15]. PAI-1 and PAI-2 exhibit 
inhibitory action on the uPA/uPAR system (Fig 1C). 
The trimer complex formed by the binding of uPA 
and uPAR with PAI-1 can be recognized by 
lipoprotein receptor-related protein and endocytosed 
into cells. The uPA system regulates the interaction 
between cells and the ECM through proteolytic 
cascade reaction and further regulates cell signal 
transduction [22]. As ligands of uPAR, uPA and 
vitronectin can simultaneously bind to uPAR at 
different binding sites [20, 23]. uPA is a single-chain 
protein with a molecular weight of 54 kD that 
contains an N-terminal domain with an EGF-like 
sequence, through which uPA can bind to the three 
domains of uPAR by forming a large hydrophobic 
cavity [24-26]. Vitronectin, a viscous glycoprotein 

with a molecular weight of 75 kD, is widely found in 
blood and ECM and interacts with different kinds of 
ligands [27, 28]. 

The role of uPAR in tumors 
As early as 1991, Os-sutski et al. discovered that 

uPAR is closely related to cancer [29]. In recent years, 
with the help of positron emission tomography (PET) 
imaging, various studies have reported that the 
expression levels of uPAR in patients with breast 
cancer, prostate cancer, bladder cancer and colorectal 
cancer are significantly higher than those in normal 
tissues [30, 31]. Moreover, patients with a higher 
expression level of uPAR have a lower survival rate 
and poorer prognosis than those with lower 
expression [32]. Knocking out the uPAR gene in mice 
leads to G2/M arrest, thereby inhibiting cell 
proliferation [33]. In contrast, overexpression of the 
uPAR gene results in the promotion of tumor cell 
proliferation, migration, invasion and adhesion [4]. 
Therefore, uPAR plays an important role in 
tumorigenesis and development. This review mainly 
describes the expression of uPAR in tumors and the 
important roles of the uPAR signaling pathway in 
tumor cell proliferation, cell adhesion, metastasis, 
glycolysis, the tumor microenvironment and 
angiogenesis (Fig. 2). 

Expression of uPAR in cancer 
uPAR expression is elevated during inflam-

mation and tissue remodelling and in many human 
cancers [4], including prostate cancer [34-36], bladder 
cancer [37, 38], colon cancer [39], breast cancer [40, 41], 
melanoma [42], brain cancer [43], lung cancer [44], 
renal cell carcinoma [45], liver cancer [46, 47], gastric 
cancer [48, 49], ovarian cancer [50, 51], head and neck 
cancer [52], cervical cancer [53] and pancreatic cancer 

 

 
Figure 1. Two dimensional (2D) and three dimensional (3D) structures of uPAR. (A) uPAR encodes a protein of 335 amino acids comprising 22 amino acids 
(secreted signal peptides) at the N-terminus and 30 amino acids at the C-terminus. uPAR consists of three domains ranging in size from 81 to 87 amino acids, namely, D1, D2 
and D3, which are connected by short linker regions. (B) The 3D structure of uPAR, with domains colored as in part(Protein Data Bank identifier 3BT2). (C) PAI-1 and PAI-2 
exhibit inhibitory action on the uPA/uPAR system. Phospholipase C cleaves and releases uPAR from the cell membrane surface to suPAR, and uPAR cleavage results in hydrolysis 
of the specific SMB-binding site between D1 and D2 in the uPAR structure. Consequently, there are three different structural forms of suPAR: the complete D1+D2+D3 
structure, the D2+D3 structure and the free D1 fragment. 
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[54]. Sustained high expression of uPAR is associated 
with the growth and metastasis of cancer cells [55, 56]. 
Moreover, uPA is also highly expressed in invasive 
tumors [57]. The uPA/uPAR interaction can promote 
the expression of oncogenes and cell proliferation, 
eventually leading to the development of tumors [58]. 
Knockout of the uPAR gene in tumor cells with the 
CRISPR/Cas9 system results in the inhibition of cell 
proliferation, migration and invasion [59]. A decrease 
in uPAR expression on the cell surface mitigates the 
development of hallmarks of cancer caused by 
PIK3CA and KRas mutations in colorectal cancer [60]. 
By interacting with uPA and IGF1R, uPAR is able to 
enhance the malignant potential of triple-negative 
breast cancer [41]. More importantly, high expression 
of uPAR is closely related to a poor prognosis [61]. In 
addition, studies have demonstrated that the decrease 
in the suPAR concentration after resection in patients 
with colorectal cancer [62] and pancreatic cancer [54] 
is associated with reduced mortality risk. Therefore, 
the expression level of uPAR can be assessed as a 
marker of tumor malignancy [30, 59, 63]. 

Regulatory network of uPAR in tumor cell 
proliferation 

Since uPAR lacks transmembrane or intracellular 
domains, it needs to interact with transmembrane 
receptors and complexes to trigger downstream 
signaling and promote tumor cell proliferation [4]. 
Recently, Wang K et al. [59] and Semina EV et al. [64] 
knocked out uPAR with the CRISPR/Cas9 system, 
successfully resulting in suppression of human cancer 
cell proliferation. Silencing uPAR can inhibit the 
expression of the MMP2, MMP9 and P-ERK proteins 
in oral and tongue squamous cell carcinoma and 
attenuate cell proliferation [65]. Research shows that 

the uPA-uPAR-α5β1 integrin complex can bind to 
G-protein-coupled receptors (GPCRs) to transmit 
signals and promote tumor cell proliferation [66]. The 
interaction of the uPA-uPAR-α5β1 integrin complex 
with EGFR enables the phosphorylation of Tyr397 
and the Src homology 3 domain (SH3) in the 
intracellular domain of integrin α5β1; this leads to the 
activation of focal adhesion kinase (FAK, also known 
as PTK2) [67-69], which results in the activation of Ras 
and the expression of mitogen-activated protein 
kinase (MAPK). uPAR can also transactivate EGFR, 
mediating the uPAR-initiated mitogenic signal [70, 71] 
(Fig. 3A). The D2A motif in domain 2, which is as 
effective as EGF, can promote phosphorylation of 
EGFR and activation of the MAPK signaling pathway, 
thus facilitating cell proliferation [71]. D1 of uPAR is 
crucial for EGFR activation, and FAK links integrin 
and EGFR signaling. Inhibition of EGFR kinase blocks 
uPAR-induced ERK signaling, implicating EGFR as 
an important effector of the pathway [69] (Fig. 3B). 

 

 
Figure 2. The function of tumor cells is regulated by uPAR. uPAR regulates 
the proliferation, metastasis, adhesion, glycolysis and angiogenesis of tumor cells 
through cell signaling, and plays an important role in the tumor microenvironment. 

 

 
Figure 3. Function and regulation of uPAR in tumor cell proliferation. (A) The interaction of the uPA-uPAR-α5β1 integrin complex with EGFR enables the Src 
homology 3 domain (SH3) in the intracellular domain of integrin α5β1; this leads to the activation of FAK, which results in Ras activation and MAPK expression. The 
uPA-uPAR-α5β1 integrin complex can bind to GPCR to transmit signals and promote tumor cell proliferation. SPRY1 can interact with uPAR and promote its 
lysosomal-mediated degradation, resulting in inhibition of the activation of the FAK and ERK pathways, which suppresses the tumor proliferation induced by uPAR. (B) D1 and 
D2 of uPAR are crucial for EGFR activation, which is as effective as EGF in promoting MAPK and FAK, and cell proliferation.  
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Figure 4. Function and regulation of uPAR in tumor cell adhesion. (A) Two modes of uPAR signal regulation. In canonical signaling, integrins engage the specific ligands 
in the ECM. In non-canonical integrin, uPAR-mediated cell adhesion, through the plasma membrane, transmits a mechanical stimulus to the integrin that signals independently of 
ECM binding. (B) The downstream signaling cascade of uPAR/CD151/α3β1 integrin shows that phosphorylation of FAK, Src and paxillin is reduced with knockdown of cathepsin 
B, uPAR, and CD151. (C) Other cellular proteins regulate tumor cell adhesion through uPAR.  

 
Other signaling pathways are also involved in 

the proliferation mediated by uPAR. The Notch 
pathway is a highly conserved cellular signaling 
system that regulates the differentiation of a variety of 
cells and plays important roles in carcinogenesis. As 
reported, silencing Notch1 can inhibit the expression 
of uPA and its receptor uPAR, thus inhibiting the 
proliferation of cancer cells [72]. SPRY1, an inhibitor 
of the Ras-MAPK pathway, can interact with uPAR 
and promote its lysosomal-mediated degradation, 
resulting in inhibition of the activation of the FAK and 
ERK pathways, which suppresses the tumor 
proliferation induced by uPAR [73-75]. Knockdown of 
LC3 and Beclin-1 leads to inhibition of uPAR/ 
integrin-β1/Src signaling pathways, thereby 
suppressing cancer cell proliferation and colony 
formation [76]. Loss of uPAR inhibits the PI3K/AKT 
pathway, while downregulation of uPAR leads to 
upregulation of P-ERK and forces cells to use the ERK 
pathway as an alternative pathway for growth and 
survival [77] (Fig. 3A). In short, uPAR typically binds 
to cell membrane surface proteins, such as integrin, 
EGFR and GPCR to promote cell proliferation, 
whereas binding of uPAR by its inhibitors leads to 
lysosome-mediated degradation of the uPAR, thus 
repressing of uPAR on the proliferation of tumor cells. 

Effect of the uPAR signaling pathway on tumor 
cell adhesion 

In addition to the regulation of cell proliferation 
by uPAR described above, uPAR also regulates cell 
adhesion [77, 78]. Changes in the physical properties, 
composition, expression and regulation of the ECM 

are considered to be abnormal signals that alter tumor 
cell adhesion. uPAR can regulate cell adhesion by 
promoting ECM proteolysis and transmitting 
intracellular signals [4]. uPAR regulates cell adhesion 
by binding directly to vitronectin and by forming 
complexes with integrins [79]. Recent studies have 
shown that cleavage of vitronectin by uPA displays a 
remarkable receptor dependence and requires 
concomitant binding of both uPA and vitronectin to 
uPAR, which induces cell adhesion [13]. In contrast to 
canonical integrin signaling, uPAR-mediated cell 
adhesion to vitronectin triggers a novel type of 
integrin signaling that is independent of integrin- 
engagement. The molecular mechanism enabling the 
crosstalk between nonintegrin adhesion receptors and 
integrins is dependent on membrane tension [80] (Fig. 
4A). 

As mentioned above, the change in tumor cell 
adhesion is regulated by uPAR expression. 
Overexpression of uPAR can strongly upregulate 
MMP expression and enhance breast cancer cell 
adhesion [78]. sLR11 regulates the hypoxia-enhanced 
adhesion of hematopoietic stem and progenitor cells 
(HSPCs) via an uPAR-mediated pathway[81]. LDL 
and Lp(a) lipoproteins increase the expression of uPA 
and uPAR on monocytes, affecting plasmin 
generation and monocyte adhesion. The cytokines 
IL-4, IL-10 and IL-13 induce a decrease in uPAR 
expression and lead to a change in tumor cell 
adhesion [82] (Fig. 4C). Studies on the downstream 
signaling cascade of uPAR/CD151/integrin α3β1 
have shown that phosphorylation of FAK, Src, and 
paxillin and expression of the adaptor cytoskeletal 
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proteins talin and vinculin are reduced with 
knockdown of cathepsin B, uPAR, and CD151 [83] 
(Fig. 4B). Collectively, these data demonstrate that 
uPAR regulates tumor adhesion through complex 
mechanisms. 

Effects of the uPAR signaling pathway on 
tumor metastasis 

uPAR is widely expressed on the surface of 
endothelial cells, fibroblasts and a variety of 
malignant tumor cells and exerts functions in cancer 
cell migration and tumor metastasis [14]. As reported, 
uPAR regulates malignant tumors through integrins 
on breast cancer [84] and pancreatic ductal 
adenocarcinoma cells [85]. Different studies have 
stressed that the regulatory effects of uPAR on tumor 
metastasis through other signaling pathways, such as 
those related to the ECM, integrins, and TGF-β1. 

ECM 
Since uPAR lacks transmembrane and 

intracellular domains [4], it needs to interact with 
transmembrane receptors, such as ECM receptors and 
integrins, to activate intracellular signals. The ECM is 
required for cell movement and is a physical barrier to 
cell movement. Cell migration often involves the 
decomposition of ECM proteins [86]. uPAR activates a 
variety of intracellular signaling pathways that 
promote cell invasion by regulating ECM proteolysis 
and synergistic actions with transmembrane receptors 
[4]. In tumor tissues, the interaction of uPA and uPAR 
leads to proteolysis of the ECM through a cascade 
reaction. After uPA binds to uPAR, the inactive 
pro-uPA precursor is transformed into active uPA. 
Then, uPA cleaves inactive plasminogen into active 
plasmin, which further cleaves and activates 
downstream matrix metalloproteinases (MMPs) [87]. 
The fibrinolytic proteases and MMPs formed after 
activation will hydrolyze ECM and release active 
EGF, which promotes tumor invasion and metastasis 
[88]. uPAR can also degrade ECM through the 
proteasome pathway and activate MMPs to degrade 
ECM and activate EGF to further regulate the cell 
membrane ECM interaction, in addition to enhancing 
cell migration and signal transduction through the 
binding of and interaction between vitronectin and 
integrins [86, 89]. VEGF165 interacting with its 
receptor VEGFR-2 rapidly induces pro-uPA activation 
that is dependent on a change in integrin affinity, 
activation of MMP-2 and pro-uPA being bound to its 
surface receptor uPAR [90]. Taken together, uPAR is 
an important ECM proteolysis protein that regulates 
the interaction between cells and the ECM as well as 
cell migration [4] (Fig. 5A). 

Integrins 
Integrins are important cell adhesion receptors 

and play substantial roles in the progression of tumor 
metastasis [91]. uPAR and integrins form stable 
complexes that both inhibit native integrin adhesive 
function and promote adhesion to vitronectin via a 
ligand binding site on uPAR [92]. The uPAR and 
integrin α5β1 interaction promotes tumor cell 
migration. uPAR is required to activate integrin α5β3 
in podocytes, promoting cell motility and activating 
the small GTPases Cdc42 and Rac1. Blockade of 
integrin α5β3 reduces podocyte motility in vitro and 
lowers proteinuria in mice [93]. The uPA- 
uPAR-integrin α5β1 complex drives activation of the 
GTPase Rac and actin assembly. Actin protrusions 
from the cell wall extend forward, and pericytes 
outside the cytoplasmic membrane protein undergo a 
decomposition of pericyclic proteins, which 
eliminates the ECM barrier outside the cell membrane 
and membrane processes [94]. The glycolytic enzyme 
alpha-enolase (ENO1) also acts as a plasminogen 
receptor, controls integrin α5β3 expression and 
upregulates pancreatic cancer invasion, and 
metastasis [85]. The major downstream uPAR/ 
integrin signaling (especially β1 and β3) involve 
activation of Src, PI3K/AKT, and MEK/ERK1-2 
pathways [26]. Furthermore, uPAR cooperates with 
integrin complexes containing integrin β3 to drive 
formation of the p130Cas–CrkII signaling complex 
and activation of Rac, resulting in a Rac-driven 
elongated-mesenchymal morphology, cell motility 
and invasion [95]. uPAR interaction with vitronectin 
initiates a p130Cas/Rac-dependent signaling 
pathway, leading to actin reorganization and 
increased cell motility [96]. Activated Rac can also 
stimulate actin polymerization, leading to the 
assembly of filamentous myosin, and ultimately 
stimulate membrane processes, leading to cell 
migration and invasion [96]. In addition, integrin- 
uPAR signaling can lead to the phosphorylation of 
Fos-related antigen-1 (FRA-1), promoting the invasion 
of breast cancer cells [84] (Fig. 5B). 

TGF-β and EMT 
Tumor cell metastasis typically requires 

activation of TGF-β1 to control physiological 
processes [97] TGF-β signaling through mitogen- 
activated protein kinase, c-Jun-NH2-kinase, p38, 
PI3K, and G-proteins may be responsible for some of 
the oncogenic effects that occur in tumor cell 
migration and invasion [98]. TGF-β1 induces invasion 
in malignant meningioma cells with an associated 
upregulation of uPA, uPAR, cathepsin B and MMP-9, 
and activation of intracellular signals of the H-RAS, 
ERK/PI3K, xIAP and MAPK pathways [99-101]. In 
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addition, TGF-β, MMPs and the uPA/uPAR system 
can induce epithelial-mesenchymal transition (EMT) 
in cancer cells [102, 103]. Interestingly, TGF-β can 
induce MMPs expression, and MMPs can in turn 
activate TGF-β, promoting EMT in cancer cells [104]. 
uPA/uPAR expression induces EMT in tumor cells by 
mediating TGF-β, resulting in tumor progression and 
metastasis [103, 105]. Furthermore, TGF-βRII is 
required for TGF-β activation of JNK1 and the 
resulting upregulation of uPAR expression. TGF-β 
activates the Ras/MKK4/JNK1 signaling cascade, 
leading to induction of AP-1 activity, which, in turn, 
up-regulates uPAR expression [106] (Fig. 5C). In 
addition, as mentioned above, uPAR expression is 
closely related to EMT. Recent studies have shown 
that uPAR upregulation in melanoma cells exposed to 
mesenchymal stem cell (MSC)-medium drives TGFβ- 
mediated EMT [107]. The transcription factor 
Forkhead box M1 (FOXM1) promote cancer EMT and 
metastasis by enhancing uPAR gene transcription 
[108], while uPAR downregulation inhibits cancer 
EMT and dysregulation EMT biomarker proteins [64, 
103, 107]. TGF-β-induced uPA expression is human 
telomerase reverse transcriptase (hTERT)-dependent, 
and a positive association exists between hTERT and 

uPA [101]. Taken together, it is clear that both TGF-β 
and uPA/uPAR collaborate in the induction of 
cancer-associated EMT. 

Non coding RNA 
MicroRNAs are small, noncoding single- 

stranded RNAs that negatively regulate gene 
expression at the posttranscriptional level. 
MicroRNAs can inhibit the expression of uPAR 
directly and indirectly in a variety of cancer types [34]. 
Targeted delivery of antisense-miR-21 and antisense- 
miR-10b coloaded in uPAR-targeted polymer 
nanoparticles (NPs)-treated mice show a substantial 
reduction in tumor growth [109]. As reported, 
miR-378a-5p and miR-23a promote tumor cell 
metastasis by upregulating the expression of uPAR 
[110, 111]. However, miR-324-5p, miR-193b and 
miR-143 can inhibit the expression of uPA and uPAR, 
thus inhibiting the migration and invasion of cancer 
cells [112-114]. Recently studies show that miR-200s 
regulate ECM remodeling, which trigger tumor cell 
invasion [115]. Taken together, uPAR is regulated by 
microRNAs to exert ECM remodeling, which plays an 
important role in the metastasis of cancer cells (Fig. 
5D). 

 

 
Figure 5. The regulatory network of uPAR through the ECM, integrin, TGF-β and noncoding RNA in tumor migration. (A) uPA binds to uPAR, and the inactive 
pro-uPA precursor is transformed into active uPA. Then uPA cleaves inactive plasminogen into active plasmin, which further cleaves and activates downstream MMPs. The 
fibrinolytic proteases and MMPs formed after activation will hydrolyze ECM and release active EGF, which promotes tumor invasion and metastasis. (B) Integrin and uPA/uPAR 
form the structure of the uPA-uPAR integrin complex signal, and drive the activation of GTPase Rac actin assembly, the cell wall of actin protrusions extends forward, and 
pericytes outside the cytoplasmic membrane protein (pericyclic protein) decomposition are eliminated outside the ECM barrier membrane. (C) TGF-β1 induces 
epithelial-mesenchymal transition (EMT) with an associated upregulation of uPA, uPAR, cathepsin B and MMP-9. TGF-β activates the Ras/MKK4/JNK1 signaling cascade, leading 
to the induction of AP-1 activity, which promotes cell migration. (D) MicroRNAs regulate uPAR-induced ECM formation and protein degradation, which play an important role 
in cancer cell metastasis. 
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 Other factors 
Studies have also revealed that uPAR can 

interact with formyl peptide receptors (FPRs) to 
promote cell migration [116]. The uPAR88-92 
sequence can interact with FPR1, and inhibition of 
uPAR/FPR1 crosstalk may be useful for the treatment 
of metastatic epithelial ovarian cancer (EOC) [51, 116]. 
Moreover, the S90P and S90E substitutions in the 
uPAR protein can cause upregulation and 
downregulation of cell migration, respectively, by 
mediating agonist-triggered activation and 
internalization of FPR1 [117], thus inhibiting tumor 
metastasis [116]. In addition, uPAR can enhance the 
metastasis and invasion induced by Ras mutations in 
tumor cells [118]. In human AGS gastric cancer cells, 
uPAR can be stimulated by prostaglandin E2 via the 
EP2 receptor-dependent Src/EGFR/JNK1/2, Erk1/ 
2/AP-1, Src/EGFR/JNK1/2, and Erk1/2/NF-κB 
signaling pathways, thereby promoting tumor 
metastasis [119]. As a co-receptor, uPAR is recycled 
on the cell surface and redistributed to the invasive 
side of cancer cells, further enhancing the migration 
and invasion abilities of cancer cells [4]. 

Different studies have stressed that uPAR has 
contributory effects on tumor metastasis through 
other signaling pathways. Silencing of uPAR inhibits 
the invasion and migration of oral tongue squamous 
cell carcinoma cells by regulating the expression of 
MMP2, MMP9 and p-ERK [65]. PDZ-binding kinase 
(PBK) can bind directly to the core region of the uPAR 
promoter through ETV4 to regulate the metastasis of 
hepatocellular carcinoma [120]. In bladder cancer, 
uPAR can regulate the mammalian target of 
rapamycin complex (mTORC) signaling pathway. 
uPAR silencing inhibits AKT phosphorylation at 
Ser473, inhibiting cell migration and invasion [37]. 

Regulatory network of uPAR in glycolysis 
Normal cells rely on mitochondrial oxidative 

phosphorylation to produce ATP, while cancer cells, 
which are not affected by the partial pressure of 
oxygen, are able to gain energy via glycolysis with the 
stimulation of hypoxia-inducible factor (HIF-1α) [6]. 
As early as 1997, Anichini E and colleagues 
discovered that uPAR plays an important role in 
glycolysis [121]. The interaction of uPA with uPAR 
rapidly induces the activation of glucose transporters. 
In recent years, studies have found that hypoxia can 
enhance the expression of endogenous uPAR in a 
HIF-1α-dependent manner [122]. As reported, 
activation of HIF-1α can upregulate uPAR expression 
and activate its associated signals [123, 124], while 
inhibition of HIF-1α gene expression can 
downregulate the mRNA and protein levels of Upar 
[125]. Mechanistically, inhibition of uPAR with siRNA 

or uncoupling of uPAR from integrin-linked tyrosine 
receptors (IL-TKRs) will inhibit the PI3K/AKT/ 
mTOR/HIF1α signaling pathway, resulting in 
impaired glucose uptake and a reduction of pyruvate 
kinase-2 (PKM2) and other glycolytic enzymes, 
thereby controlling the metabolism of cancer cells [6]. 
In addition, phosphoinositide-dependent protein 
kinase-1 (PDK1) can inhibit glycolysis in cancer cells 
[126]. Downregulation of PDK1 through the use of 
siRNAs targeting uPAR leads to the downregulation 
of downstream P-Akt [127, 128] (Fig. 6). 

 

 
Figure 6. The regulatory network of uPAR in glycolysis. Hypoxia can enhance 
the expression of endogenous uPAR in a HIF-1α dependent manner. Inhibition of 
uPAR with siRNA or uncoupling of uPAR from integrin-linked tyrosine receptors 
(IL-TKRs) inhibits the PI3K/AKT/mTOR/HIF-1α signaling pathway, resulting in 
impaired glucose uptake and a reduction in PKM2 and other glycolytic enzymes, 
thereby controlling the metabolism of cancer cells. 

 

Regulatory network of uPAR in the tumor 
microenvironment 

A study focused on the microenvironment of 
colorectal tumors found that uPAR is expressed in 
macrophages, neovascular endothelial cells and 
myofibroblasts, and its expression is negatively 
correlated with survival rates [32]. Another study also 
showed that uPAR contributes to vascular 
permeability, resulting in changes in the 
inflammatory microenvironment in ovarian cancer 
[129]. In breast cancer, researchers have established a 
mathematical model of cancer recurrence focusing on 
monitoring of tissue biomarkers, including markers in 
the plasminogen system, and found that only the 
serum concentration of uPAR in cancer patients was 
positively correlated with cancer recurrence [130]. The 
interaction of uPA with uPAR activates a network of 
interconnected signaling pathways and induces and 
activates the tumor microenvironment regulatory 
factor TGF-β [100], which in turn promotes the 
expression of uPA and thus forms a positive feedback 
loop [131]. TGF-β function through proteolytic 
degradation of the ECM and regulates the expression 
of several MMPs and uPA/uPAR in cancer cells, thus 
contributing to tumor malignancy [103, 132]. uPAR 
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also controls the expression of the tumor 
microenvironment regulator IL-4 in cancer cells by 
activating the ERK1/2 pathway [133, 134]. 

Role of uPAR in tumor-associated 
angiogenesis 

Angiogenesis plays a critical role in 
physiological and tumor pathological processes [135]. 
The blood vessels allow blood to reach all parts of the 
growing tumor mass, providing nutrients and 
oxygen, and allow invading tumor cells to reach 
distant sites for colonizatione. New blood vessels can 
sprout from pre-existing angiogenesis or can form by 
endothelial progenitor cells (EPCs) [136]. During 
angiogenesis, endothelial cells (ECs) degrade 
basement membrane, migrate through the ECM, 
proliferate and organize in new vessels, which can 
include locally recruited EPCs. uPAR activation 
consequent to the binding of uPA can be regarded as 
an “angiogenic switch” [137]. uPAR focuses on the 
proteolytic activity of uPA on the endothelial cell 
surface, thus promoting angiogenesis in a protease- 
dependent manner. In endothelial cells, uPAR 
interacts with VEGFR2, which mediates VEGF 
signaling and promotes angiogenesis [138]. VEGF165, 
the major angiogenic growth factor that initiates 
angiogenesis, requires coordinated proteolytic 
degradation of extracellular matrix provided by the 
uPA/uPAR system and regulation of cell migration 
provided by integrin-matrix interaction [66, 139]. 
Evidence shows that VEGF165, VEGF-E, FGF-2, EGF 
and HGF induced PI3K-dependent activation of 
pro-uPA when bind to uPAR, which leads to an 
increase in cell surface fibrinolytic activity [140]. Thus, 
uPAR represents a central mediator of growth 
factor-induced endothelial cell migration. 

The amoeboid and mesenchymal types of 
invasiveness are two modes of interchangeable 
migration in cancer cells. A recent study showed that 
a role of the uPAR-integrin-actin axis in the regulation 
of amoeboid angiogenesis. uPAR is indispensable for 
ECs and ECFCs to perform efficient amoeboid 
angiogenesis [141]. uPAR is also functionally 
important in fostering angiogenesis in EPCs [142] and 
ECFCs [143] upon recruitment in caveolar-lipid rafts. 
Gangliosides and uPAR typically partition into 
specialized membrane microdomains called lipid- 
rafts. The cell membrane enrichment with exogenous 
GM1 ganglioside is pro-angiogenic, with the opposite 
effect of cell membranes enriched with GM3 
ganglioside. Following GM1 exogenous addition, the 
GM3 compartment is depleted of uPAR which is 
recruited within caveolar rafts thereby triggering 
angiogenesis [142]. Endothelial uPAR is also thought 
to provide a regulatory mechanism in angiogenesis. 

The proangiogenic role of uPAR in ECFCs, depends 
on the integrity of caveolae and the presence of full- 
length uPAR in specialized membrane invaginations. 
Inhibition of uPAR expression promoted caveolae 
disruption. VEGF promoted the accumulation of 
uPAR in ECFCs caveolae in its undegraded form. 
VEGF-dependent ERK phosphorylation required 
integrity of caveolae as well as caveolar uPAR 
expression. Interestingly, overexpression of matrix 
metalloproteinase-12 (MMP-12) blocks angiogenesis 
by cleavage of endothelial uPAR [144], which impairs 
angiogenesis in SSc [145]. MMP12- dependent uPAR 
cleavage results into the loss of invasion properties 
and angiogenesis [146]. VEGF activity depends on 
inhibition of ECFC MMP12 production, which 
impairs MMP12-dependent uPAR truncation. MMP12 
overexpression in ECFCs inhibits vascularization in 
vitro and in vivo [143]. Angiogenesis and tumor 
promotion are active in late stages of tumor 
progression by TGF-β. Evidence shows that TGF-β 
upregulates the expression of uPAR to reguate 
pro-angiogenic activity in human normal dermal 
MVEC [147]. Inhibition of GDF5 in TGFß-stimulated 
ECs impairs TGFß-dependent uPAR overproduction, 
impairing angiogenesis [148]. Exosomes is a new 
vesicular lipid transporter that is involved in various 
pathophysiologies. uPAR-expressing melanoma 
exosomes promote angiogenesis by VE-cadherin, 
EGFR and uPAR overexpression and increase 
ERK1/2 signaling in endothelial cells [149, 150]. 
Tumor suppressor phosphatase and tensin 
homologue (PTEN) expression in endothelial cells is 
downregulated by uPAR to activate the PI3K/Akt 
pathway and support angiogenesis [151]. Mice 
deficient in uPAR provided an opportunity to assess 
the role of uPAR during angiogenesis in vivo. In 
uPAR(-/-) mice, dermal fibrosis is paralleled by 
endothelial cell apoptosis and a severe loss of 
microvessels [152]. Similarly, tumor growth of 
subcutaneously injected murine prostate cancer cells 
is significantly retarded in uPAR-deficient mice 
compared with wild-type mice [153]. In conclusion, 
uPAR plays an important role in angiogenesis in vivo 
and in vitro. 

uPAR and cancer therapy 
uPAR and chemoradiotherapy 

Chemoradiotherapy (CRT) plus surgery for 
locally advanced cancer has recently become the 
standard therapeutic strategy and has a significant 
survival benefit compared with surgery alone 
[154-156]. Some studies have attempted to accurately 
assess CRT responses with different diagnostic 
approaches, but the results have mostly been 
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unsatisfactory. Therefore, reliable and effective 
biomarkers to predict the sensitivity and response of 
advanced tumors to CRT are urgently needed to 
promote individualized treatment. A recent study 
investigated the profiles of cytokines related to EGF 
and uPAR in 68 esophageal squamous cell carcinoma 
(ESCC) patients. The data indicated that upregulation 
of uPAR- and EGF-related cytokines after CRT is 
associated with poor progression-free survival and 
shortened survival [156]. The levels of EGF and uPAR 
for CRT in serum are reliable and predictive 
biomarkers for survival in ESCC patients [156]. 
However, the expression of uPAR is dramatically 
upregulated after CRT [157], and recent results 
suggest that PAI-1 but not uPA and uPAR might have 
prognostic value for patients with advanced 
non-small-cell lung cancer (NSCLC) undergoing 
radiotherapy [158]. Therefore, the response of 
individual tumors to CRT is highly variable. 

uPAR and targeted therapy 
The uPAR system regulates cell proliferation, 

adhesion, invasion, and migration as well as 
glycolysis and the microenvironment. PAI-1 mediates 
the endocytosis of uPAR and blocks its biological 
function, thus inhibiting tumor development [159]. 
Therefore, uPAR can be used as a marker for cancer 
prognosis and diagnosis and is an attractive 
therapeutic target [4, 160]. Quercetin has been proven 
to induce antimetastatic effects in gastric cancer cells 
by suppressing the uPA/uPAR system via 
modulation of various associated pathways, including 
the NF-κb, PKC-δ, ERK1/2, and AMPKα pathways, 
indicating that uPAR may be a potential target for the 
treatment of gastric cancer [161]. The plant flavonoid 
2',3,4',5,7-pentahydroxyflavone can effectively inhibit 
the expression of uPA and uPAR and inhibit 
TPA-induced metastasis of human breast cancer cells 
through the Akt/GSK-3β/C-FOS pathway [162]. 
Moreover, apigenin plays an anti-invasive role by 
mediating the (ERK1/2, JNK)/AP-1 and (ERK1/2, 
JNK)/NF-κB signaling pathways to inhibit the 
expression of uPAR [163]. As uPAR and FPR1 are 
both involved in tumor progression, an effective cell 
migration peptide inhibitor (Ac-d-Tyr-d-Arg-AIB-d- 
Arg-NH) has been synthesized to inhibit the 
interaction of uPAR and FPR1 to suppress migration 
and angiogenesis [116, 164]. Another study also 
stressed that inhibitors of uPAR84-95/FPR1 crosstalk 
may be useful for the treatment of metastatic 
melanoma [165]. 2G10, a recombinant antibody that 
binds to uPAR to form a stable complex and can block 
the interaction of uPA-uPAR, is effective in a 
xenotransplantation model of highly aggressive, 
triple-negative breast cancer (TNBC) [166]. Anti- 

uPAR small molecules that specifically inhibit the 
uPAR-vitronectin interaction can inhibit cell adhesion 
and migration, representing a novel tool for NSCLC 
and colorectal cancer patients carrying Ras mutations 
[118]. 

uPAR and immunotherapy 
Chimeric antigen receptors (CARs) are synthetic 

receptors that can alter the specificity and other 
functions of T cells [167, 168]. Preventing the 
occurrence of various diseases caused by the 
accumulation of cellular senescence is important for 
immunotherapy of tumors and other diseases [169]. 
Thus, CAR-T cells that counter aging-associated 
changes exhibit broad therapeutic potential [167, 170]. 
uPAR is widely expressed on the surface of senescent 
cells, and uPAR-targeted CAR-T cells can eliminate 
senescent cells in vitro and in vivo [167]. In T cells, the 
CAR includes an extracellular uPAR-specific ligand 
binding domain (scFv), an intracellular costimulatory 
domain (from molecules such as CD28 or 4-1BB) and a 
CD3ζ T cell activation domain, which is activated by 
the binding of uPAR, leading to the activation and 
granule shedding of intracellular T cells [171, 172]. 
suPAR can be used as a plasma biomarker to evaluate 
the anti-aging activity of CAR-T cells in vivo [173]. 
Therefore, uPAR can be used as a target for CAR-T 
cell therapy in cancers [174] (Fig. 7). These works 
provide promising preliminary evidence that 
uPAR-directed CAR-T cells effectively target 
senescent cells and show that this CAR T-cell 
treatment has a measurable impact on disease states 
in immunocompetent hosts. 

 

 
Figure 7. CAR-T cells targeting uPAR can be utilized for cells. uPAR is 
identified as a common upregulated marker in senescent cells in three different 
models: therapy-induced senescence (TIS), oncogene-induced senescence (OIS), and 
replication-induced senescence (RIS). Senolytic CAR T cells were generated by 
introducing anti-mouse uPAR scFv linked to human CD28 costimulatory and CD3ζ 
signaling domains, resulting in T cell activation and degranulation. 

 
Antibodies against uPAR can inhibit pericellular 

hydrolysis, thus blocking the downstream signaling 
pathways activated by uPAR as well as tumor growth 
and metastasis [175, 176]. huATN-658, a humanized 
anti-uPAR antibody, can significantly decrease tumor 
cell proliferation and metastasis [177]. Leukocyte 
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immunoglobulin- like receptor B4 (LILRB4) is an 
inhibitory immune receptor that is more highly 
expressed in monocytic AML cells than in normal 
monocytes [178]. A recent study revealed that LILRB4 
can regulate different signaling pathways, including 
the uPAR pathway, suppress T cell activity and 
promote the proliferation of leukemia cells [178]. 
Therefore, the detection or targeting of uPAR in 
immunotherapy may also be of interest. 

uPAR and cell drug resistance 
Cell drug resistance can occur over time in the 

treatment of cancer and results in the weakening of 
drug effects, which is one of the causes of 
cancer-related death [179]. To reduce drug resistance, 
combination drug therapy has become an important 
method for effective treatment of cancer [180]. 
Exosomes are extracellular vesicles ranging in size 
from 40 nm to 100 nm that are often secreted by tumor 
cells and multiple stromal cells in the tumor 
microenvironment, and they can enhance drug 
resistance [128, 181]. The expression of uPAR is an 
important reason for cetuximab resistance in patients 
with oral squamous cell carcinoma, and combination 
therapy with resveratrol, which can inhibit the 
expression of uPAR, may provide an attractive means 
for treating these patients [182]. Knocking out the 
uPAR gene via the CRISPR/Cas9 system can reduce 
the resistance of tumor cells to 5-FU, cisplatin, 
docetaxel and Adriamycin [59]. BRAF inhibitor 
(BRAF-I) therapy for melanoma patients is initially 
highly effective, but drug resistance greatly limits its 
application. A recent study demonstrated that uPAR 
knockdown in combination with vemurafenib 
administration can inhibit melanoma cell proliferation 
by decreasing the phosphorylation of AKT and 
ERK1/2, and overexpression of uPAR results in 
reduced sensitivity to BRAF inhibition [183]. 
Researchers have also found that an anti-uPAR 
antibody (HuATN-658) combined with 
bisphosphonate zoledronic acid (Zometa) can inhibit 
breast cancer growth and bone lesions by targeting 
uPAR [177]. 

Conclusions and prospects 
Tumorigenesis and progression via the uPAR 

signaling pathway have emerged as hot topics in the 
field of cancer research. uPAR is a GPI type 
multifunctional receptor that mainly binds to ligand 
molecules released by ECM hydrolysis, such as uPA 
and vitronectin, and then combines with integrins and 
G-PCR on the cell membrane to transmit the signal 
intracellularly [184]. This review provides an 
overview of emerging data, from basic research as 
well as cancer therapy, highlighting the evolving role 

of uPAR in tumor progression. It is currently believed 
that uPAR expression plays an important role in 
tumorigenicity, and high endogenous uPAR levels are 
associated with tumor proliferation, advanced 
metastatic cancers, and glycolytic capacity [185]. 
uPAR has also been implicated in the angiogenesis of 
several solid and hematologic malignancies [186]. 
uPAR is aberrantly expressed through activation of 
signaling pathways by genetic alterations, oncogenes, 
transcription factors, and microenvironmental 
influences. Additionally, various therapeutic 
strategies have emerged in preclinical animal testing 
and clinical trials to inhibit the functions of uPAR in 
cancer therapy. However, the clear molecular 
mechanism need to be further investigated in immune 
escape. 

Targeted uPAR immunotherapy has not 
achieved the desired effects in the treatment of 
various types of cancers. One reason for this 
inconsistent and poor response may be related to 
individual differences among patients as well as 
tumor heterogeneity within a single patient. 
Therefore, the search for targeted drugs that can 
inhibit the binding of uPAR and uPAR target proteins 
as well as other membrane proteins has become 
extremely important [187]. Some small molecules and 
antibodies that can either suppress the expression of 
uPAR or block the interaction between uPAR and 
related membrane proteins are able to inhibit the 
development of tumors. A combination of resveratrol 
and cetuximab inhibits the expression of uPAR and 
has been used to treat cancer [184]. Moreover, 
uPAR-targeted CAR-T cells can eliminate senescent 
cells in vitro and in vivo [167], indicating the broad 
therapeutic potential of uPAR in immune therapy. 
Coronavirus disease 2019 (COVID-19) is characterized 
by suppressed lung fibrinolysis. Recent studies have 
shown that uPA can regulate alveolar type 
2-mediated re-alveologenesis [188]. The expression of 
suPAR is highly correlated with the characteristics of 
COVID-19 patients. Thus, studies of the uPA/uPAR 
system are helpful for identifying drugs to prevent or 
even treat COVID-19 [189]. As such, further analyses 
of immune therapy and disruption of the interactions 
between uPAR and its coreceptors represent an 
attractive strategy for targeting aggressive 
malignancies. 
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