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Modulation of erlotinib pharmacokinetics in mice by a novel
cytochrome P450 3A4 inhibitor, BAS 100
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Administration of BAS 100, a novel mechanism-based CYP3A4 inhibitor isolated from grapefruit juice, resulted in a 2.1-fold increase
in erlotinib exposure following oral administration to wild-type and humanised CYP3A4 transgenic mice. This study illustrates the
potential of BAS 100 to increase the low and variable oral bioavailability of erlotinib in cancer patients.
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Erlotinib (also known as Tarceva or OSI-774) is a quinazolinamine,
small molecule inhibitor of epidermal growth factor receptor
(EGFR) tyrosine kinase. It is approved for the treatment of
advanced nonsmall cell lung cancer as a single agent and advanced
pancreatic cancer in combination with gemcitabine. Erlotinib has
an average oral bioavailability in humans of 59% (Frohna et al,
2006), but exhibits substantial (up to eight-fold) interindividual
pharmacokinetic variability (Hidalgo et al, 2001; Tan et al, 2004),
which may result in variable treatment outcomes. Erlotinib is
extensively metabolised into multiple products (Ling et al, 2006),
including an active O-desmethyl metabolite, OSI-420. Cytochrome
P450 3A4 (CYP3A4) plays a prominent role in the metabolism of
this agent (Li et al, 2007b). As erlotinib is subject to extensive
first-pass metabolism following oral administration, inhibition of
intestinal and/or hepatic CYP3A4 activity may be a promising
strategy to decrease interindividual pharmacokinetic variability.
The objective of this study was to evaluate the effect of CYP3A4
inhibition by BAS 100, a novel spiro-ortho-ester mechanism-based
inhibitor of CYP3A4 present in grapefruit juice (Li et al, 2006a,
2007a), on the pharmacokinetics of erlotinib in mice. Since the
grapefruit effect was first reported in the early 1990s (Bailey et al,
1991), the ingestion of grapefruit juice has been shown to enhance
the systemic exposure of a number of orally administered drugs
(Bailey et al, 2004).

MATERIALS AND METHODS

BAS 100 was obtained from Bioavailabilty Systems (Cocoa Beach,
FL, USA), and erlotinib and OSI-420 were obtained from Toronto
Research Chemicals (North York, ON, Canada). All other
chemicals and reagents were purchased from Sigma-Aldrich (St
Louis, MO, USA). Female BALB/c mice (6–8 weeks old) were kept
in a controlled environment, with food and water available ad
libitum. All procedures were carried out with NCI Animal Care and
Use Committee approval. In the first study, BAS 100 and erlotinib
were formulated in 10% DMSO and 5% polysorbate 80 in saline.
Mice were randomised to receive erlotinib (10 mg kg�1, p.o.) alone
or 30 min after BAS 100 (10 mg kg�1, p.o.). Blood was collected by
cardiac puncture from three mice per time point at 0.083, 0.25, 0.5,
1, 2, 4, 6 and 24 h following erlotinib administration, and
centrifuged to obtain plasma. In the second study, erlotinib was
formulated in 0.3% carboxymethylcellulose and 0.1% polysorbate
80 in saline. Female CYP3A4 transgenic mice (Granvil et al, 2003)
and wild-type FVB/NCr mice (14 weeks old) received erlotinib
(10 mg kg�1, p.o.) alone or 30 min after BAS 100 (25 mg kg�1, p.o.).
Blood was collected 2 h after erlotinib administration. All samples
were stored at �801C until analysis. Plasma concentrations of
erlotinib and OSI-420 were measured as described previously
(Zhao et al, 2003). Plasma concentrations of BAS 100 were
measured by a novel liquid chromatography-tandem mass
spectrometry method. Briefly, plasma samples were prepared by
protein precipitation with acetonitrile. BAS 100 and the internal
standard (temazepam) were resolved isocratically on a Waters
XTerra MS C18 column (50� 2.1 mm internal diameter; 3.5 mm
particle size). The mass spectrometer was equipped with an
electrospray ionisation source and operated in positive mode.
Detection was performed by multiple reaction monitoring. The
lower limit of quantitation was 10 ng ml�1. Pharmacokinetic
parameters were determined by noncompartmental analysis using
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WinNonlin Professional Version 5.2 (Pharsight Corporation,
Mountain View, CA, USA). Bailer’s method (Bailer, 1988) was
used to estimate the variance of the area under the curve (AUC). A
Z-test was used for the pairwise comparison of AUCs (Yuan, 1993).

RESULTS

Administration of BAS 100 prior to erlotinib resulted in a 2.1-fold
increase in the AUC of erlotinib (37 953 vs 17 957 h ng ml�1,
Po0.05, Figure 1). The AUC of the metabolite, OSI-420, was
increased to a similar extent by BAS 100 (Table 1). The relative
extent of metabolism of erlotinib into OSI-420 (0.21 and 0.17,
respectively), and the half-life of OSI-420 (2.4 and 2.5 h,
respectively) were similar whether erlotinib was administered
alone or following BAS 100 (Table 1). Interestingly, a 2.5-fold
increase in the dose of BAS 100 (to 25 mg kg�1) did not result in a
further increase in erlotinib exposure (data not shown). The 2-h
plasma concentration of erlotinib was increased by BAS 100 to a
similar extent in CYP3A4 transgenic (2.0-fold; 1857±300 vs
929±80 ng ml�1) and wild-type mice (1.9-fold; 1409±237 vs
744±135 ng ml�1). BAS 100 itself was orally bioavailable, reaching
peak concentrations at 1 h following administration (Figure 2).
These concentrations are in the range required for the inhibition of
human CYP3A4 in vitro (Li et al, 2006a).

DISCUSSION

The present study indicates that BAS 100 significantly increased
the systemic exposure of erlotinib following oral administration,
although it did not change the relative extent of metabolism of
erlotinib into OSI-420. Furthermore, the half-lives of the parent
drug and the metabolite were not affected by BAS 100. This
suggests that the modulation of erlotinib pharmacokinetics by BAS
100 takes place at the level of intestinal absorption rather than
elimination. The fact that BAS 100 increased circulating concen-
trations of erlotinib to a similar extent in mice expressing human
CYP3A4 in the intestine and wild-type mice further substantiates
this supposition. However, it is also possible that, as a result of
Cyp3a inhibition by BAS 100, biotransformation of erlotinib into
OSI-420 is shunted to another metabolic pathway that is unaffected
by BAS 100. In addition, it cannot be excluded that BAS 100 affects
the formation of one or more of the other known erlotinib

metabolites (Ling et al, 2006) that were not measured in this study,
or that BAS 100 inhibits ABC transporter-mediated efflux of
erlotinib in the intestine (Li et al, 2006a). Of note, the relative
extent of metabolism of erlotinib into OSI-420 observed in this
study is similar to that reported in cancer patients (0.12; Hidalgo
et al, 2001). The bioavailability of erlotinib in mice has not been
published. However, assuming it is similar to that observed in
humans (59%; Frohna et al, 2006), one would not expect a
modulator of its metabolism and/or transport to increase its
exposure more than two-fold. Indeed, a 2.5-fold increase in the
dose of BAS 100 (to 25 mg kg�1) did not result in a further increase
in erlotinib exposure in the current study. In patients treated with
erlotinib, the pharmacodynamic end point of rash, which has been
associated with improved survival (Wacker et al, 2007), is
significantly correlated to erlotinib exposure (Lu et al, 2006;
Strother et al, 2006). Furthermore, previously obtained data on the
related drug, gefitinib, indicate that patients with high CYP3A4
activity are likely to benefit from a modified regimen (increased
dose), to achieve the drug concentrations required to interact with
EGFR (Li et al, 2006b). A strategy by which enzyme activity is
intentionally inhibited could achieve similar results. In view of the
significant inverse correlation between decreasing absolute bio-
availability and interindividual pharmacokinetic variability
(Hellriegel et al, 1996), the current data provide a rationale for
the development of exploratory clinical studies aimed at decreas-
ing the variability in erlotinib exposure by concomitant adminis-
tration of BAS 100.
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Figure 1 Plasma concentration– time curves of erlotinib and OSI-420
following administration of erlotinib (10 mg kg�1, p.o.) alone or 30 min after
BAS 100 (10 mg kg�1, p.o.) to BALB/c mice. Data points and error bars
represent the mean (n¼ 3) and standard error, respectively.

Table 1 Plasma pharmacokinetic parameters of erlotinib, OSI-420 and
BAS 100 following administration of erlotinib (10 mg kg�1, p.o.) alone or
30 min after BAS 100 (10 mg kg�1, p.o.) to BALB/c mice

Tmax

(h)
Cmax

(ng ml�1)
AUClast

(h ng ml�1)
HL kz

(h)

Erlotinib (�BAS 100) 0.5 2323 17957 3.1
Erlotinib (+BAS 100) 0.5 3952 37953 3.2
OSI-420 (�BAS 100) 2.0 430 3783 2.4
OSI-420 (+BAS 100) 2.0 682 6371 2.5
BAS 100 (+erlotinib) 1.0 2163 6940 1.8

AUClast¼ area under the curve from the time of dosing to the last measurable
concentration; Cmax¼maximum observed concentration; HL lz¼ terminal half-life;
OSI-420¼O-desmethyl metabolite; Tmax¼ time of maximum observed concentration.
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Figure 2 Plasma concentration–time curve of BAS 100. BAS 100
(10 mg kg�1, p.o) was administered to BALB/c mice 30 min prior to
erlotinib (10 mg kg�1, p.o.). Data points and error bars represent the mean
(n¼ 3) and standard error, respectively.
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