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Abstract: The regular monitoring of water environments is essential for preventing waterborne
virus-mediated contamination and mitigating health concerns. We aimed to detect human aden-
ovirus (HAdV) in the Wadi Hanifah (WH) and Wadi Namar (WN) lakes, King Saud University
wastewater treatment plant (KSU-WWTP), Manfouha-WWTP, irrigation water (IW), and AnNazim
landfill (ANLF) in Riyadh, Saudi Arabia. HAdV hexon sequences were analyzed against 71 HAdV
prototypes and investigated for seasonal influence. ANLF had the highest HAdV prevalence (83.3%).
Remarkably, the F species of HAdV, especially serotype 41, predominated. Daily temperature ranges
(22–45 ◦C and 10–33 ◦C) influenced the significance of the differences between the locations. The most
significant relationship of ANLF and IW to WH and KSU-WWTP was found at the high-temperature
range (p = 0.001). Meanwhile, WN was most correlated to ANLF at the low-temperature range
(p < 0.0001). Seasonal influences on HAdV prevalence were insignificant despite HAdV’s high
prevalence in autumn and winter months, favoring low temperatures (high: 22–25 ◦C, low: 14–17 ◦C)
at five out of six locations. Our study provides insightful information on HAdV prevalence and the
circulating strains that can address the knowledge gap in the environmental impacts of viruses and
help control viral diseases in public health management.

Keywords: human adenovirus; waterborne; type 41; prevalence; seasonality

1. Introduction

Surface water resources are usually contaminated with wastewater discharge [1,2].
As a result, there continue to be major public health issues due to the contamination of
water resources, such as recreational waters, rivers, as well as wastewater treatment plants
(WWTPs), by fecal-mediated enteric viruses [3–5].

Human adenovirus (HAdV), a commonly detected enteric virus, is a non-enveloped
icosahedral virus with a double-stranded linear DNA genome of 34–36 kb [6]. They are
currently categorized into seven HAdV species, A to G, in addition to the recently identified
adenovirus types that are continuously emerging [7,8]. Although cross-neutralization has
defined serotypes up to type 51, genotype description has been mostly implemented for the
more recently identified types that reveal the presence of novel sequences or recombinant
phylogeny in the HAdV genes encoding the major capsid proteins [9].

Adenoviruses infections can result in asymptomatic cases [10] as well as a wide
spectrum of clinical symptoms. Gastrointestinal infections are frequently caused by species
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A, D, and F. On the other hand, species B is a major cause of infections of the lung and
urinary tract. Meanwhile, species C and E are mainly responsible for infections of the
respiratory tract. Notably, serotypes 40 and 41 of species F, as well as serotype 31 of
species A, are mainly associated with gastroenteritis [11]. Adenoviruses are commonly
self-limiting, but not in immuno-deficient individuals. However, a previously emerged
adenovirus type 14 strain has caused serious respiratory disease in healthy personnel [12].

HAdV is specific to humans, although adenoviruses can infect a wide range of animals.
In domestic sewage, HAdV was found in significantly high concentrations, and their
seasonal variability was doubtful [13–15]. Like most enteric viruses, adenoviruses survive
in the environment and even during sewage treatment processes better than currently used
fecal indicator bacteria [16,17]. Moreover, adenoviruses in water environments have been
extensively investigated via the sequencing of cloned PCR products or even the direct
Sanger sequencing of PCR products [18–21].

The prevalence of waterborne HAdV in Saudi Arabia has not been extensively studied.
Thus, the current study aimed to detect the circulating HAdV in six different locations,
that is, in two lakes, two wastewater treatment plants, irrigation water, and a landfill of
wastewater, in Riyadh, Saudi Arabia. Moreover, the hexon sequences of the detected HAdV
were sequenced for phylogenetic analysis. Furthermore, the seasonal impact was examined
in the context of HAdV prevalence in these sampling locations.

2. Materials and Methods
2.1. Samples Collection

HAdV in various water reservoirs in Riyadh was evaluated. From April 2018 till
March 2019, 500-mL samples were collected thrice monthly from each sampling area
including two valleys, two wastewater treatment plants (WWTPs), irrigation water (IW)
of King Saud University (KSU), and the An-Nazim wastewater landfill. The two valleys
were Namar Valley (NV) and Hanifa Valley (HV), while the WWTPs were the Southern
Riyadh Wastewater Treatment Plant at Manfouhah (MN-WWTP) and KSU-WWTP. The
treated water from KSU-WWTP is used for landscape irrigation and as a coolant at the
KSU-based power plant. MN-WWTP effluents are used for flushing sewers as well as
controlled irrigation [22,23]. Moreover, the water at HV and the subsidiary NV includes
the partially treated and domestic drainage from Riyadh besides usages for recreation [24].

2.2. Viral Concentration

HAdV was recovered via PEG-mediated protein precipitation according to the pro-
cedure of Bibby and Peccia (2013) with some modifications [25]. First, 25 mL of glycine
buffer (0.05 M glycine, 0.3 g/L beef extract, pH 9.6) was added to 200 mL of a water sample
to detach the virions from the organic matter before centrifugation at 8000× g for 30 min.
The resultant supernatant was filtered with a 0.2-µm syringe filter (Corning, NY 14831,
USA), followed by filtrate treatment with PEG 8000 and NaCl at 80 g/L and 17.5 g/L,
respectively, and agitation at 100 rpm under room temperature conditions. The viruses
were then obtained by centrifuging at 13,000× g for 30 min, removing the supernatant, and
centrifuging at 13,000 × g for 5 min to obtain a pellet. The virus was eluted from the pellet
with 1 mL phosphate buffer saline (PBS) and then stored at −80 ◦C.

2.3. Nucleic Acid Extraction and Specific PCR Detection

HAdV DNA was extracted from 200 µL of a water sample using the PowerViral® Envi-
ronmental RNA/DNA Isolation Kit (MO BIO, Carlsbad, CA, USA) following the manufac-
turer’s instructions. HAdV was detected using 2× Phusion Master Mix (Thermo Fisher Sci-
entific, USA) for hexon gene-specific PCR. The 20-µL PCR mixture consisted of a 2-µL DNA
template, 300-nM forward primer (AdFhex-F; 5′-GCCACCGATACCTACTTCAGCCTG-3′),
300-nM reverse primer (AdFhex-R; 5′-GGCAGTGCCGGAGTAGGGTTTAAA-3′) [26], and
1× Phusion Master Mix. The PCR was conducted at 98 ◦C for 30 s, followed by 40 cycles of
98 ◦C for 10 s, and 72 ◦C for 30 s, and a final extension at 72 ◦C for 5 min. A HAdV-positive
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sample was provided by the Virology Unit of King Khalid University Hospital, Riyadh,
Saudi Arabia, to act as the process control for virus extraction and PCR amplification.

2.4. Amplicon Purification and Sequencing

Agarose gel electrophoresis was applied at 2× concentration to visualize the PCR
products. The resultant 261-bp amplicons were then purified utilizing the Wizard® SV Gel
and PCR Clean-Up System (Promega Co., Madison, WI, USA), according to the manufac-
turer’s protocol. The purified amplicons were sequenced using the ABI genetic analyzer
3130Xl (Applied Biosystems®, Carlsbad, CA, USA).

2.5. Phylogenetic Analysis

The detected HAdV nucleotide sequences were analyzed using the MEGA X soft-
ware [27] and compared with the sequences of 71 known HAdV types [10] (Table S1).
The sequence alignments were generated using ClustalW using default settings with an
opening penalty of 15 and an extension penalty of 6.66. The phylogenetic tree was con-
structed according to the best-fit model of nucleotide substitution using the minimum
Bayesian information criterion. The reliability of the phylogenetic tree was estimated by
the bootstrapping of 1000 replicates. The genetic distances were estimated by the Kimura
three-parameter method.

2.6. Statistical Analysis

Pearson’s correlation coefficient matrix was implemented to examine the potential
relationships between the different sampling areas within a 1-year period. One-way
analysis of variance was carried out to test the significance of the impact of the high-
and low-temperature ranges on HAdV prevalence regardless of the sampling area. The
relationships between different sampling locations, as dependent variables, and high and
low temperatures, as independent variables, were fitted using linear curve fitting. All the
statistical analyses were conducted using the XL-STAT statistical package software (Ver.
2019, Excel Add-ins soft SARL, New York, NY, USA).

3. Results
3.1. AnNazim Landfill Exhibited the Highest HAdV Prevalence

Out of the 216 water samples tested for HAdV, 142 (65.74%) were positive for the
261-bp amplicon (Figure 1). The highest HAdV prevalence was found in ANLF at about
83.3%, whereas the lowest prevalence was observed in MN-WWTP at approximately 44.4%
(Table 1). The molecular characterization of the amplicon sequences by Sanger sequencing
showed 92 sequences; however, the remaining 50 sequences were not recognized because
of overlapped electropherograms.

3.2. Predominance of HAdV Serotype 41 (Type F)

The phylogenetic tree illustrated the typical relationship of the HAdV hexon sequences
with serotype 41 followed by serotype 40 of HAdV (type F) rather than with the other
serotypes (A–E and G) (Figure 2). Pairwise distancing analysis uncovered 13 different
HAdV isolates, and most of them (5/13) were collected from ANLF (Table S2). WH
sequences, WH1 and WH2, showed the closest relationship with HAdV type 41 as they
belonged to the same branch. However, WH3 was closely related to WN1. Remarkably,
ANLF sequences, LF1, LF2, and LF3, had a closer relationship with the sequences from
other sampling areas, such as KSU, IW, MN2, and MN, than the WH and WN sequences
had, even though they belong to the same branch. Moreover, LF4 and LF5 were closely
related to each other. In addition, the notably shorter branch length in the case of detected
HAdV sequences indicated a lack of divergence from each other as well as from the closest
HAdV serotype 41.
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Figure 1. RT-PCR product. Lane 1, DNA ladder (50–500 bp). Lane 2, HAdV positive control. Lanes 3
to 7, 261-bp HAdV amplicons. Lane 8, negative control.

Table 1. HAdV cases in different sample locations.

Sampling Area HAdV Cases in 2018
(April–December)

HAdV Cases in 2019
(January–March) HAdV Prevalence (%)

KSU-WWTP 15 7 61.11
MN-WWTP 11 5 44.44

WH 21 6 75.0
WN 22 6 77.78

ANLF 22 8 83.33
IW 13 6 52.78

KSU-WWTP, King Saud University Wastewater Treatment Plan; MN-WWTP, Manfouhah-WWTP; WH, Wadi
Hanifah; WN, Wadi Namar; ANLF, AnNazim landfill; IW, irrigation water.

The highest log-likelihood tree is displayed (−2249.38). Heuristic search-dependent
initial tree(s) were attained automatically via Neighbor-Join and BioNJ algorithms applied
to a pairwise distance matrix that was assessed by the maximum composite likelihood
(MCL) approach followed by the highest log likelihood-resulted topology selection. A
5-category discrete Gamma distribution was implemented ([+G]; 0.3272) according to
best-fitting substitution model validation to model the difference in the evolutionary rates
between sites (Table S3). The horizontal distance connecting two HAdV sequences was pro-
portional to the genetic distance between them. The distance was expressed as the number
of nucleotide substitutions per site. There were a total of 261 positions in the final dataset.
The red italicized sequences (Figure 2) denote the current study sequences of accession
numbers MW936369 (WH1_HAdV_2018), MW936370 (WH2_HAdV_2018), MW936371
(WH3_HAdV_2019), MW936372 (WN1_HAdV_ 2018), MW936373 (LF1_HAdV_2018),
MW936374 (KSU1_HAdV_2018), MW936375 (IW_HAdV_2018), MW936376 (MN1_HAdV_
2018), MW936377 (MN2_HAdV_2019), MW936378 (LF2_HAdV_2018), MW936379 (LF3_
HAdV_2018), MW936380 (LF4_HAdV_2018), and MW936381 (LF5_HAdV_2019).
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3.3. Relationship Differences in Sampling Areas

The relationships between the sampling areas with respect to HAdV detection at high
temperatures (the numbers above the gray highlight, Table 2) differed from those at low
temperatures (the numbers below the gray highlight, Table 2). At the high-temperature
range, ANLF and IW were of the highest significant correlation (p = 0.001) to WH and KSU-
WWTP, respectively, followed by a slightly lower correlation of ANLF to WN (p = 0.017)
and WN and MN-WWTP to WH and KSU-WWTP (p = 0.039 and 0.038, respectively) in
terms of % HAdV detection. In contrast, at the low-temperature range, WN had the highest
correlation to ANLF (p < 0.0001), followed by a significant correlation of KSU-WWTP to
MN-WWTP, IW, and ANLF (p = 0.001, 0.001, and 0.028, respectively), MN-WWTP to IW,
ANLF, WH, and WN (p = 0.006 and 0.014, 0.024, and 0.04, respectively), WH to WN and
ANLF (p = 0.012 and 0.014, respectively), and ANLF to IW (p = 0.021) (Figure 3).

Table 2. Pearson’s correlation matrix of HAdV detection percentage at the various sampling areas.

% DetKSU-WWTP % DetMN-WWTP % DetWH % DetWN % DetANLF % DetIW
% DetKSU-WWTP 0.836 0.578 0.667 0.688 0.971
% DetMN-WWTP 0.976 0.422 0.463 0.568 0.720

% DetWH 0.811 0.871 0.833 0.977 0.523
% DetWN 0.767 0.832 0.908 0.892 0.710

% DetANLF 0.861 0.901 0.901 0.982 0.630
% DetIW 0.971 0.937 0.728 0.780 0.880

The numbers above the gray-highlighted diagonal refer to correlation values at the high-temperature range, whereas those below the
diagonal are correlation values at the low-temperature range. The percentage of HAdV detectability is denoted by “% Det” at different
sampling areas. For example, % DetKSU-WWTP refers to the HAdV detection percentage at KSU-WWTP. Significant correlation values are
displayed as bold numbers.
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3.4. Non-Significant Influence of Seasonal Variation on HAdV Prevalence

Regardless of the sampling area, HAdV prevalence was not found to be significantly
influenced by variations in temperature (p = 0.256), despite a notable decline in HAdV
prevalence in late summer (August 2018) (Figure 4). Similarly, the segregation of sampling
areas displayed no significant influence of high or low temperature on HAdV prevalence
(Table 3). However, the highest HAdV prevalence was mostly favored in the lowest-
temperature ranges (22–25 ◦C) at five sampling areas in the high-temperature range, unlike
the HAdV prevalence detected at MN-WWTP at the high-temperature range (26–29 ◦C).
Surprisingly, HAdV detection was highest at 14–17 ◦C in the low-temperature range,
equivalent to 26–29 ◦C at the high-temperature range (Figure 5).
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Table 3. The significance of the influence of high or low-temperature ranges on HAdV prevalence in various sampling areas.

Sampling Area Temperature Range R2 RMSE Equation

KSU-WWTP
High 0.641 8.544 % PrevKSU-WWTP = 58.94 − 1.36 × TH

‡

Low 0.476 10.829 % PrevKSU-WWTP = 40.11 − 1.23 × TL

MN-WWTP
High 0.480 10.885 % PrevMN-WWTP = 55.42 − 1.25 × TH
Low 0.325 12.924 % PrevMN-WWTP = 30.24 − 0.71 × TL

WH
High 0.007 13.754 % PrevWH = 32.28 − 0.13 × TH
Low 0.025 16.178 % PrevWH = 34.06 − 0.31 × TL

WN
High 0.011 14.356 % PrevWN = 34.70 − 0.18 × TH
Low 0.011 14.356 % PrevWN = 32.56 − 0.18 × TL

ANLF
High 0.035 15.652 % PrevANLF = 42.32 − 0.36 × TH
Low 0.073 15.917 % PrevANLF = 41.43 − 0.54 × TL

IW
High 0.553 10.414 % PrevIW = 62.69 − 1.38 × TH
Low 0.476 12.145 % PrevIW = 46.09 − 1.38 × TL

% Prev denotes HAdV prevalence percentage at different locations. RMSE refers to the root mean squared error, which is an absolute
measure of fit. ‡ TH represents the highest temperature, whereas TL denotes the lowest temperature.
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4. Discussion

Human enteric viruses impose critical public health issues owing to their considerable
stability in water resources, low infectious doses, and significant concentrations of viral
shedding. The accidental release of feces, body fluids, or improperly treated wastewater
is a common route of enteric viral contamination in aquatic environments [4,28]. HAdVs
have been detected in groundwater, surface water, sewage, and even wastewater treatment
plants worldwide [13,29–32].

We detected HAdV in all the investigated water resources, consistent with previous
studies. This observation could be due to HAdV prevalence, human cell tropism, or their
resilience in various environments and populations [18,33]. Therefore, HAdV may be an
index indicator of wastewater fecal contamination [34].

On the other hand, there are limited studies on HAdV prevalence in the water re-
sources in Saudi Arabia since most studies focused on detecting circulating HAdV strains
in patients [35–38]. The current study focused on HAdV prevalence in various water
environments. The highest HAdV prevalence was observed in wastewater landfills, likely
as a result of the frequent, extensive disposal of biosolids in landfills that increase the level
of pathogens in the resultant leachate [39]. Moreover, landfills and associated facilities
were reported to have a HAdV prevalence of 75% [40], less than that reported in the cur-
rent study at 83.3%. The higher HAdV prevalence is due to the landfills in Saudi Arabia
receiving dewatered sludge from most WWTPs as solid waste that lacks stabilization, thus
disseminating enteric viruses and contaminating shallow groundwater aquifers [41].

The present study also investigated the serotypes of the circulating HAdV strains in
water. Notably, all the detected HAdV strains belonged to species F, usually associated with
acute gastroenteritis in children [18]. A previous study on a membrane bioreactor-based
wastewater treatment plant in Saudi Arabia detected two types of HAdV, species F and
species A [41]. These observations are partially consistent with our results. Moreover,
HAdV serotypes 40 and 41 were detected in diarrheal patients from Riyadh, Jeddah,
and Mecca in Saudi Arabia [36], in line with our observations that our detected HAdV
sequences cluster with serotype 41.

In addition, varied relationships were observed between the sampling areas. ANLF
and IW were of the most significant relationship to WH and KSU-WWTP at a high-
temperature range, as KSU-WWTP is the primary source of IW, besides the waste disposal
of WH to ANLF. Likewise, WN was highly correlated to ANLF at the low-temperature
range because of the potentially linked waste disposal routes. In addition, WN, as a
subsidiary branch of WH, contributed to a significant relationship between the lakes [24].

Moreover, higher HAdV prevalence was detected at lower temperatures in autumn
and winter, in agreement with previous findings [42,43]. However, Wang et al. [44] recorded
higher HAdV prevalence in summer and spring than autumn, similar to a previous study
conducted in China that reported a higher prevalence in summer [45]. The discrepancy
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may be due to geographical differences, the lack of significance observed in the relationship
between temperature and HAdV prevalence in Wang et al. [32], or the difference in HAdV
types detected in China encompassing HAdV type 3 and type 7 as the most prevalent
types. Meanwhile, our current study detected HAdV type 41. Despite the higher HAdV
prevalence in autumn and winter, seasonal variation showed no significant influence on
HAdV prevalence. The lack of seasonal tendency of HAdV was previously reported in
several studies [14,15].

5. Conclusions

This study provides insightful information concerning HAdV prevalence in various
water environments in Riyadh, uncovers the predominance of the species F of HAdV
serotype 41 in Saudi Arabia over other HAdV species, and reports a lack of significance
of seasonality influence on HAdV prevalence. However, continuous monitoring of cir-
culating HAdV in Saudi Arabia during notable weather changes is essential to address
potential public health concerns, especially in cold months due to the corresponding higher
prevalence of HAdV.
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