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Abstract

Stewards of social data face a fundamental tension. On one hand, they want to make their data 

accessible to as many researchers as possible to facilitate new discoveries. At the same time, they 

want to restrict access to their data as much as possible to protect the people represented in the 

data. In this article, we provide a case study addressing this common tension in an uncommon 

setting: the Fragile Families Challenge, a scientific mass collaboration designed to yield insights 

that could improve the lives of disadvantaged children in the United States. We describe our 

process of threat modeling, threat mitigation, and third-party guidance. We also describe the 

ethical principles that formed the basis of our process. We are open about our process and the 

trade-offs we made in the hope that others can improve on what we have done.
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Social data—data about people—can be both valuable and dangerous. On one hand, they 

can be used to advance scientific understanding and yield insights that can benefit society. 

On the other hand, they can be used in ways that violate privacy and lead to other harms. 

Stewards of social data, therefore, face a fundamental tension. At one extreme, a data 

steward could share a complete data set publicly with everyone. This full-release approach 

maximizes the potential for scientific discovery, but it also maximizes risk to the people 

whose information is in the data set. At the other extreme, a data steward could share 

the data with no one. This no-release approach minimizes risk to participants, but it also 

eliminates benefits that could come from the responsible use of the data. In between these 

two extremes, no release and full release, there are a variety of intermediate solutions, which 

involve balancing risk to participants and benefits to science (Figure 1). In this article, we 
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present a case study describing how we balanced this trade-off between risks and benefits 

when we served as data stewards during the Fragile Families Challenge. We hope this case 

study will benefit a variety of data stewards, including those within universities, companies, 

and governments. We also hope that this case study will benefit policy makers who seek to 

enable responsible data access and researchers who seek responsible access to detailed and 

potentially sensitive social data.

The Fragile Families Challenge is a scientific mass collaboration involving hundreds of 

researchers. During this mass collaboration, a diverse group of social scientists and data 

scientists worked with a common data set that contained detailed information about the lives 

of 4,242 families in the United States, many of whom were disadvantaged. The detailed 

nature of the data made the project particularly valuable for developing knowledge about 

the lives of disadvantaged families, yet these very features also heightened concerns about 

privacy and ethics. In other words, the Challenge brought the tension between risks and 

benefits into sharp focus. In this article, we provide no single solution to the fundamental 

tension between access and privacy; instead, we describe our process of addressing it. More 

specifically, we describe the privacy and ethics audit we conducted from December 2016 

through March 2017, as well as steps we carried out during the Challenge from March 

through August 2017 (see timeline in Figure 2).

The article is divided into eight sections. The current section introduces the paper. The next 

section provides more background about the data and the Challenge. We then describe our 

threat modeling and threat mitigation strategies, followed by our response plan in case our 

mitigations were ineffective. The next section summarizes our mechanisms for third-party 

guidance. We then discusses the ethical principles that guided our thinking. The next section 

describes our ultimate decision to conduct the Challenge. The final section concludes. 

Although the article is written linearly, the real process, summarized in Figure 3, cycled 

through all of these steps many times. We are open about our process and the trade-offs we 

made in the hope that others can improve on what we have done.

Background

Fragile Families and Child Wellbeing Study

The Fragile Families Challenge builds on the Fragile Families and Child Wellbeing Study 

(hereafter Fragile Families Study), a longitudinal study of 4,898 families. The study began 

with a probability sample of newborns in 20 large U.S. cities, of which 16 cities form 

a probability sample of all U.S. cities with populations greater than 200,000 (Reichman 

et al. 2001). For more than 15 years, researchers have followed these families to collect 

information related to child and family development as reported by the children as well as 

the children’s mothers, fathers, primary caregivers, and teachers. These rich longitudinal 

data have already been used in hundreds of published articles and dozens of dissertations 

on aspects of urban poverty, including multiple-partner fertility (Carlson and Furstenberg 

2006), multigenerational households (Pilkauskas 2012), paternal incarceration (Wildeman 

2009), housing instability (Desmond and Kimbro 2015), and neighborhood disadvantage 

(Donnelly et al. 2017).1
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Four features of the Fragile Families Study were particularly relevant to the design 

and conduct of the Fragile Families Challenge. Many of these features are common in 

large-scale social data sets but may not be common in data sets held by companies 

and governments. These features also make these data different from some types of data 

commonly considered in privacy research.

First, these data were collected with informed consent. Parents explicitly agreed to join 

the study and made this agreement on behalf of their children. Furthermore, the children 

themselves provided their assent to participate once they were old enough. These procedures 

were overseen by the Institutional Review Board of Princeton University. Informed consent 

makes the Fragile Families Study different from many other cases privacy scholars have 

considered. For instance, a main critique of the use of Facebook data for research purposes 

has been the lack of informed consent; participants may not expect their activity on 

Facebook to be used in research (Zimmer 2010). In this case, however, respondents learned 

about the goals of the study and gave explicit permission for the information they provided 

to be used by researchers.

Second, these data are already available to researchers through an established system. This 

data access system, which is overseen by the Institutional Review Board of Princeton 

University, has already been used by thousands of researchers for more than 15 years. The 

current data access system follows a tiered model in which there are basic files and restricted 

files (Figure 4). The two main differences between the basic and restricted files are the 

application process and the types of data that are provided; in all cases, the data are stripped 

of obviously personally identifying information.2 This system of tiered access served as our 

baseline as we designed and implemented the Fragile Families Challenge. We think it is 

reasonable to accept the current system as our baseline because this system developed over 

many years in the full view of the scientific community.

The third feature of the Fragile Families Study that shaped our design of the Challenge 

is that these data contain information about many people around the focal child—such as 

the mother, father, primary caregiver, and teacher—and contain information about many 

domains of the respondents’ lives. For example, the study collects information about 

the home environment, the school environment, teacher characteristics, parental criminal 

history, and child health, to name just a few domains (Figure 5). The multidomain, linked 

1For a complete list of research using the Fragile Families Study, see https://ffpubs.princeton.edu.
2The restricted files may contain detailed geographic, genetic, or other data deemed especially sensitive or identifiable. Access to 
these files requires a detailed restricted data contract and a carefully vetted research proposal. The Fragile Families staff grants 
approval only to projects with research merit that can only be achieved with the restricted files. Data are shared only after researchers 
sign a data protection agreement, show that they have completed National Institutes of Health-approved training in protecting 
human research participants, provide evidence of approval from the institutional review boards of their institutions, and detail a data 
protection plan summarizing how data will be used. Student applicants must apply with faculty mentors, who bear responsibility for 
violations of the agreement. Researchers approved in this process are given access to a tailored version of the data with detailed 
information only on the domains relevant to their research. For instance, a researcher studying neighborhood effects would be given 
neighborhood information but not genetic information, while a researcher studying epigenetics would be given genetic information 
but not neighborhood information; only researchers with projects involving both fields would be given data covering both domains. 
Fragile Families staff members work with researchers to determine the particular variables needed for any given study. The basic files 
exclude obvious personally identifying information and obvious geographic information, such as city of birth and residential location. 
To obtain these files, researchers must agree to a set of terms and conditions and propose a viable project, which Fragile Families staff 
members approve as potentially important social science research. Several thousand researchers have completed these procedure and 
were already using the data before the Challenge began.
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nature of the data increases its scientific value, but it also increases risks for two main 

reasons. First, it creates many possible entry points for a reidentification attack (this risk 

is described in more detail later). Second, the multidomain nature of the data increases the 

harm that could occur if a reidentification attack were successful, because many potentially 

sensitive pieces of information would be revealed. The linked, multidomain nature of the 

data differs from the cases normally considered by privacy researchers, which usually 

involve a collection of individuals with information from a single domain (e.g., medical 

records).

The fourth and final feature that is relevant to the Fragile Families Challenge is that these 

data are frequently used in scientific and policy debates. For example, a recent National 

Academies of Sciences report on the effects of parental incarceration on children drew 

heavily on the Fragile Families Study (National Research Council 2014). Although these 

data have already been used extensively by social scientists, we thought it would be possible 

to learn even more if a larger, more diverse group of researchers approached the data in a 

very different way. This goal of increased scientific and policy impact was one of the main 

motivations for the Fragile Families Challenge.

Fragile Families Challenge

The Fragile Families Challenge is a mass collaboration that combines predictive modeling, 

causal inference, and in-depth interviews to yield insights that can improve the lives 

of disadvantaged children in the United States. This article, and this special collection, 

describes the first stage of the Fragile Families Challenge, which focuses on predictive 

modeling. This predictive modeling stage follows an approach called the common task 

framework, which is used frequently in computer science (Donoho 2017) and biomedical 

research (Saez-Rodriguez et al. 2016). The common task framework is a process that invites 

many researchers to participate in a unified task characterized by three key aspects: (1) 

a common predictive modeling goal using (2) a single data set made available to all, 

with (3) a well-defined scoring metric to evaluate contributions. This process often yields 

better predictive performance than any individual researcher can realize working alone (e.g., 

Bennett and Lanning 2007) and often leads to new scientific and methodological insights 

(e.g., Feuerverger, He, and Khatri 2012). Donoho (2017) went so far as to describe the 

common task framework as part of “the ‘secret sauce’ of machine learning.”

As described in more detail in the introduction to this special collection (Salganik et al. 

2019), we set out the goal of using the data collected from a family at the birth of the child 

up to when the child was 9 years old to predict data from the family when the child was 15 

years old. These age 15 data had been collected but were not yet available to participants 

(Figure 6). The existence of these collected but otherwise unavailable data is critical for 

the common task framework, and fortunately all longitudinal social surveys present this 

possibility every time a new wave of data has been collected. Among the many possible 

outcomes in the year 15 data, we asked participants in the Challenge to predict six key 

outcomes: grade point average (GPA) of the child, grit of the child, material hardship of 

the family, whether the family was evicted from their home, whether the primary caregiver 

participated in job training, and whether the primary caregiver lost his or her job. The choice 
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of these outcomes was driven by ethical considerations and our scientific goals, and each 

outcome is described in more detail in the introduction to this special collection.

As is typical in projects using the common task framework, we split the year 15 data for 

these six outcomes into three groups: (1) a training set that we provided to participants, (2) 

a leaderboard set that participants could access during the Challenge, and (3) a holdout set 

that participants could not access until the first stage of the Challenge was complete (Hardt 

and Blum 2015) (Figure 6). Participants in the Challenge received the training set and a 

specially constructed background data file that contained information about the family from 

birth to age 9 (the construction of this file is described later). This background file included 

4,242 families and 12,942 variables about each family. The high-dimensional nature of the 

data—more predictors than observations—is a result of the linked, multiple-domain nature 

of the data (as discussed earlier) and has important implications for privacy (as discussed 

later).

Challenge participants used the background data file and training data to build statistical or 

machine learning models. They used these models to predict the holdout data (e.g., GPA at 

age 15). We measured the quality of these predictions using mean squared error.3

The immediate goal of this stage of the Fragile Families Challenge was to find the most 

accurate predictive model for the six outcomes. Given the nature and size of the data—

thousands rather than millions of observations—we wanted to learn the extent to which 

machine learning methods would improve predictive performance beyond the generalized 

linear models typically applied by social scientists. This explicit focus on prediction is 

atypical for social science, but substantial current scholarship argues that prediction is 

important for both scientific and policy reasons (Breiman 2001; Hofman, Sharma, and Watts 

2017; Kleinberg et al. 2015, 2017; Mullainathan and Spiess 2017; Shmueli 2010; Watts 

2014).

In our case, the immediate goal of prediction was important to prepare for a long-term 

goal of explanation and hypothesis generation. As will be described in future articles, 

these predictions will be used to target qualitative, in-depth interviews with families that 

reported unexpected outcomes. We hope these interviews will help us discover important 

and currently unmeasured factors and generate hypotheses about how these may affect the 

lives of disadvantaged families. We also hope the interviews will inform the credibility of 

the assumptions required to draw causal inferences from survey data in a setting in which 

thousands of pretreatment variables are potentially involved in confounding.

Why Worry?

The data from the Fragile Families Study were collected with informed consent and are 

already provided to researchers under a well-established system, all of which has been 

overseen by the Institutional Review Board of Princeton University. More generally, survey 

3The mean squared error is a common scoring metric, and it can be written as 
1
n ∑i = 1

n (yi − y i)2, where y i is the predicted value for 

person i, yi is the true value for person i, and n is the number of people in the holdout set. For binary outcomes, mean squared error is 
sometimes called Brier score (Brier 1950).
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data of this type have been provided to researchers in a similar fashion for more than 

50 years. Why should we worry about the risk for reidentification in the Fragile Families 

Challenge?

Quite simply, all data are potentially identifiable. This possibility was made clear to us in 

one of our first meetings, when a member of our team (Narayanan) proposed the following 

hypothetical scenario. Imagine an all-powerful and evil business magnate such as Lex 

Luthor, Superman’s archenemy. Further imagine that Lex Luthor heard about the Fragile 

Families Challenge and wished to reidentify the data. Lex could invest billions of dollars 

to conduct a census of every child born from 1998 through 2000 in the cities covered by 

the Fragile Families Study. Then Lex could merge his census with the Fragile Families 

Challenge data, identify everyone, and learn everything about them in the Fragile Families 

Study.

This hypothetical attack from Lex Luthor illustrates two important points. First, it illustrates 

a common pattern in reidentification attacks. Data that have been deidentified, meaning 

stripped of obviously identifying information in an effort to protect privacy, can often 

be reidentified by linkage to an auxiliary data set that contains identifying information. 

Through this process of merging, the apparently anonymous data are reidentified (Ohm 

2010). This hypothetical attack also illustrates that the safety of a given data set depends 

not just on that data set but on all the auxiliary data that exist today and may exist in the 

future (Narayanan and Shmatikov 2010). Deidentification of a data set does not guarantee 

anonymity.

Reidentification attacks such as the one performed by Lex Luthor are not merely 

hypothetical risks, unfortunately. Although we do not know the frequency with which 

these attacks occur “in the wild,” we do know that academic privacy researchers have 

conducted and published similar attacks (we will discuss their motivations for these attacks 

later).4 Two prominent examples come from the research of Latanya Sweeney. First, while 

a graduate student at MIT, Sweeney (2002b) was able to reidentify apparently anonymous 

medical records that were provided to researchers by the Massachusetts Group Insurance 

Commission. She did this by combining the apparently anonymous medical records, which 

contained date of birth, ZIP code, and sex, with nonanonymous voter registration data, 

which also contained date of birth, ZIP code, and sex. Because these three variables were 

available in both the deidentified data and the identified auxiliary data, Sweeney was able 

to merge them together (Figure 7). Fortunately, rather than posting all of the records online, 

Sweeney mailed Massachusetts governor William Weld a copy of his own records. More 

important, Sweeney published an article describing her attack and a proposing a defense 

against that kind of attack (Sweeney 2002b, 2005; Ohm, 2010).

Beyond simple merges between two files, reidentification attacks can also involve multiple 

sources of auxiliary information. For example, Malin and Sweeney (2004) combined 

databases of DNA records, which contained time and place of collection, with publicly 

4For an attempt to estimate the rate of reidentification attacks that have been published in the academic literature, see El Emam et al. 
(2011).
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available hospital discharge data. These hospital discharge data in turn contained basic 

demographic information that could be used to combine them with identified voter 

registration records (Malin and Sweeney 2004) (Figure 7). In other words, the hospital 

discharge data served as a critical middle step as Malin and Sweeney linked the deidentified 

DNA records with identified voting records.

The hypothetical example of Lex Luthor clarifies that all data are potentially identifiable 

when facing a powerful adversary. Furthermore, Sweeney’s reidentification attacks, as well 

as attacks by other privacy and security researchers (Narayanan et al. 2016), show that 

reidentification attacks are possible in the real world and that these attacks benefit from the 

presence of rich auxiliary data sets. These facts alone suggest that social scientists should 

be concerned about the possibility of reidentification attacks. A further cause for concern 

is that reidentification attacks are probably easier today than at any time in the past. Just 

as scientists are excited about big data sources for research, adversaries can use these same 

big data sources for reidentification attacks. Because all data are potentially identifiable 

and because reidentification attacks are easier now than at any time in the past, we were 

concerned about the possibility of a reidentification attack during the Fragile Families 

Challenge.

Potential Technical Solutions

Because the risk for reidentification attacks occurs in many situations, researchers have 

developed techniques that facilitate the analysis of data while protecting the privacy of the 

people described in the data (Duncan, Elliot, and Salazar-González 2011; Dwork and Roth 

2014; Willenborg and de Waal 2001). We believe that many social scientists, following 

the lead of statisticians, would organize these privacy-preserving techniques into two main 

groups: those that focus on modifications to the data and those that focus on access to 

the data (Duncan et al. 2011; Reiter and Kinney 2011). However, our own deliberations 

were more influenced by the literature in computer science, and so we organized these 

privacy-preserving techniques into two different groups: those that offer provable guarantees 

and those that do not. Techniques that offer provable guarantees would enable us to provide 

specific, mathematical bounds on what an adversary might be able to learn about individuals 

in the data set, while making minimal assumptions about the adversary’s knowledge, 

capability, or behavior. During our deliberations, we considered two approaches that offer 

provable guarantees: differential privacy and cryptography. Unfortunately, as we will now 

describe, we did not believe either approach was feasible in our setting. For the Fragile 

Families Challenge, we relied on many techniques that did not offer provable guarantees. 

Before describing the techniques we used, we summarize the approaches we considered that 

offer provable guarantees, and we describe why we did not think they were appropriate in 

our setting.

The first main approach we considered that offers provable guarantees is differential privacy 

(Dwork 2008; Dwork and Roth 2014). Differential privacy is a set of techniques for 

developing data release algorithms that achieve the following privacy guarantee: any output 

of the data release algorithm would have been roughly as likely even if any particular 

record had been removed from the data. Intuitively, this means that the adversary cannot 
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tell from the data release whether any individual’s record was included in the sample, 

and this property is definitionally treated as a kind of individual privacy. Within the broad 

area of differential privacy, we considered two families of approaches. Under one family 

of approaches, called noninteractive approaches, we would release a modified form of the 

data to Challenge participants.5 Under the other family of approaches, called interactive 
approaches, we would not release any data; rather, we would keep the data on a secure 

server and allow researchers to send queries to the server.6

Within the family of noninteractive approaches, we considered two subfamilies of 

approaches, transformed data7 and synthetic data,8 but we concluded that neither approach 

was feasible in our setting.

In addition, we also considered interactive approaches whereby we would have hosted 

the Challenge data on a server and allowed Challenge participants to query the data 

(e.g., request a specific regression model). We would then return results with carefully 

generated noise that would satisfy differential privacy. We found that interactive approaches 

to differential privacy required major changes to the work flow of analysts and restricted the 

types of analysis that were possible.9 In conclusion, although we think differential privacy 

is an elegant and promising approach to providing provable guarantees, we did not think 

these approaches, either noninteractive or interactive, were feasible for the Fragile Families 

Challenge.10

5The idea of releasing a modified form of the data to increase privacy protections is common in social science. However, many of 
the approaches that are typically used with social data, such as top-coding and coarsening, do not generally offer provable guarantees 
within the framework of differential privacy. This does not mean that these approaches should not be used. In practice, we think they 
often make reidentification attacks more difficult, and we used some of them as described later.
6Some researchers refer to these two families as offline approaches and online approaches (Dwork and Roth 2014).
7Under the transformed data approach, we would not release individual-level data but rather some aggregated form of data that could 
then be used for analysis. For example, for a movie recommendation task, McSherry and Mironov (2009) argued that many predictive 
algorithms operate on the movie-movie covariance matrix, and they demonstrated how to achieve differential privacy for this class of 
algorithms by releasing a perturbed version of the covariance matrix. We did not believe that such an approach was possible in the 
Fragile Families Challenge, because we are not aware of an aggregated data structure that would not substantially limit the modeling 
techniques that would be available to Challenge participants.
8Under the synthetic data approach, we would have to build a generative model that, when sampled, produces data from the same 
joint distribution as the Fragile Families Study data. Furthermore, we would have to build this generative model in a way that is 
differentially private. There are two main approaches to building such models (differentially private or not): using domain expertise 
(Drechsler 2011) and algorithmic learning (Hardt, Ligett, and McSherry 2012). We did not believe we had sufficient social science 
domain expertise to create a realistic data-generating process for the joint distribution of all 12,942 variables in the Challenge data 
set. To the best of our knowledge, existing applications of synthetic data created on the basis of domain expertise generally involve a 
much smaller number of variables. For example, the U.S. Census Bureau released a longitudinal data set of businesses that contained 
five synthetic variables (Kinney et al. 2011). Although algorithmic learning approaches do not require domain expertise, they too are 
generally limited to data sets with small numbers of variables. For example, a recent technique based on generative adversarial neural 
networks was applied to a clinical trial with 36 variables and 6,502 observations (Beaulieu-Jones et al. 2017). To the best of our 
understanding, this and other related algorithmic approaches will not be effective in generating synthetic data with 12,942 variables.
9An early tool for interactive differentially private data analysis is PINQ (Privacy Integrated Queries) (McSherry 2009). PINQ is 
geared toward data analysis and summary statistics such as Structured Query Language (SQL). It also supports basic machine learning 
algorithms, but it is not clear if it allows building complex machine learning models with many predictors. PINQ requires data analysts 
to learn a new programing language—a combination of C# and LINQ, a SQL-like language—to express their queries. Furthermore, 
like all differentially private systems, PINQ imposes a privacy budget whereby each query has a query-specific privacy cost, and 
analysts have a fixed budget. This budget ensures that the claimed differential privacy guarantees can be met, but it introduces 
substantial complexity for analysts who are not already familiar with differential privacy. More recently, the Harvard University 
Privacy Tools Project is attempting to build techniques for differentially private access to social data sets. They have developed a tool 
named Psi, but it did not appear to be publicly available at the time of the Fragile Families Challenge. Furthermore, on the basis 
of a recent paper (Gaboardi et al. 2016), it appears that Psi does not (yet) support high-dimensional statistical and machine learning 
models; it is not clear if these limitations are fundamental. We believe that tools like PINQ and Psi are promising approaches to 
interactive differential privacy, and organizers of future projects similar to the Fragile Families Challenge should consider these tools 
and related tools that may be developed in the future.

Lundberg et al. Page 8

Socius. Author manuscript; available in PMC 2023 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The second major class of provable privacy techniques we considered is based on 

cryptography. Specifically, we considered ideas related to homomorphic encryption, which 

is a technique to encrypt data in such a way that computing a function f() on the encrypted 

data and decrypting the result yields the same output as computing f() on the original 

data.11 For the Fragile Families Challenge, we imagined using homomorphic encryption 

as follows: (1) we could homomorphically encrypt the Challenge data and release them 

to everyone because the encryption would make reidentification attacks unfeasible, (2) 

Challenge participants could build specially constructed models on the encrypted data 

(models designed to work on the unencrypted data cannot be run on the encrypted data), 

(3) participants could upload their encrypted predictions to the Challenge server, and 

(4) the Challenge server would decrypt the predictions and calculate the mean square 

error. Although this approach sounds very promising, there a number of concerns, both 

conceptual12 and practical,13 that led us to conclude that approaches using homomorphic 

encryption were not appropriate for the Challenge.

To summarize, we did not think that approaches that offered provable guarantees, 

differential privacy or cryptography, were applicable in our setting. We hope these 

techniques will continue to improve and will ultimately become more useful in this type 

of setting in the future. Because we could not deploy a technique with provable guarantees, 

we undertook a process of threat modeling and threat mitigation, which we now describe.

Threats and Mitigations

Given that reidentification attacks were possible and technical solutions with provable 

guarantees were not available, we sought to better understand the possible risks and then 

reduce them as much as possible. Therefore, we undertook a process of threat modeling 

and threat mitigation (Shostack 2014). During the threat modeling, we tried to imagine 

very specific, concrete risks. When considering these risks, we found that it was helpful to 

separately consider the probability of harm and the magnitude of harm. Furthermore, we 

tried to avoid spending an inappropriate amount of time considering high harm events with a 

low probability (Sunstein 2002). We also found it helpful to separate risk to us as organizers 

10There are also other parts of the differential privacy literature that appear related to our problem but turn out not to be relevant. For 
example, there is a large literature on techniques for differentially private machine learning. In this body of work, the privacy problem 
to be solved is that the model trained on private data (e.g., a set of weights for logistic regression) might itself leak information about 
the training data. This research assumes that the learning algorithm has direct access to the raw data; the privacy question pertains to 
the algorithm’s outputs. Thus, it is not applicable to our setting, as it assumes that researchers have access to the raw data.
11More precisely, the code for f() is transformed into a function that operates on encrypted data, and these operations are potentially 
computationally expensive, requiring cryptographic operations for every bit manipulation in f(). Early homomorphic encryption 
techniques were limited in the variety of functions that could be computed under encryption, and so they were called “somewhat 
homomorphic encryption.” A breakthrough by Gentry (2009) removed these limitations, enabling “fully homomorphic encryption.” 
The downside is that fully homomorphic encryption introduces computational overheads that make it currently impractical in many 
contexts.
12Conceptually, there is a much simpler way to offer the same level of privacy guarantees: releasing no raw data, requiring contestants 
to upload code to the Challenge server, executing that code on the server, and revealing only the mean squared error. We think 
homomorphic encryption is useful only when the data owner is computationally limited or both parties have private inputs. In the 
former case, homomorphic encryption allows outsourcing of expensive computations (such as machine learning), which might be 
desirable even after we account for the slowdown introduced by computation under encryption. In the latter case, homomorphic 
encryption allows the data recipient to keep a proprietary algorithm secret. Neither of these conditions was met in our situation.
13Practically, at the time of the Challenge it took substantial expertise to create even extremely simple statistical models that could 
run on encrypted data. Experts on homomorphic encryption have likened the process of creating these models to programming in 
assembly language (Crawford et al. 2018).
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of the Fragile Families Challenge from risk to the survey respondents. We were much more 

accepting of risk to ourselves (e.g., reputational risk) than risk for study participants. Once 

these risks were identified, we tried to design steps that would mitigate these risks.

Our threat modeling was primarily focused on reidentification attacks and revolved around 

two main questions: (1) Who might have the skills and rich auxiliary information that would 

be needed for a reidentification attack? and (2) Who might have the incentive to carry out 

such an attack? To help answer these questions, we conducted an in-house attack of our own 

data. We imagined possible data sources that could (1) be identified and (2) contain variables 

that also exist in the Fragile Families Study. Just as Sweeney (2002b) merged identified 

voting records with deidentified medical records to create identified medical records (Figure 

7), we tried to find information an attacker might merge with the Fragile Families Challenge 

data.

After envisioning and investigating many types of auxiliary data, we used one such source to 

attack our own data. This in-house attack demonstrated that many respondents were unique 

in both the Fragile Families Study and the auxiliary data source, and it led to modifications 

of our data that we will describe later. We will illustrate the general structure of our attack 

with a hypothetical example. Suppose that the Fragile Families Study collected data on 

voting behavior, recording in each wave of data collection variables such as sex, age, party 

identification, and whether the respondent voted in the most recent primary and general 

elections. These variables are also available in identified voter registration databases, which 

would allow an adversary to merge them (see Figure 8).14 A key feature of this hypothetical 

attack, as well as our real in-house attack, was that it did not involve the use of ZIP code 

or any other geographic information. Thus, even though the two real attacks we described 

previously used ZIP code (Figure 7), we wish to highlight the fact that it is still possible to 

reidentify data even if it does not contain obvious geographic information.

The process of attacking our data was useful for three reasons. First, it helped us realize how 

a small number of variables could substantially aid reidentification. In particular, continuous 

variables such as age made reidentification especially easy because they differentiated 

people into many groups. We decided to redact or modify variables that we thought were 

most likely to be the target of an attack, as we describe more later. Second, our attempts 

to attack our data made us realize the difficulty of obtaining auxiliary data at the national 

level. An attacker of the Fragile Families Challenge file would likely need a data set that is 

national in scope, but state differences in data sources make assembling such a data source 

difficult (but certainly not impossible). Finally, attempting to attack our own data made our 

fears about reidentification concrete and produced a clear way to explain the risks to our 

Board of Advisors and to other stakeholders.

14The ability of this hypothetical merge to succeed depends on how unique people are in the data set and in the population. As an 
extreme example, imagine a child’s mother who was 24 years old in 2000. Suppose this mother registered with the Green Party in 
2000, the Republican Party in 2002, and the Democratic Party in 2004. In each year, she voted in the primary election but not the 
general election. This respondent’s particular combination of variables may be unique in the entire U.S. population, and this person 
would be at risk in this kind of merge. More generally, the more unique each person is, the more vulnerable he or she would be to this 
kind of attack.
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This in-house reidentification attack was part of a larger process of moving away from a 

general fear of reidentification toward specific, actionable worries about particular people 

with a dangerous combination of capability and incentives. Next, we summarize the five 

biggest threats on which we focused, roughly ordered by the amount of risk we think 

they posed. Then, we briefly discuss other threats on which we did not focus during the 

Challenge but that might be important in other settings. After describing these threats, 

we describe the six main steps we took to mitigate those threats, roughly ordered by our 

perception of their importance (Table 1). When describing our threat modeling and threat 

mitigation process, we will be intentionally vague at certain points because versions of the 

Fragile Families Study data exist in the research community outside of our control, and we 

do not wish to increase the risk for a reidentification attack in the future.

Threats

Threat 1: A Privacy Researcher.—Privacy researchers represent an important “threat” 

to any social data set. They have the skills to reidentify the data and the incentives to 

conduct and publicize an attack. Although we describe privacy researchers as a “threat,” we 

wish to emphasize that these researchers have good intentions. Some privacy researchers 

undertake attacks with the goal of developing defensive techniques that can prevent future 

attacks. Other privacy researchers might seek to illustrate privacy problems in a particular 

data set (e.g., Zimmer 2010), with the goal of encouraging other data stewards to be more 

careful before a true adversary finds the problems.15

Because privacy researchers represent an important and sometimes misunderstood threat, 

it is helpful to briefly describe the history and norms of this community so that other 

researchers can better understand their motivations. Today’s information security and 

privacy research community traces its intellectual lineage in part to the field of cryptography 

and its military applications, in which secrets must be defended against powerful 

adversaries, with human lives at stake (Kahn 1996). The research culture of cryptography 

is shaped by its painful history of naively optimistic claims of “unbreakable” ciphers. 

Centuries of failures of such claims gradually established the importance of adversarial 

analysis as a scientific technique. Computer scientists today believe that scientific rigor in 

data privacy protection technology can be obtained only if claims are subject to adversarial 

scrutiny (Menezes, Van Oorschot, and Vanstone 1996). Furthermore, in the absence of a 

specific known adversary, privacy researchers believe that the prudent course of action is to 

assume the union of all such adversaries (i.e., a very powerful one). Assuming a capable 

adversary with complete knowledge of the system is a central principle in cryptography 

known as Shannon’s maxim (Shannon 1949).

Privacy researchers consider real data releases to be valuable targets for demonstrations (i.e., 

Sweeney 2002b; Narayanan and Shmatikov 2008; Zimmer 2010), because they believe that 

work with toy data sets has limited ecological validity. Apart from the scientific benefit, 

reidentification demonstrations on real data sets are seen as ways to warn consumers of 

risks and disincentivize bogus claims of security. However, not all real data releases are 

15On the basis of our experience, we believe that this strategy is effective. The threat of privacy researchers caused us to be more 
careful.
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equally attractive targets, at least for academic privacy researchers. It is difficult to publish 

reidentification research unless there is novelty in the method, and this desire for novelty has 

served as a check on the number of such studies in practice. In other words, ironically, data 

sets that are too easy to reidentify are likely to escape the attention of privacy researchers.

What about the risks of reidentification research? Debate around this question is informed 

by the debates on the ethics of offensive computer security research more generally. In short, 

this community has concluded that it must engage in privacy attacks in order to anticipate 

and mitigate weaknesses in data protection before they are discovered by more nefarious 

adversaries.

Threat 2: A Nosy Neighbor.—In addition to privacy researchers, a very different kind of 

threat comes from a group of people with very different motivations and knowledge, a group 

often called nosy neighbors. These people often have a specific interest in a single person 

in the data set and already have substantial auxiliary information about that person. In the 

Fragile Families Challenge, we imagined that a mother might want to reidentify the data to 

learn about the survey answers provided by the father.16 The linked nature of the Fragile 

Families data makes a nosy neighbor attack easier because the attacker could herself be in 

the data. They would only need to find themselves in order to learn more about the responses 

of the people in their family.

Threat 3: A Troll.—Third, we considered the possibility of a troll who might attempt to 

reidentify the data because he or she enjoys causing trouble or seeking attention (see Phillips 

2015). Although some adversaries (i.e., a privacy researcher) might be able to harm our 

academic careers, a troll who posted respondents’ information online might actually harm 

survey respondents.

We also considered the possibility of a “hacktivist” who might attempt to reidentify the data 

to make a larger political point. For instance, the hacker group Anonymous publicly posted 

the names and social media profiles of members of the Ku Klux Klan in 2015. When doing 

so, they wrote, “We hope Operation KKK will, in part, spark a bit of constructive dialogue 

about race, racism, racial terror and freedom of expression” (Franceschi-Bicchierai 2015). 

Might there exist adversaries who have similarly negative feelings toward social scientists 

doing research on a disadvantaged population? We would hope that potential hacktivists 

would recognize our good intentions, but we could not rule out the possibility that someone 

would attack the study to make a statement against our project or against social science 

research in general.

16The threat of a nosy neighbor attack can be illustrated through the example of the Netflix Prize, a mass collaboration that partially 
inspired the Fragile Families Challenge and that was subject to a reidentification attack (Narayanan and Shmatikov 2008). In 2006, 
Netflix offered a $1 million prize to the team that could most improve its movie recommendation algorithm. Netflix released a data 
set of ratings made on specific movies by specific users. Researchers were challenged to use the ratings in the public data to predict 
held-out movie ratings. Before Netflix released the data, they took some steps to prevent reidentification, and the data appeared to be 
anonymized; they consisted solely of movie ratings without any explicit individual identifiers. However, Narayanan and Shmatikov 
(2008) found that the vast majority of users had histories of movie ratings that were unique in the sample and were statistically likely 
to be unique in the population. If one knew some of the movies one of these individuals had watched, one could reidentify the user’s 
row in the data and see all of the movies the user had rated. As the authors described, “a water-cooler conversation with an office 
colleague about her cinematographic likes and dislikes may yield enough information” (Narayanan and Shmatikov 2008). Given this 
water cooler information, a nosy neighbor would need only minimal technical abilities to reidentify the colleague by retrieving the 
user record that most closely matched the known likes and dislikes.
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Threat 4: A Journalist.—A fourth adversary we considered was a journalist. For 

example, in 2006, America Online made the searches of thousands of users available to 

the public, assuming that one’s search terms would not be easily traceable back to an 

individual’s identity. Contrary to their expectations, Barbaro and Zeller (2006) wrote a 

widely read New York Times article revealing the identity of one woman whose search 

information had been included in the release. We worried that a journalist could do the 

same thing with the data from the Fragile Families Challenge. Like a privacy researcher, 

a journalist might be motivated to attack the data to make a larger point. However, we 

believe that a journalist bound by the norms of his or her profession would be unlikely to 

intentionally harm study participants. Therefore, we reasoned that journalists posed a greater 

risk to us, as organizers, than to the survey respondents.

Threat 5: A Cheater.—Finally, prior challenges have been won through strategies 

involving reidentification (Narayanan, Shi, and Rubinstein 2011). We worried that, if we 

set up the Fragile Families Challenge with a big prize and no clear prohibitions on 

linkage to auxiliary data, someone might try to win by reidentification. An adversary 

who reidentified the respondents could contact them and discover their outcomes, thereby 

achieving remarkably successful predictive performance.

Other Threats.—These five adversaries—privacy researcher, nosy neighbor, troll, 

journalist, and cheater—were the ones we considered most closely in our threat modeling. 

However, this list is not exhaustive of the threats we considered or the threats that might 

arise in other situations. For instance, three other adversaries we considered, and which 

might be more important in other settings, are governments, criminals, and companies.

Certain parts of the U.S. government most likely have the skills and rich auxiliary data that 

would be needed for a reidentification attack of our data. They might also have the incentive 

if our data contained information they could not find elsewhere, such as if respondents in 

our survey had reported on their experience as spies for a foreign government. Because we 

deemed the information in our data to be of little value to the U.S. government, we did not 

believe the it had an incentive to conduct such an attack in our setting.

A different set of attackers might be motivated by financial gain. For example, companies 

seeking to build databases for targeted marketing might try to acquire large social data 

sets. Given the size, structure, and deidentification of our data, however, we believed that 

it would be unattractive to companies. Furthermore, sophisticated criminals might wish to 

attack a data set containing credit card numbers or containing compromising information on 

wealthy individuals that could be used as the basis for blackmail. Our data do not contain 

information such as credit card numbers, and we reasoned that an adversary with the goal 

of finding compromising information on elites would more likely target other data sets. 

Therefore, we believed that an attack motivated by financial gain, either by a company or 

criminal, was unlikely in our setting.

Although our threat modeling was focused mainly on reidentification attacks that would 

occur through a merge with auxiliary information, other attacks were also possible. For 

example, we considered that someone might attempt to learn the identity of the survey 
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respondents by breaking into the Fragile Families Study offices and physically stealing 

computers. We deemed this possibility extremely unlikely, mostly because we did not see a 

clear incentive to carry out this attack. Furthermore, there are defenses in place that would 

make this attack more difficult than it appears. These defenses also make the possibility of 

accidental leak of information extremely unlikely. Overall, we would recommend that other 

researchers conduct a similar threat modeling exercise, keeping in mind that the threats in 

each situation might be different.

Threat Mitigation

There is no way with present technology to completely eliminate the risks these threats 

pose while achieving the scientific objectives of the mass collaboration. Nevertheless, we 

took six main steps to make an attack more difficult and less attractive. The columns of 

Table 1 represent these steps and their expected efficacy against various adversaries. We 

have ordered our actions in terms of our perception of their importance, from most to least 

important.

Low Profile.—When organizing a mass collaboration, one might seek press coverage in 

major national and international venues. Such publicity would help attract the widest and 

most diverse pool of participants possible, but it could also increase the risk for attack. 

High-profile studies are more likely to attract the attention of a nosy neighbor, a troll seeking 

attention, or a journalist or privacy researcher looking to reidentify a project that will draw 

interest from a wide readership. A low-profile study is less likely to be noticed by these 

adversaries and might be a less attractive target.

During the Fragile Families Challenge, we decided to keep a relatively low profile, and we 

focused our outreach on settings with a high probability of yielding participants who could 

contribute and a low probability of yielding participants who might attack the data.

For example, to raise awareness about the Challenge, we e-mailed the directors of 

population centers funded by the National Institutes of Health, and we hosted getting-started 

workshops at universities, in courses, and at scientific conferences. Our strategy of keeping a 

low profile can be easily adopted by other mass collaborations.

Careful Language.—Many data stewards may not realize it, but using careful, precise, 

and humble language may help prevent an attack from a privacy researcher or journalist. For 

instance, Zimmer (2010) made an ethical example out of the Tastes, Ties, and Time study in 

part because the original authors made strong statements such as “all identifying information 

was deleted or encoded” (quoted by Zimmer 2010 from the original study codebook). 

Privacy researchers may wish to correct data stewards who make overly confident statements 

about the deidentified nature of their data. By choosing language carefully, data stewards can 

be more honest about the safety of their data, thereby removing the need for privacy scholars 

to correct them. Instead of saying that “all identifying information was deleted,” one might 

say, “we removed information that was obviously identifiable.” Instead of writing that data 

are “anonymized,” data stewards should write that steps were taken to make the data less 

identifiable. Small changes in language can help convey that data stewards understand the 
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privacy risks and have made a reasoned judgment to proceed anyway. For example, we 

wrote the following on the Fragile Families Challenge Web site:

All participants in the Fragile Families and Child Wellbeing Study have consented 

to have their data used for social research. These procedures, as well as procedures 

to make de-identified data available to researchers, have been reviewed and 

approved by the Institutional Review Board of Princeton University (#5767). The 

procedures for the Fragile Families Challenge have been reviewed and approved 

by the Institutional Review Board of Princeton University (#8061). In addition, we 

have also taken further steps to protect the participants in the Fragile Families and 

Child Wellbeing Study. If you would like to know more, please send us an email.

We believe that the relatively easy step of using careful language and inviting contact from 

potential attackers decreased the risk for attack.

Structure of the Challenge.—The structure of the Fragile Families Challenge was also 

designed in part to decrease the incentives to attack the data. By avoiding asking Challenge 

participants to predict sensitive outcomes, such as involvement in the criminal justice system 

or sexual behavior, we think we reduced the risk for attack from a privacy researcher, 

journalist, or troll. Avoiding potentially sensitive outcomes was part of keeping a low profile, 

and we suspect that it was important.

We also built certain things into the Challenge that would decrease the risk that a cheater 

would attack the data. First, in contrast to other high-profile challenges that offered large 

monetary prizes (Bennett and Lanning 2007), we chose to reward the best submissions with 

a trip to Princeton University to discuss their work. This prize was designed to emphasize 

an intrinsic goal of knowledge creation rather than an extrinsic financial incentive, thereby 

reducing incentives to cheat. Second, we emphasized in all promotional materials that the 

Challenge was a mass collaboration and a new way of working together, not a competition. 

For example, the banner at the top of our Web site read, “What would happen if hundreds 

of social scientists and data scientists worked together on a scientific challenge to improve 

the lives of disadvantaged children in the United States?” In the approval process, we also 

asked people about their motivations to participate, thereby encouraging them to reflect on 

their reasons. Nearly all participants responded with motivations that involved participation 

in scientific research or helping disadvantaged children. Third, we made the rules of the 

Challenge very clear: linking to auxiliary data sources was not allowed, and anyone who 

did so would be disqualified. Fourth, we required all participants to upload their code and 

narrative explanations along with their predictions. If a cheater successfully attacked the data 

and merged in outside information, this process would have to be obscured in whatever code 

was uploaded. Altogether, we think these aspects of the structure of the Challenge decreased 

incentives to attack the data.

Application Process.—In the interest of open and reproducible science, many have 

argued that research data should be made public. Although we agree with the spirit of this 

call, we join others making the more modest call for open sharing of data with allowable 

constraints when privacy or other concerns must be balanced against the goal of open 

science (Freese and Peterson 2017; Salganik 2018). In particular, an application process can 
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help ensure that only those who can plausibly yield scientific benefit be given access to the 

data and that participants who pose increased risk can be monitored more closely.

For the Fragile Families Challenge, we developed a process to screen applicants (Figure 

9). Initially, people interested in participating completed an application that asked for 

information about their educational background, research experience, and motivations 

to participate in the study (see Appendix for the exact application). Responses to the 

application were sent to an e-mail account checked by two of the Challenge’s central 

organizers (Lundberg and Salganik). One of the Challenge organizers would provide an 

initial review of the application, in many cases searching the Internet to corroborate claims 

made in the application or to look for important information that was excluded.17 The 

reviewer would make an initial recommendation as to whether a participant should be 

approved and would send a summary of the application to a team of eight reviewers, 

including all the authors of this article, survey administrators, and the principal investigators 

of the Fragile Families Study. Members of this broader review team were given 24 hours to 

raise any opposition to the application.18

After this review process, we required approved applicants to type a set of statements 

acknowledging their agreement with our terms and conditions (the full set of statements 

is provided in the Appendix). The purpose of the terms and conditions was not to screen 

participants but to make sure they understood their ethical responsibilities.

After an approved applicant had agreed to the terms and conditions, we e-mailed him or her 

a link to an encrypted data file (the link automatically expired within seven days). Finally, 

the approved participant had to call us by phone to receive the password to decrypt the file. 

This last step reduced the risk that an e-mail could be intercepted and also provided an 

opportunity to speak in person with participants and thereby reinforce that the project was a 

mass collaboration involving real people, not a competition to be won at all costs.

During the Fragile Families Challenge, we received 457 applications,19 and most were 

uneventful. However, about 10 applications raised yellow flags that we addressed either by 

sending a follow-up e-mail or by having a discussion with the applicant (in person or by 

video chat). These conversations helped ensure mutual understanding of the importance of 

respecting the privacy of respondents. For instance, one applicant told us the applicant was 

working on the “record linkage problem with massive data.” Another applicant told us of 

a research interest in reidentification. In both cases, we were glad to have spoken with the 

applicants before providing the data. In one case, a researcher who had previous experience 

doing reidentification attacks did not respond to our follow-up e-mail and was therefore not 

granted access to the data.

17Applications from students were sometimes difficult to evaluate, given that students often have little research experience to report. 
We occasionally spoke with a student’s academic adviser to ensure that participation was being overseen by a responsible individual 
who understood the importance of respecting the data. In one case, we pointed a student toward alternative data sets that were less 
sensitive and would serve as equally useful for that student’s project.
18We occasionally omitted this waiting period when individuals were participating in a known setting, such as a class assignment or a 
workshop in which we spoke directly with potential participants.
19The first 100 of these applications came in the pilot test we ran in an undergraduate machine learning class at Princeton and 
followed a slightly different format from the rest because we modified the application procedure on the basis of feedback from the 
pilot test.
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One might worry that this screening process—which involved many hours of work from 

the Challenge organizers, graduate students, study staff members, and principal investigators

—was completely futile because people could just lie in their applications. However, from 

our threat modeling, we suspected that well-intentioned privacy researchers might represent 

our greatest threat. These individuals believe strongly in the ethical use of data, and we 

suspected that they would be honest in their applications. Because those who posed the 

greatest threat also seemed unlikely to lie in an application, we believe that our screening 

process was a worthwhile endeavor.

One final aspect of the application process is worth describing. Initially, we were worried 

about what might happen if we actually rejected an applicant. Might this rejection anger 

someone and turn him or her into an even more motivated adversary who would attempt 

find the data elsewhere (i.e., from another participant) and then attack them? Because of 

this concern, we made preparations to accept high-risk applicants as local participants. For 

these local participants, we prepared a special, secure computer in the office of the Fragile 

Families project director. This computer was configured such that it was difficult to bring 

data onto the computer or take data off the computer (e.g., drives were deactivated, and 

the computer was not connected to the Internet and was locked to the wall). However, 

we maintained the ability to reconnect this computer to the Internet ourselves to upload a 

Challenge participant’s predictions if needed. Fortunately, we never had to use this secure 

computer, but it provided an opportunity for us to remain open to the potential participation 

of even the riskiest applicants.

Ethical Appeal.—It is not possible to force people to act ethically, nor is it possible in 

a screening process to determine with full confidence whether an applicant plans to act 

ethically. However, one can clarify for participants the ethical implications of misusing 

the data, thereby creating the possibility that those who might plan to reidentify the data 

will consider this plan from an ethical perspective before proceeding. After participants’ 

applications were approved, they completed a set of terms and conditions designed to 

achieve this goal. Every participant read the following statement, written in boldface type, 

before participating.

The Fragile Families and Child Wellbeing Study is a dataset of real people who 

have selflessly opened up their lives to us for the last 15 years so that their 

experiences can contribute to scientific research. By participating in the Fragile 

Families Challenge, you become a collaborator in this project. It is of the utmost 

importance that you respect the families in the data by using what they have told us 

responsibly.

After reading the statement, each participant typed a set of statements defining how he 

or she would use the data responsibly (see Appendix for specific statements). Participants 

could easily lie in this section, so it would not have stopped someone determined to act 

unethically. However, by outlining our expectations, we clarified a positive vision of what 

ethical behavior would entail.

Modifications to Data.—The final step we took to mitigate threats was to modify the data 

in the Fragile Families Challenge file. Overall, these modifications were relatively minor 
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because the preexisting Fragile Families Study files had already undergone an extensive 

process to promote privacy (Figure 4).

First, as described earlier, we attempted to attack the data ourselves, and this led us to make 

certain changes in the structure of the background data file for the Challenge. We choose not 

to describe these changes fully, but we note that some were inspired by prior reidentification 

demonstrations. We did not implement a k-anonymity approach (Sweeney 2002b),20 but we 

did make more minor changes such as adding noise to key variables to make a simple one-

to-one merge more difficult.21 Although adding noise has a long tradition in the statistical 

literature (Kim 1986; Reiter 2012), it is not foolproof in the high-dimensional setting.22 

Despite its limitations, adding noise to key variables at least makes a simple one-to-one 

merge with auxiliary data more difficult. For instance, we worried that height, weight, and 

body mass index could be key linking variables if there were a breach of identified medical 

records data in the future, so we added a small amount of noise to these variables. We also 

added noise to other variables, which we choose not to identify. The noise we added came 

from an independent draw for each variable, with the exception of variables that measured 

the same construct (i.e., height in inches and height in centimeters). In these cases, we 

drew one noise term per child per construct, so that an adversary could not reduce the 

size of the noise by averaging over multiple responses. Overall, we added noise to a few 

hundred variables. To minimize the risk for unnecessary harm to the scientific promise of the 

project, the noise we added was always relatively small,23 and Fragile Families Challenge 

participants were generally unaware of the added noise.24 We suspect that adding noise 

made reidentification slightly harder with minimal harm to the scientific utility of the data.

In addition to seeking to make a reidentification attack more difficult, we also sought to 

reduce the magnitude of harm should reidentification occur by redacting some information 

we thought might pose a serious risk to survey respondents. When considering whether to 

redact information for harm reduction, we tried to weigh how much harm might come to 

how many people against how much the redaction might jeopardize the scientific goals of 

the project. While making these decisions, we were aware that in a large data set, it can be 

difficult to know which information will be sensitive (Salganik 2018, chap. 6).

20k-Anonymity states that data should be released only if each row is exactly the same as at least k – 1 other rows, so that an 
adversary with perfect auxiliary data would be able to link a given individual with no fewer than k records (Sweeney 2002b). The 
higher the value of k chosen, the more difficult it would be for an adversary to find all candidates and discover the true match. 
k-Anonymity can be achieved by suppressing information on key features of certain individuals that would otherwise make them 
unique (Sweeney 2002a). Unfortunately, k-anonymity quickly becomes infeasible as the number of features grows, because rows 
are rarely exactly the same on the joint set of all features (Aggarwal, 2005), which means that a pure k-anonymity approach would 
substantially harm the utility of the data (Brickell and Shmatikov 2008). Despite the impossibility of applying k-anonymity to all 
12,942 variables, we did apply the spirit of this approach to try to reduce the number of participants who were unique or nearly unique 
in the sample on a subset of variables.
21The noise we discuss here is distinct in two ways from the noise added in differential privacy. First, we added noise to the inputs 
to participants’ models, whereas differential privacy adds noise to the outputs. Second, we added normally distributed noise, a choice 
distinct from the differential privacy approach of heavy-tailed Laplacian noise. Our approach to adding noise does not yield provable 
privacy guarantees.
22For example, Netflix added noise to some of the data used in the Netflix Prize, but this did not prevent a reidentification attack 
(Narayanan and Shmatikov 2008).
23For more on the risks of adding too much noise, see Brickell and Shmatikov (2008).
24In one case a participant noticed that the distribution of some variables did not match that listed in the official study documentation, 
thereby correctly realizing that we had changed something in those variables. This participant e-mailed us, and we were happy to 
explain what we had done.
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Finally, we decided that we did not want the Fragile Families Challenge data files to 

include anything that might obviously provide information about the survey respondent’s 

location. Unlike adding noise, we think this decision to strip geographic information may 

have decreased Challenge participants’ ability to predict the six key outcomes. However, 

we think that removing obvious geographic information made a reidentification attack much 

more difficult. If an attacker were able to place a group of survey respondents in a particular 

city, the attacker would only need an identified auxiliary data source that includes that city 

(e.g., state voting records). However, if the respondents could be anywhere in the country, 

the attacker would need national data, which might be harder to acquire.

Although many privacy audits focus mostly on modifications to the data, we saw this as just 

one of the six steps we took to mitigate threats. In fact, we think that many of other steps, 

such as keeping a low profile, were more important in this setting.

Comprehensive Assessment

After implementing the threat modeling and threat mitigation described above, which 

evolved over a period of months, we stepped back and comprehensively assessed who might 

have incentives to attack the data and what barriers might stand in their way (see Table 1).

A privacy researcher would have to learn and care about the project despite our low profile. 

Even then, privacy researchers would have an incentive to attack the data only if they wanted 

to show publicly that we had done something wrong; our careful language incorporating the 

findings of privacy researchers mitigated against this danger. The privacy researcher would 

then have to lie in the application process or otherwise convince us that he or she did not 

intend to reidentify the data, and he or she would have to proceed in the face of our ethical 

appeal. To the extent that privacy researchers are motivated by an ethical call for researchers 

to recognize the limits of privacy and handle data with care, we expected that these steps 

substantially reduced the risk that a privacy researcher would reidentify the data.

Nosy neighbors are almost impossible to stop with technical barriers; enormous changes to 

the data would be needed to render a respondent unrecognizable to a nosy neighbor. By 

keeping a low profile, we reduced the likelihood that a nosy neighbor would learn about 

the Fragile Families Challenge. By screening participants, we increased the chance that we 

would notice a nosy neighbor before sharing the data. With these changes in place, we 

determined that the risk of nosy neighbors increased only negligibly from the Challenge, 

compared with the risk that already existed from the availability of the Fragile Families 

Study data to researchers.

A troll might lie through the application process, be undeterred by an appeal to ethics, and 

have the technical skills to overcome our modifications to the data. However, a troll is likely 

to pursue the highest profile targets for attention, so a low profile reduces the chance of a 

troll attacking the data.

A journalist would primarily be stopped by the application process: we expect that 

journalists, because of the norms of their field, would not lie when applying to use the 

data. Even a journalist who made it through the screening process would have to find the 
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project interesting despite its low profile, ignore our appeal to ethics, and succeed in the 

technical difficulties of reidentification despite our modifications to the data. This seemed 

unlikely.

The threat from a cheater was primarily mitigated by the Challenge structure, which 

explicitly stated that anyone who cheated would be ineligible for a prize, which was 

nonmonetary to begin with. With this structure, we doubted anyone would reidentify the 

data for the sole purpose of winning the Challenge.

To summarize, the design of the Fragile Families Challenge did not completely eliminate 

any of the threats we imagined, but it mitigated them to a sufficient degree that we 

concluded that the Challenge only slightly increased the risk to participants above that which 

already existed from the use of the Fragile Families Study data by independent researchers.

Response Plan

Having mitigated, but not eliminated, the risk for reidentification, we created a response 

plan in case something went wrong. More specifically, we took steps to ensure that we 

had the appropriate people involved in the project so that we could begin responding to 

a crisis quickly and forcefully. Our Board of Advisors included a computer scientist who 

had previously reidentified several data sets (Arvind Narayanan); a sociologist and lawyer 

with expertise in data privacy, surveillance, and inequality (Karen Levy); and a journalist 

(Nicholas Lemann). In the event of an attack from a privacy researcher, the organizers 

of the Challenge would consult with Narayanan when responding. If a social scientist or 

policy maker criticized the project for mishandling the private information of disadvantaged 

children, the organizers of the Challenge would consult with Levy when responding. If the 

data were reidentified by a journalist who planned to publicize the story, the organizers of 

the Challenge would consult with Lemann. Each of these individuals is respected in various 

communities that might attack the data, and we hoped that they could mediate and guide the 

project through any problems which might arise. We recommend that other data stewards 

take similar steps to prepare for the unexpected, both in the mass collaborative setting and in 

the more common setting of providing data for use by individual researchers.

Third-Party Guidance

It is easy for those coordinating a project to fall into group-think and ignore potential 

problems out of a common interest in the success of the project. To avoid this pitfall, we 

worked under the guidance of third parties. First, the Fragile Families Study and the Fragile 

Families Challenge were undertaken with the oversight of the Institutional Review Board at 

Princeton University.25

We created an additional community for third-party guidance by assembling a Board of 

Advisors. The board included professors of sociology, education, and social work who 

had each devoted much of their careers to studying disadvantaged families, a journalism 

25Components of the Fragile Families Study were also reviewed by the institutional review boards of partner institutions (i.e., 
Columbia University and Westat, the data collection contractor).
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professor, a machine learning researcher, and a computational social scientist, some of 

whom are authors of this article. During our privacy and ethics audit, we sent the board 

weekly updates about our progress. These weekly updates were also shared with staff 

members working on the Fragile Families Study, as well as other stakeholders. We found 

this process of weekly updates incredibly valuable both to sharpen our thinking and to 

ensure that all stakeholders were involved.

Finally, we also sought informal advice from a wide variety of people not involved in the 

Fragile Families Challenge in any way. These outsiders included a philosophy professor, 

a member of the military with experience planning high-risk operations, a lawyer with 

experience dealing with health records, and a public-interest lawyer who provides direct 

services to children in foster care. We found that these uninvolved third parties often 

provided an interesting perspective, and we would encourage other data stewards to have 

broad discussions if possible. Overall, we believe that third-party guidance helped improve 

our process.

Ethical Framework

During our process we had to make many different decisions, and these decisions were 

guided by the principles described in the Belmont Report (National Commission for 

the Protection of Human Subjects of Biomedical and Behavioral Research 1978), a 

foundational document in social science research ethics. More specifically, the Belmont 

Report emphasizes three principles that should guide research ethics: respect for persons, 

beneficence, and justice.

Respect for Persons

The principle of respect for persons means that researchers should respect each participant’s 

autonomy to choose whether to participate after being informed about the nature of the 

research. This principle is often operationalized as the process of informed consent. In this 

case, when parents and children agreed to participate in the Fragile Families Study, they 

understood that the data they provided would be used for scientific research. Therefore, 

when designing and conducting the Challenge, we remained within the context of scientific 

research as much as possible in order to honor the agreement between survey respondents 

and researchers. For example, when structuring the Challenge we decided not to offer prize 

money, because that is not generally consistent with the context of scientific research. Our 

thinking about preserving context was heavily influenced by Nissenbaum’s (2009) work on 

the importance of “contextual integrity.”

Beneficence

The second key principle discussed in the Belmont Report is beneficence: the potential harm 

of the study must be weighed against the potential benefits. Furthermore, reasonable steps 

should be taken to maximize benefits and minimize harms, both probability and magnitude. 

These ideas were central to our process of threat modeling and threat mitigation. For 

example, these ideas affected our changes to the data. We hoped to reduce the probability of 

harm by redacting or adding noise to variables that we expected might aid reidentification, 
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and we hoped to reduce the magnitude of harm should reidentification occur by redacting 

some information (e.g., illegal behaviors). However, we made these decisions while also 

weighing the potential benefits of including variables that might help contribute to scientific 

knowledge. For instance, we did not redact information about child behavior problems, 

because this information might be an especially important predictor of adolescent outcomes. 

The principle of beneficence thus affected not only our decision to release the data but also 

our decision about which variables ought to be released.

In addition to risks and benefits for participants in the Fragile Families Study, we also 

considered possible broader social impacts of our work (Zook et al. 2017). Predictive models 

similar to those built during the Challenge are increasingly being used for high-stakes 

decisions, such as in criminal justice (Berk et al. 2017) and child protective services 

(Chouldechova et al. 2018). Although these predictive models can improve social welfare 

(Kleinberg et al. 2015, 2017), they can also discriminate against protected groups (Barocas 

and Selbst 2016) and magnify social inequality (Eubanks 2018). Therefore, we weighed 

the possibility that the knowledge created in the Fragile Families Challenge could be used 

inappropriately against the possibility that it could be used to help policy makers who are 

seeking to understand the strengths and weaknesses of predictive modeling. Because of the 

type of data we used and the outcomes we selected, we believe that the risk for unintended 

secondary use is low and that it is outweighed by the possible social benefits of the research. 

Because the risks for the Challenge, both to survey participants and to society, were very 

difficult to quantify, we found that existing ethical, philosophical, and legal debates about 

the precautionary principle (Narayanan et al. 2016; O’Riordan and Cameron 1994; Sunstein 

2003, 2005) and dual use research (National Research Council 2004; Selgelid 2009) helped 

guide our thinking.

Justice

The final principle in the Belmont Report is justice: risks and benefits should flow to 

similar populations. Unfortunately, many failures of scientific research ethics have involved 

disadvantaged or vulnerable populations (for examples, see Emanuel et al. 2008). Informed 

by this history, social scientists today recognize a special obligation to make ethical 

decisions about research involving vulnerable populations. The fact that some participants in 

the Fragile Families Study are disadvantaged or children (or both) caused us some concern. 

However, the nature of the Challenge meant that the population most likely to benefit 

from the scientific knowledge produced by the Challenge was the very population from 

which participants were drawn. In other words, by conducting research on a sample of 

disadvantaged urban families, we can generate knowledge that might help improve the life 

chances of future families in similar positions. Thus, our approach to the principle of justice 

is heavily influenced by the argument that no group should be excluded from the potential to 

benefit from research (Mastroianni and Kahn 2001).

Decision

Ultimately, after all the discussing, designing, and debating, we faced a decision: whether 

to go forward with the Fragile Families Challenge or not. When forced to make a go/no-
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go decision, we conducted a comprehensive reassessment. We believed that the project 

was consistent with existing ethical rules and ethical principles governing social science 

research. This rules-based decision was made by our Institutional Review Board, and the 

principles-based decision was made by us and by members of our Board of Advisors. We 

also believed that after our threat mitigation, the risks were low in an absolute sense and in 

appropriate balance with the potential for scientific and societal benefit.

Before a full-scale launch, however, we conducted a pilot test in an attempt to discover any 

errors in our threat modeling, threat mitigation, or ethical thinking. We conducted the pilot 

test by deploying the Challenge as a project in an undergraduate machine learning class 

at Princeton University. In doing so, we faced a difficulty inherent in pilot testing: being 

realistic while also being safe. By conducting the test in a class taught by a trusted professor, 

we erred on the side of safety. In our case, the pilot test turned out to be useful; it helped us 

discover one variable in the Challenge data file that was both confusing to participants and 

increased the risk for reidentification. The pilot also gave us a chance to test our screening 

process, which we modified for the full launch to gather more information and facilitate the 

process for both participants and organizers. The full launch of the Challenge was much 

smoother because we started in a controlled setting, and we highly recommend that others 

conduct a similar pilot test.

Conclusions

This case study describes the privacy and ethics audit that we conducted as part of the 

Fragile Families Challenge. Our process was certainly not perfect, and we hope that by 

being open about it, others can improve on what we did.26 We want to emphasize that other 

data stewards may reasonably come to different decisions about how to strike an appropriate 

balance in their own situation. Despite differences between situations, however, we believe 

that the key elements of our approach—threat modeling, threat mitigation, and third-party 

guidance, all within a specific ethical framework—may be useful to other data stewards, 

whether they reside in universities, companies, or governments.

Those who might wish to follow or build on our example will undoubtedly wonder about 

the costs of doing so. The approach we followed was time-consuming. We spent about three 

months preparing to launch the Challenge, and the privacy and ethics audit was the most 

time-consuming part (see Figure 2). The parts that took the most time were assembling 

a team with appropriate expertise (including for the response plan), attacking our data, 

debating how to balance the various trade-offs, and keeping in contact with stakeholders. 

Attacking the data, by itself, involved about 1.5 months of consistent work for a skilled 

graduate student. Beyond the amount of time involved, this process was also stressful and 

emotionally taxing; some of us found it difficult to spend so much time imagining all the 

worst-case scenarios of reidentification.

26For more on a process-based approach to data access, see Rubinstein and Hartzog (2016).
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Although our privacy and ethics audit was time-consuming, we feel that the effort was 

worthwhile. In particular, this process enabled us to run the Challenge, which has already 

started to achieve some of its scientific objectives, as illustrated by this special collection.

Finally, we hope that this case study illustrates that there is an important middle ground 

between calls for no data sharing and complete data sharing. Everyone will benefit if 

scientists, companies, and governments can continue to develop the technical, legal, ethical, 

and social infrastructure to enable safe and responsible data access.
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Appendix

This appendix includes reproductions of the web forms participants completed to (1) apply 

to participate and (2) agree to a set of terms and conditions of participation.

1. We used the application to assess each applicant’s ability to contribute and 

motivations, and to gain advance notice of potential threats with whom to follow 

up.

2. We used the terms and conditions to reinforce norms of scientific behavior and 

emphasize the importance of respecting the data. The terms and conditions also 

include a set of items about how we would use the submissions of Challenge 

participants.

Application to Participate

For participants working in teams, each individual will need to complete this application.

Describe your previous research, coursework, or work experience that is related to the 

Fragile Families Challenge. We expect that the most relevant experience will come from 

social science and data science, but we are open minded. Please include links to your CV, 

your published papers, and your open source software (as appropriate).
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Describe your previous experience working with restricted-access data. This could be in an 

academic, corporate, or governmental setting. Please be specific. If you have no experience 

with restricted-access data, please let us know, and it will not automatically disqualify you 

from participating.

Describe the context in which you plan to participate. For example, are you planning to 

participate at a university, company, or government agency? If you are doing this in a course, 

please tell us the name of the professor.

Please let us know your current employer or if you are a student, your current university. If 

you are self-employed, not employed, or retired, please say so.

Do you plan to participate in the Challenge in good faith and consistent with norms of 

scientific behavior?

○ Yes

○ No

What is motivating you to participate?

Beyond the open responses on the previous page, we’re interested in learning more about a 

few specific aspects of the backgrounds and motivations of participants in the Challenge.

Your responses to these questions will only be used to help us understand the Fragile 

Families Challenge, and to design better challenges in the future.

There are many different reasons for wanting to participate in the Fragile Families 

Challenge. Which of the following best describe your reasons for participating? (Check 

all that apply.)

Applies to me Does not apply to me

General interest in topic ○ ○
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Applies to me Does not apply to me

Curiosity about the Challenge ○ ○

Contributing to social science ○ ○

To improve the lives of disadvantaged children ○ ○

To make the best-performing model in the Challenge ○ ○

For fun ○ ○

Learning about cutting-edge research ○ ○

Collaborating with colleagues/friends ○ ○

Relevant to school or degree program ○ ○

Collaborating with university researchers ○ ○

Relevant to own research ○ ○

Connecting with others who share my interests ○ ○

Learning/practicing data analysis skills ○ ○

Relevant to job ○ ○

To work on a prestigious research project ○ ○

To earn scholarly recognition ○ ○

Required for coursework ○ ○

To experience a mass scientific collaboration ○ ○

To create the most interesting/innovative model in the Challenge ○ ○

Collaborating with strangers ○ ○

Contributing to data science ○ ○

Which of the following best describes your academic background?

Applies to me Does not apply to me

Sociologist ○ ○

Economist ○ ○

Psychologist ○ ○

Political scientist ○ ○

Demographer ○ ○

Data scientist ○ ○

Computer scientist ○ ○

No academic background ○ ○

Other (please specify) ○ ○

Which of the following best describes your professional background?

Applies to me Does not apply to me

Industry ○ ○

Academia ○ ○

Government ○ ○
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Applies to me Does not apply to me

Nonprofit ○ ○

Undergraduate student ○ ○

Graduate student ○ ○

Not employed ○ ○

Other (please specify) ○ ○

Do you plan to participate in the Fragile Families Challenge individually, or as part of a 

group?

○ Individually

○ As part of a group

Are you participating in the Fragile Families Challenge as part of a class assignment?

○ Yes

○ No

Have you ever analyzed data from the Fragile Families and Child Wellbeing Study?

○ Yes

○ No

Have you ever published a paper using data from the Fragile Families and Child Wellbeing 

Study?

○ Yes

○ No

Terms and Conditions

You will be given access to the Fragile Families and Child Wellbeing Study (FFCWS) 

data for the Fragile Families Challenge. By completing this form, you agree to fulfill your 

responsibilities on this project according to the following guidelines.

• For each bolded statement, re-type the statement word for word in the text box.

• Additionally, please check all the boxes to agree with the sub-statements.

• Your signature at the bottom verifies your agreement with the entire document.

You may contact us at fragilefamilieschallenge@gmail.com with any questions.

The Fragile Families and Child Wellbeing Study is a dataset of real people who have 

selflessly opened up their lives to us for the last 15 years so that their experiences can 

contribute to scientific research. By participating in the Fragile Families Challenge, you 
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become a collaborator in this project. It is of the utmost importance that you respect the 

families in the data by using what they have told us responsibly.

I understand that harm could come to the survey respondents if their identities were made 

public. I will not do anything to harm the respondents. I agree not to attempt to identify 

individuals, families, households, or hospitals.

□ Agree

Type the statement below to verify your agreement.

I agree not to attempt to identify individuals, families, households, or hospitals.

In the event that the identity of an individual, family, household, or hospital is discovered 

inadvertently, I will (a) make no use of this knowledge, (b) inform the Challenge organizers 

at fragilefamilieschallenge@gmail.com so that they can make changes to improve the 

security of the data, and (c) not inform any other persons of the discovered identity.

□ Agree

Type the statement below to verify your agreement.

I agree to report any disclosure of participants or errors in data/documentation to the 

Challenge organizers through fragilefamilieschallenge@gmail.com.

I understand that each member of my research team must request their own copy of the data 

files. Files cannot be transferred. I will not at any time give, sell, show, disclose or otherwise 

disseminate the Fragile Families and Child Wellbeing Study data to anyone.

□ Agree

Type the statement below to verify your agreement.

I understand that each member of my research team must request their own copy of the data 

files.

I will take steps to ensure that the data is safe-guarded, using protections such as password-

protected access to all computers storing the data.

Type the statement below to verify your agreement.

I agree to store and process the data in a secure manner.
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Once the Challenge is complete, I will destroy all the data files that I used during the 

Challenge. If I plan to continue research with this data, I will download a new version of the 

Fragile Families and Child Wellbeing Study data through the Princeton University Office of 

Population Research (OPR) Data Archive at: http://opr.princeton.edu/archive/.

□ Agree

Type the statement below to verify your agreement.

I agree to destroy all copies of FFCWS data after the conclusion of this project.

Checking this box acknowledges that my name typed below constitutes my signature and 

indicates that I have read, understand, and agree to abide by the terms of this agreement.

□ I have read, understand, and agree to abide by the terms of this agreement.

Signature
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Figure 1. 
Data access involves a fundamental tension between risk to respondents and benefits to 

science. If research requires releasing data, then those who manage the data face a tension 

between risk to respondents and benefits to science. It is objectively best to maximize 

benefits at a given level of risk and objectively best to minimize risk at a given level 

of benefits. On the frontier, the balance between risk and benefits becomes a normative 

question. The frontier is curved because we expect that, at low levels of risk, slight increases 

in risk might yield especially large benefits. For instance, moving from no release of 

data to release of a highly redacted form of the data might yield substantial benefits. At 

higher levels of risk, the returns to increased risk may be smaller. For instance, including 

respondents’ addresses in the data release would substantially increase risk with only 

minimal benefits. We emphasize that this curve is merely a heuristic device; in realistic 

situations it is difficult, perhaps impossible, to define and quantify risks and benefits 

(Lambert 1993; Karr et al. 2006; Cox et al. 2011; Skinner 2012; Goroff 2015; Narayanan, 

Huey, and Felten 2016). Furthermore, many researchers are developing techniques, such as 

differential privacy (Dwork 2008), that try to improve the trade-offs.

Lundberg et al. Page 35

Socius. Author manuscript; available in PMC 2023 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Timeline of the privacy and ethics process for the Fragile Families Challenge. Boxed nodes 

represent events occurring at a specific point in time, such as the decision to proceed. 

Lines represent activities that occurred over the course of a period of time, such as seeking 

informal external advice.
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Figure 3. 
Privacy and ethics audit for the Fragile Families Challenge. Our process involved (1) threat 

modeling to make precise our fear of reidentification, (2) threat mitigation to reduce risk, 

and (3) the guidance of third parties such as the Institutional Review Board at Princeton 

University and the Fragile Families Challenge Board of Advisors. The entire process was 

undertaken within an ethical framework, which we describe later in the paper. Although the 

article is written linearly, we emphasize that these steps were not taken linearly; we cycled 

through all the steps many times.
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Figure 4. 
Versions of the Fragile Families and Child Wellbeing Study data. There are several versions 

of the data which are made available to researchers depending on their particular needs. The 

raw data are used only by survey administrators and are stored in separate files to reduce 

the risk of a breach. For instance, no data file contains respondents’ names and survey 

responses. All files given to researchers have names and other obvious identifiers removed 

and noise added to any data indicating place of residence. Among the files available to 

researchers, the restricted files provide the most information but are hardest to access. 

Researchers obtain restricted files through an intensive application and screening process. 

After this process, researchers are given only the portions of the restricted files needed for 

their particular projects. Most researchers’ projects can be completed using only the basic 

files, for which one still must apply by proposing a research project. To create the Challenge 

files, we made modifications to the basic files.
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Figure 5. 
Domains covered in the Fragile Families Study basic files. The number of substantive 

domains included makes the Fragile Families Study especially useful to social scientists. 

The number of domains also (1) facilitates reidentification because many possible auxiliary 

data sets may be used by an adversary and (2) increases the risk for harm in the event 

of reidentification because substantial information about respondents’ private lives could 

become public.

Source: Fragile Families and Child Wellbeing Study.
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Figure 6. 
Fragile Families Challenge data structure. Participants built models predicting the age 15 

outcomes using data collected while the focal child was age 9 and younger. We provided 

participants with the data represented by the white boxes. Submissions were scored on the 

basis of their predictive performance (mean squared error) for the observations represented 

by the gray boxes, which were available only to organizers. The leaderboard set contained 

one-eighth of all observations and was used to provide instant feedback on submissions. The 

holdout set contained three-eighths of observations and was used to produce final scores for 

all submitted models at the end of the Challenge.
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Figure 7. 
Reidentification examples with deidentified data. In both examples, the adversary succeeded 

because key variables were available in both the deidentified data set (blue) and an identified 

auxiliary data set (red). In addition to merges between two data sets (Sweeney 2002b), 

reidentification can proceed through a chain of auxiliary data sets (Malin and Sweeney 

2004).
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Figure 8. 
Hypothetical example of reidentification attack of the Fragile Families Study. The Fragile 

Families Study does not contain information on voting, but if it did, these variables could be 

linked to an identified auxiliary data source: administrative voting records. After completing 

this linkage, an adversary could learn about potentially sensitive information, such as 

parental drug use and child delinquent behavior. This hypothetical attack, as well as our 

actual in-house attack, would be possible even if the data did not include any geographic 

information.
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Figure 9. 
Screening process for applications to the Fragile Families Challenge. Each potential 

participant completed an application describing his or her educational background, research 

experience, and motivations to participate in the study. We assessed these applications in 

terms of their ability to contribute to the goals of the Challenge and in terms of the risk that 

an applicant might try to reidentify respondents. Each application was reviewed by one of 

the lead organizers of the Challenge, sent to a review committee, and then approved 24 hours 

later if there were no objections. After approval, participants completed a set of terms and 

conditions, received a link to an encrypted file, and then called us for a password to open the 

file. For further details, see the main text. To review the application form and the terms and 

conditions, see the Appendix.
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