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Several single nucleotide polymorphisms (SNPs) of renin-angiotensin system (RAS) genes are associated with hypertension
(HT) but most of them are focusing on single locus effects. Here, we introduce an unbalanced function based on multifactor
dimensionality reduction (MDR) formultiloci genotypes to detect high order gene-gene (SNP-SNP) interaction in unbalanced cases
and controls of HT data. Eight SNPs of three RAS genes (angiotensinogen,AGT; angiotensin-converting enzyme,ACE; angiotensin
II type 1 receptor,AT

1
R) in HT and non-HT subjects were included that showed no significant genotype differences. In 2- to 6-locus

models of the SNP-SNP interaction, the SNPs of AGT and ACE genes were associated with hypertension (bootstrapping odds ratio
[Boot-OR] = 1.972∼3.785; 95%, confidence interval (CI) 1.26∼6.21; 𝑃 < 0.005). In 7- and 8-locus model, SNP A1166C of AT

1
R gene

is joined to improve the maximum Boot-OR values of 4.050 to 4.483; CI = 2.49 to 7.29; 𝑃 < 1.63𝐸 − 08. In conclusion, the epistasis
networks are identified by eight SNP-SNP interaction models.AGT, ACE, and AT

1
R genes have overall effects with susceptibility to

hypertension, where the SNPs of ACE have a mainly hypertension-associated effect and show an interacting effect to SNPs of AGT
and AT

1
R genes.

1. Introduction

The renin-angiotensin system (RAS) represents a critical
endocrine regulator formaintaining bloodpressure andblood
fluid volume in the circulatory system. Single nucleotide
polymorphisms (SNPs) of RAS genes such as angiotensino-
gen (AGT) [1, 2], angiotensin-converting enzyme (ACE) [3, 4],
and angiotensin II type 1 receptor (AT

1
R) [5, 6] are known to

be associated with cardiovascular diseases [7–9]. For exam-
ple, the SNP G-217A of AGT gene but not the SNPs A-6G
and M235T of AGT gene may associate with hypertension in
patients fromTaiwan [1].The I allele ofACE gene and +1166 C
allele of AT

1
R gene are reportedly associated with hyperten-

sion [10]. However, these studies were mainly relying on the
association with hypertension using single SNP models and
rare SNP effects were commonly ignored.
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Accumulating evidence indicates that high order gene-
gene (SNP-SNP) interaction can deeply affect disease suscep-
tibility. For example, theA1166CofAT

1
R gene and I/DofACE

gene have synergistic effects on acute myocardial infarction
[11]. The interactions between T174M, M235T, G-6A, A-20C,
G-152A, G-217A of AGT gene, I/D of ACE gene, and A1166C
of AT

1
R gene have been examined in coronary artery disease

[12]. A significant effect of gene-gene interaction in coronary
artery disease was detected for G-217A and M235T of AGT
gene and I/D of ACE gene. Additionally, joint effects of gene-
gene interactions were discovered in blood pressure regu-
lation [13], left ventricular mass [14], and acute myocardial
infarction [11]. However, detecting gene-gene interactions
remains a challenge due to a large number of possible SNP
combinations.

To date, several computational methodologies have been
proposed to detect the epistasis in many association studies
[15–22]. Data mining and statistical analysis are a common
approach to overcome computational challenges in detecting
complex gene-gene interactions. For example, multifactor
dimensionality reduction (MDR), a nonparametric statistical
method, is commonly used for detecting possible gene-gene
interactions in multigene causing diseases [23, 24]. However,
this commonMDR is only suitable for a balanced number of
cases and controls.The original data sets of many association
studies are usually unbalanced. Therefore, some information
in real data set might get lost after resampling.

Here, we describe a case-control study of hypertension
susceptibility that specifically evaluates gene-gene interac-
tions using unbalanced function based MDR [25] that com-
bines traditional statistical methods with novel computa-
tional algorithms.The unbalanced function based MDR uses
the ratio between the percentages of cases in each genotype
combination of case data and the percentage of controls in
each genotype combination of control data. This is to classify
by MDR classifier, to analyze possible gene-gene interactions
associated with hypertension. Subsequently, the misclassifi-
cation errors of multiple SNPs associated with high or low
risks of hypertension can be computed. To examine the high
order SNP-SNP interactions of RAS genes in hypertension,
8 SNPs were chosen, namely, the T174M/M235T/G-6A/A-
20C/G-152A/G-217A of AGT gene, I/D of ACE gene, and
A1166C of AT

1
R gene. We aimed to find out the influence

of these 8 SNPs on hypertension outcomes. The results show
that unbalanced function basedMDRcan avoid the drawback
of common MDR in an unbalanced real data set. Thus, the
best unbalanced function based MDR model can correctly
predict high order SNP-SNP interactions of hypertension
susceptibility using real data sets.

2. Methods

TheMDRmethodwas briefly introduced and the unbalanced
function based MDR method was explained in detail as
follows.

2.1. MDR. In 2001, Ritchie et al. proposed a MDR to detect
the potential gene-gene interaction. MDR is a robust

nonparametric method that detects nonlinear interactions
among multiple discrete genetic factors [23]. It is accom-
plished by data classifier technology to combine two or more
attributes into a single attribute. Thus, representation of data
space can be changed, and high-order gene-gene interactions
can be evaluated by statistical classifiers. Figure 1 illustrates
the MDR procedure that produces the best model by the
following algorithm.

Step 1. Divide the data set into 10 subsets for cross-validation
(CV).

Step 2. Keep the 𝑖th data set as the testing data and others are
the training data.

Step 3. Calculate the total number of cases and the total
number of controls within each multifactor class.

Step 4. Evaluate the ratio between cases and controls in each
genotype combination (i.e., a cell in n × n grid).

Step 5. Determine the ratio of high (H)/low (L) risks in
each multifactor class. If the cases/controls ratio particular
threshold, it is labeled with “H”; otherwise it is labeled with
“L”.

Step 6. Compute the four frequencies of true positive (TP),
false positive (FP), true negative (TN), and false negative (FN)
in a 2-way contingency table.

Step 7. Evaluate the misclassification error.

Step 8. Repeat for each combination.

Step 9. Select the best model according tominimummisclas-
sification error and record it into cross-validation consistency
(CVC).

Step 10. Repeat for each CV interval.

Step 11. Select the best model according to themodel with the
highest frequency in CVC.

InMDR procedure, the original data are randomly sorted
and divided into 10 subsets for CV. In each CV interval, 9 of
10 subsets are classified as the training data and the remaining
one as independent testing data. The 𝑛 loci and a possible
multiloci class are represented in the following 𝑛-dimensional
space:

𝐿 = {𝑙

1
, 𝑙

2
, 𝑙

3
, . . . , 𝑙

𝑛
} . (1)

The value of 𝑛 is designated depending on the number of
factors being considered. Then, a set of 𝑛 genetic factors is
selected.The total numbers of cases or controls are counted in
the multifactor class, and the ratio of the numbers of cases to
controls is calculated. From (2), the multifactor class count
and ratio can be obtained as follows:
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Figure 1: MDR flowchart. Eleven steps are described in Section 2.

where

𝑢 (𝐿, 𝐴) =

{

{

{

1 ∀𝑙 ∈ 𝐴,

0 ∀𝑙 ∉ 𝐴,

∀𝑙 ∈ 𝐿, (3)

where acronyms represent the following: 𝑃: the case data set;
𝑁: the control data set; 𝑃∗: the number of case group in the
training set;𝑁∗: the number of control group in the training
set; 𝐿: the vector of variable combinations.

The function 𝑢( ) indicates a match if all parameters 𝑙 in
vector 𝐿 match their cases or controls, then given a score of
“1,” otherwise, given the score “0.”

Next, the high/low risk in each multifactor class is
determined. Each multifactor class in n-dimensional space is
labelled as “H” or “L” symbol. Label “H” indicates that ratio in
the multifactor class meets or exceeds a particular threshold
(high-risk group); otherwise, label is “L” (low-risk group).The
threshold is equal to the one in a balanced data set. Thus, the
huge genotype combinations in 𝑛-loci are reduced into a 2-
way contingency table (TP, FP, TN, and FN) and allow the

statistical analysis to evaluate the 𝑛-loci effect. MDR uses the
misclassification error to evaluate a model value where the
misclassification error function is calculated as follows:

𝑓 (𝐶) =

FN + FP
TP + FN + FP + TN

, (4)

where acronyms represent the following: TP: the total num-
ber of labeled “H” in the case data; FP: the total number
of labeled “H” in the control data; FN: the total number of
labeled “L” in the case data; TN: the total number of labeled
“L” in the control data.

After all the multifactor combinations are evaluated by
misclassification error, the MDR model with the minimum
error rate individual is chosen and the model is considered
the best model of training data at 𝑖-fold. The training model
is then used to test the testing data and record the TP, FP,
FN, and TN for evaluating the statistical power. Thus, MDR
repeats the above procedure in each CV interval. The MDR
model with the lowest number of misclassified individuals is
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Table 1: Characteristics of the study population.

Variables Entire population (𝑛 = 443) P values
HT (𝑛 = 313) Non-HT (𝑛 = 130)

Gender (M/F) 197/116 98/32 0.008
Age (years) 59.40 ± 11.59 53.55 ± 14.56 <0.001
BH (cm) 161.34 ± 10.53 163.52 ± 11.18 0.092
BW (kg) 65.20 ± 10.59 64.65 ± 14.08 0.720
BMI (m2) 25.52 ± 9.89 26.14 ± 27.02 0.820
Smoking (%) 42% 49% 0.235
BP(S) (mmHg) 154.30 ± 14.33 116.64 ± 12.13 <0.001
BP(D) (mmHg) 93.68 ± 10.12 73.34 ± 8.54 <0.001
TG (mg/dl) 146.53 ± 83.87 162.13 ± 96.47 0.209
CHO (mg/dl) 205.77 ± 42.03 192.32 ± 49.18 0.035
BH: body height; BW: body weight; BMI: body mass index; BP(S): systolic blood pressure; BP(D): diastolic blood pressure; TG: triglyceride; CHO: cholesterol.

chosen and ten best models are classified by the same combi-
nation in theCVC. Finally, the highest occurring frequency in
CVC is considered the best model. If a tie between 2 or more
models happens, then the first appearingmodel is considered
the best model.

2.2. Unbalanced Function Based MDR. In unbalanced func-
tion based MDR [25], the ratio between the percentages of
cases in each genotype combination of case data (i.e., a cell in
𝑛 × 𝑛 grid for cases) to the percentages of controls in each
genotype combination of control data (i.e., a cell in 𝑛 × 𝑛 grid
for controls) is proposed to classify the data to the high- and
low-risk groups. Thus, the highest ratio between case and
control groups can be clearly detected.The strategy is tomod-
ify the ratio between cases and controls in the ratio function
of MDR, that is, (2). The following equation is introduced to
calculate the ratio (percentage) of cases to controls:

𝑓 (𝐿) =

𝑁

∗
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(5)

where
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1 ∀𝑙 ∈ 𝐴,

0 ∀𝑙 ∉ 𝐴,

∀𝑙 ∈ 𝐿, (6)

where acronyms represent the following:𝑃: the cases data set;
𝑁: the control data set; 𝑃∗: the number of case group in the
training set;𝑁∗: the number of control group in the training
set; 𝐿: a vector of variable combinations.

The function 𝑢( ) is a match (given a score of “1”) if all
parameters 𝑙 in vector 𝐿 match their cases or controls; a
mismatch is given the score “0.”

Our strategy is to modify the misclassification error rate
function of MDR, that is, (4). Equation (7) proposed by
Velez et al. [26] is introduced into MDR; therefore, the two
classes are equally responsible for both positive and negative
errors due to the class imbalance. The equation evaluates the
misclassification error rate according to the arithmetic mean
of sensitivity and specificity. The adjusted misclassification

error is algebraically identical to the error rate if the data set
is imbalanced. Consider

𝑓 (𝐶) = 0.5 × (

FN
TP + FN

+

FP
FP + TN

) , (7)

where acronyms represent the following: TP: the total num-
ber of labeled “H” in the case data; FP: the total number
of labeled “H” in the control data; FN: the total number of
labeled “L” in the case data; TN: the total number of labeled
“L” in the control data.

Here we provide an example to show how the unbalanced
function based MDR works (see Supplementary File in
Supplementary Material available online at http://dx.doi.org/
10.1155/2015/454091).

2.3. Study Population. This was a single center, case-control
study. A detailed description of the subject collection has
been published previously [1, 3]. In brief, hypertensive and
normotensive patients (HT and non-HT subjects) were
recruited from an outpatient clinic of the National Taiwan
University Hospital from July 1995 through June 2002. The
non-HT subjects were from the same areas as the hyperten-
sives and had no history of hypertension, diabetes mellitus,
renal insufficiency, significant hepatic disease, or apparent
coronary artery disease. The basic characteristics of the HT
and non-HT groups have been described previously [27] and
are shown in Table 1. The demographic and laboratory data
were collected from the medical chart records. The study
protocols were reviewed and approved by a local institutional
committee. All subjects gave informed consent as approved
by the institutional review board at this hospital.

2.4. Statistical Analysis. The power statistical analysis was
implemented by the G∗ power 3.1.5 tool [28, 29]. The SNPs
were evaluated by their odds ratios (OR), 95% CI, and 𝑃

values. OR was used to measure the risk of disease; 𝑃 values
indicate significant differences between the cases and con-
trols. All statistical analyses were implemented using SPSS
version 19.0 (SPSS Inc., Chicago, IL).
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3. Results

3.1. Data Set. The hypertension data set with hypertension
(𝑛 = 313) and nonhypertension (𝑛 = 130) was obtained from
our previous study [27]. The complete genotype data set is
available at http://bioinfo.kmu.edu.tw/non-HT and HT gen-
otype data.xlsx. Eight SNPs were included: T174M (rs4762),
M235T (rs699), G-6A (rs5051), G-217A (rs5049), G-152A
(rs11568020), A-20C (rs5050), I/D (rs4646994), and A1166C
(rs5186) of three RAS genes (AGT,ACE, andAT

1
R). However,

the possible SNP-SNP interaction was not examined. Here,
we used the unbalanced function basedMDRwithminimum
misclassification error rate to identify the best SNP-SNP
interactionmodel with significant differences between hyper-
tension (HT, cases) and nonhypertension (non-HT, controls)
groups.

Table 1 shows the basic characteristics of theHT and non-
HT groups. HT patients had a significantly higher risk for
male gender, age, systolic blood pressure (BP(S)), diastolic
blood pressure (BP(D)), and cholesterol. Body height, body
weight, body mass index, cigarette smoking, and triglyceride
were similar between HT and non-HT groups. The age, sys-
tolic blood pressure, diastolic blood pressure, and cholesterol
of the hypertensives were significantly higher than those of
the normotensives in Table 1.

3.2. Single-Locus Analysis. Table 2 shows the performance (𝑃
values of chi-square test) of each individual SNP. Among
these eight SNPs,most individual SNPs pairedwith any geno-
type show no significant difference (𝑃 > 0.05) between the
HT and non-HT groups.The frequency difference of SNP I/D
of ACE gene between HT and non-HT groups is significant
when based on chi-square test (ID and DD, 𝑃 = 0.031 and
0.010, resp.). However, it is not significant after a Bonferroni
correction (𝑃 > 0.006, i.e., 0.05/8).

3.3. Multilocus Analyses: Determination of the BestModel. All
significant 2-locus SNP-SNP interactions (Table 3) are known
to define the epistasis risk scorewhich are collectively referred
to as an epistasis network. Although some 2-locus models
have higherOR values and lower𝑃 values, the bestmodel was
selected according to themodel with the highest frequency in
CVC which consisted of the model with the lowest error rate
in each CV. Among these models, the lowest error of the best
model is 0.419 for a 2-locus model (AGT G-217A +ACE I/D).
Similarly, all the best models in 3- to 8-locusmodels are listed
in Table 4.

3.4. Multiloci Analysis: Error Rates. Table 4 summarizes the
results of the unbalanced function based MDR analysis for
the best 2- to 8-locus models. Consistency data indicate
that including more SNPs leads to a higher occurrence of
hypertension. As the loci number increases, the prediction
error rates were reduced from 41.9 to 32.6. In other words, the
correct prediction was 58.1∼67.4%. An 8-locus model had a
minimum prediction error of 32.6%. Based on the null
hypothesis of no association, it is impossible that an error rate
≤32.6 is observed by chance in randomized data. The 2- to

6-locus models suggest that those SNPs of the AGT and
ACE genes were associated with hypertension. Both 7-locus
and 8-locus models suggest that the listed SNPs in AGT,
ACE, and AT

1
R genes were important in association with

hypertension. Additionally, power analysis represents the
degree of rejection for H0 that is significant at 𝛼 = 0.05.
Applying the MDR method, the testing data results were
always not significant (at 𝑃 > 0.05). Thus, we defined H0 as
the result of the test set is the same as for the training set (H0),
and H1 shows that the result of the test set was different from
the training set. The powers in 2- to 8-locus, ranging from
0.901 to 0.999, indicate that occurrence probabilities in all
models are higher than 0.9. These findings suggest that all
these 8 SNPs are significantly associated with hypertension.

3.5. Multiloci Analysis: OR and Boot-OR. In Table 4, the
occurrences of frequency differences between HT and non-
HT groups are different, the best 2- to 8-locus models gen-
erated from unbalanced function based MDR are significant
(𝑃 < 0.01, data not shown). The OR values in 2- to 8-locus
models increase from 2.054 to 4.628. For the implementation
of bootstrapping in 1000 samples, the adjustedOR (Boot-OR)
values increase from 1.972 to 4.483 in 2- to 8-locus models
and the 𝑃 values of 2- to 8-locus models decrease from 0.003
to 1.48E-09. Both OR and Boot-OR values gradually increase
when the loci numbers increase indicating that the hyperten-
sion risk is increasingly raised by the joint effect of SNPs. It
also suggests the SNPs of AGT, ACE, and AT

1
R genes are

highly associated with hypertension risk. SNPs G-217A
(AGT) and I/D (ACE) occur in all best models of 2 to 8 loci in
association with hypertension. The associated effects of
A1166C (AT

1
R) are detected at the best 7- and 8-locus models

and this leads to the highest risk compared to other models.

4. Discussion

Many important genes associated with hypertension were
reported [30–32], butmost of them are based on a single-SNP
model and the potential joint effects of multiloci models were
less addressed. The single-SNP model of our current study,
I/D (ACE), is significantly associatedwith hypertension using
the chi-square test. However, it is nonsignificant after Bon-
ferroni’s correction (Table 2). However, it was reported that
nonsignificant SNPs when combined generate joint effects
that are associatedwith diseases [33].Thus, the effects of some
SNPs may be ignored in a single-SNP model. Accordingly,
gene-gene interaction analysis was chosen in this study to
identify the possible joint effect of these nonsignificant SNPs
in association with hypertension.

MDR is a robust analysis for a gene-gene interaction
based on detecting nonlinear multigene interactions. MDR
also limits the balanced study population to, respectively,
determine the high and low risk for cases and controls.There-
fore, the MDR is unsuitable for the majority of natural data
sets which commonly belong to imbalanced cases and con-
trols.The threshold 𝑇 = 1 can effectively distinguish between
high and low risks in each genotype combination (i.e., a cell
in 𝑛 × 𝑛 grid of high- and low-risks) of MDR (steps 4
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Table 2: Single-locus analysis of eight SNPs for hypertension and nonhypertension groups.

Loci Genotypes HT
(𝑛 = 313)

Non-HT
(𝑛 = 130) P values

AGT gene

T174M
(rs4762)

CC 243 (77.6%) 106 (81.5%)
CT 64 (20.4%) 21 (16.2%) 0.303
TT 6 (1.9%) 3 (2.3%) 0.874
C : T 7.2 : 1 8.6 : 1

M235T
(rs699)

CC 220 (70.3%) 92 (70.8%)
CT 84 (26.8%) 38 (29.2%) 0.734
TT 9 (2.9%) 0 (0.0%)
C : T 5.1 : 1 5.8 : 1

G-6A
(rs5051)

AA 213 (68.1%) 90 (69.2%)
AG 88 (28.1%) 40 (30.8%) 0.749
GG 12 (3.8%) 0 (0.0%)
A :G 4.6 : 1 5.5 : 1

A-20C
(rs5050)

AA 295 (94.2%) 125 (96.2%)
AC 15 (4.8%) 3 (2.3%) 0.232
CC 3 (1.0%) 2 (1.5%) 0.619
A : C 28.8 : 1 36.1 : 1

G-152A
(rs11568020)

GG 289 (92.3%) 120 (92.3%)
GA 21 (6.7%) 10 (7.7%) 0.589
AA 3 (1.0%) 0 (0.0%)
G : A 22.2 : 1 25.0 : 1

G-217A
(rs5049)

GG 228 (72.8%) 102 (78.5%)
GA 64 (20.4%) 25 (19.2%) 0.608
AA 21 (6.7%) 3 (2.3%) 0.057
G : A 4.9 : 1 7.4 : 1

ACE gene

I/D
(rs4646994)

II 103 (32.9%) 27 (20.8%)
ID 146 (46.6%) 67 (51.5%) 0.031
DD 64 (20.4%) 36 (27.7%) 0.010
I : D 1.3 : 1 0.9 : 1

AT1R gene

A1166C
(rs5186)

AA 287 (91.7%) 115 (88.5%)
AC 25 (8.0%) 14 (10.8%) 0.339
CC 1 (0.3%) 1 (0.8%) 0.505
A : C 22.2 15.3 : 1

and 5 in Figure 1) but faults in the imbalanced data set.
Although resampling techniques are widely applied to fit for
MDR detecting epistasis in imbalanced data sets, the possible
information missing by resampling is hard to be excluded.

In contrast, we demonstrated that our proposed unbal-
anced function basedMDR is suitable for an imbalanced data
set. For example, Figure 2 illustrates details of the computa-
tional process such as TP, TN, misclassification error rate, the
total number of high-risk groups, and the total number of
low-risk groups, which were obtained from a 2-locus SNP-
SNP interaction model in MDR and unbalanced function
based MDR. Figures 2(a) and 2(c) show the processes of
the model selections and Figures 2(b) and 2(d) are the

corresponding details for the models of Figures 2(a) and 2(c)
in terms of the numbers of high- and low-risk groups. In
Figure 2(a) for MDR, values of error rates show around 0.3
in 100 models of MDR, and TPs are always higher than TNs.
Although TPs are slowly increased in all models, all error
rates do not remain improved clearly. At the best model of
MDR, the sensitivity and specificity are 0.0089 and 1, respec-
tively. In Figure 2(c), for unbalanced function based MDR,
theTNs are not always higher than theTPs.The error rates are
clearly improved when there are small difference values
between TP and TN. The sensitivity and specificity of the
best model are 0.667 and 0.495, respectively. Figure 2(b) for
MDR clearly shows that high-risk groups in 100 models are
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Table 3: Two-locus SNP-SNP interactions among eight SNPs assessed by unbalanced function based on MDR∗.

2 loci OR values P values Error rates
AGT T174M + ACE I/D 1.982 (1.243–3.160) 0.004 0.423
AGT M235T + AGT G-6A 7.360 (1.734–31.236) 0.007 0.452
AGT M235T + ACE I/D 1.803 (1.161–2.799) 0.009 0.429
AGT G-6A + AGT A-20C 3.696 (1.094–12.492) 0.035 0.468
AGT G-6A + AGT G-217A 1.886 (1.067–3.331) 0.029 0.451
AGT G-6A + ACE I/D 1.854 (1.187–2.895) 0.007 0.426
AGT A-20C + ACE I/D 2.075 (1.244–3.461) 0.005 0.428
AGT G-217A+ACE I/D 2.054 (1.310–3.221) 0.003 0.419
AGT G-152A + ACE I/D 2.033 (1.227–3.369) 0.006 0.428
ACE I/D + AT1R A1166C 1.801 (1.104–2.938) 0.018 0.438
∗All 2-locus SNP-SNP interactions are identified by the unbalanced function based onMDRmethod with significant testing accuracy but not best CVC. Bold
type represents the best model in 2-locus SNP-SNP interaction models.

Table 4: Multiloci analysis of hypertension using unbalanced function based MDR.

Loci number (SNP combination) Consistency Errora
(%)

OR values
(95% CI) Power Boot-ORb

(95% CI) Pc values

2 loci (G-217A; ACE I/D) 4/10 41.9 2.054
(1.31–3.22) 0.901 1.972

(1.26–3.09) 0.003

3 loci (G-6A; G-217A; ACE I/D) 4/10 40.3 2.372
(1.51–3.73) 0.986 2.232

(1.42–3.51) 4.99𝐸 − 04

4 loci (T174M; G-6A; G-217A; ACE I/D) 4/10 38.7 2.810
(1.75–4.52) 0.999 2.759

(1.71–4.44) 2.97𝐸 − 05

5 loci (T174M; G-6A; G-152A; G-217A; ACE I/D) 4/10 37.0 3.241
(1.99–5.28) 0.999 3.240

(1.99–5.29) 2.49𝐸 − 06

6 loci (T174M; G-6A; A-20C; G-152A; G-217A; ACE I/D) 6/10 35.3 3.863
(2.36–6.33) 0.999 3.785

(2.31–6.21) 1.34𝐸 − 07

7 loci (T174M; G-6A; A-20C; G-152A; G-217A; ACE I/D; AT1R) 6/10 33.8 4.510
(2.77–7.34) 0.999 4.050

(2.49–6.58) 1.63𝐸 − 08

8 loci (T174M; M235T; G-6A; A-20C; G-152A; G-217A; ACE I/D; AT1R) 10/10 32.6 4.628
(2.84–7.54) 0.999 4.483

(2.76–7.29) 1.48𝐸 − 09

aIt was determined empirically by permutation testing. bBootstrapping 1000 samples. cChi-square test.

always higher than low-risk groups due to the imbalanced
data between cases (𝑛 = 313) and controls (𝑛 = 130) whereas
Figure 2(d) for the unbalanced function based MDR shows
the better frequencies of the numbers of high- and low-risk
groups.Thus, (5) and (7) are effective in overcoming theMDR
detecting multiloci interactions in imbalanced data sets. In
summary, MDR may fail to correctly assign genotypes of
multiloci to either high- or low-risk groups and does not
provide correct error rates when the datasets are unbalanced.
Thus, low error rate and high OR value of MDR may be due
to its high TN. However, its TP value is low and indicates a
low sensitivity for disease detection.

For hypertension association, AGT gene haplotype
(T174M, M235T, G-6A, A-20C, G-152A, and G-217A) had
been reported to interact with I/D of the ACE gene [3].
However, the role of A1166C of AT

1
R gene in interacting

with this AGT gene haplotype was not investigated. Because
the six SNPs in the AGT gene are bound together due to its
haplotype environment their potential interaction to SNPs of
other genes may be limited. However, the joint effect of
multiple SNPs between different genes may have a higher
association degree than that of a single significant SNP. In the

example of a natural data set with an unbalanced HT group
and non-HT group, the unbalanced function based MDR
algorithm is able to detect the significant association with
hypertension in terms of 2- to 8-locus models by their OR
and Boot-OR values (Table 4). The hypertension associated
performance of all SNPs is additive from2- to 8-locusmodels.
The SNP appearing order is the same as the order of SNP joint
effects in terms of the additive OR value (i.e., OR

𝑛+1
− OR
𝑛
;

Table 4) as follows: SNPs ACE I/D = G-217A >G-6A (2.372−
2.054 = 0.318) > T174M (2.810 − 2.372 = 0.438) > G-152A
(3.241 − 2.810 = 0.431) > A-20C (3.863 − 3.241 = 0.622) >
AT
1
R A1166C (4.510 − 3.863 = 0.647) > M235T (4.628 −

4.510 = 0.118).
The SNP-SNP interaction networks (Table 4) have further

been validated by the single-SNP-to-single-SNP interaction
analyses (Figure 3) for the best 2- to 8-locus models in terms
of OR values. SNPs involved in one or more significant inter-
actions are represented as nodes, and the pairs of SNPs with
significant interactions are connected by lines. For example,
all SNPs are significantly associated withACE I/D, suggesting
that ACE I/D is mainly associated with hypertension. The G-
217A and ACE I/D are integrated to the best 2-locus model.
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Figure 2: Comparison of the performance of MDR and the unbalanced function based MDR with the example of 2-locus SNPs. (a and c)
Frequencies of TP, TN, and misclassification error. (b and d) The numbers of high- and low-risk groups. (a and c) The left scale of vertical
axis is the log

10
value for the total numbers of TP and TN. The right scale of vertical axis is the error rate. Blue line is the error rate based on

(7), denoted by “Adjust Err”. The horizontal axis represents the 100 different models in 2-locus combinations, in which the models are sorted
by error rate and selected by systematic sampling from all models. (b and d) The high/low lines indicate the distribution difference between
the numbers of high- and low-risk groups.

The G-6A is further integrated to the best 3-locus model and
it is validated thatG-6Ahas positively interactedwithG-217A
and ACE I/D (OR > 1). Similarly, the other newly integrated
SNPs in each multiloci model have positively interacted with
the previous SNPs in each multiloci model.

Misclassification error is widely used as misclassification
performance that aims to correctly estimate the proportions
for an incorrect prediction. InMDR, the incorrect prediction
error is an internal validation of a measurement that protects
against finding chance associations in the sample. The mis-
classification errors of these multiloci models are much lower
than 50%, indicating that the chance associations are signif-
icantly reduced. Table 4 also shows that the error rates are
gradually reduced from low- to high-order interaction, sug-
gesting that our proposed models are much effective for
misclassification of risk of diseases.

In conclusion, hypertension is resulting from the interac-
tion of several genetic risk factors. Analyses of multiple SNP-
SNP interactions are complex and remain computational

challenges when huge numbers of genetic factors are simulta-
neously considered. Moreover, the unbalanced data set may
have to be analyzed with a bias due to the limitation nature of
the MDR approach. In contrast, our proposed algorithm can
constitute a nonparametric statistical analysis and provide a
model-free and high-order-way measurement for epistasis
without the limitation of a balanced data set. Accordingly, a
significant outcome can be discovered from the high-order
SNP-SNP interaction model amongst an unbalanced data set
of many diseases including hypertension. Our results suggest
thatAGT,ACE, andAT

1
R genes have an overall hypertension

susceptibility effect. Among them, SNP I/D of ACE has the
main association effect to hypertension and it also displays n-
order interaction effect to SNPs of AGT and AT

1
R genes

although they do not have a mutual effect on each other.
The unbalanced function based MDR model can explore the
epistasis network of SNPsAGT,ACE, andAT

1
R of RAS genes

and identify strongly significant hypertension association.
These interaction models and epistasis networks amongst
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Figure 3: Epistasis networks of the best 2- to 8-locusmodels for SNP-SNP interaction are associated with hypertension. Significant gene-gene
interactions (𝑃 < 0.05) in these multifoci models are connected by blue lines, and the strength of interaction is labeled with OR values. The
thicker and thinner lines represent the higher and lower interactions, respectively.

AGT, ACE, and AT
1
R genes may be regarded as potential

biomarkers for hypertension susceptibility. Our results also
demonstrate that this powerful method has a potential to
identify several disease-associated multiloci models as sus-
ceptibility biomarkers.
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