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Estimation of visuospatial number typically has a limited
linear range that goes well beyond the subitizing range
but typically not beyond 20 items without calibration
procedures. Three experiments involving a total of 104
undergraduate students, each tested once, sought to
determine if the limit on the linear range represented a
capacity limitation of a linear accumulator or might be
the result of a strategy based on subdividing spatial
displays into potentially subitizable subsets. For visual
and auditory temporal numbers for a large range of
numbers (2–58; Experiment 1), the (unbiased) linear
range was found to be quite restricted (three or four
items). Using matched linear spatial number stimuli
(Experiment 2), the linear range observed extended to
about nine or 10 items. Experiment 3 compared
estimates when simultaneous two-dimensional spatial
number displays were presented briefly, with estimates
for identical displays that accumulated over time. The
linear range of estimates for accumulating spatial
displays reached only 11 items, whereas that for briefly
presented displays extended to about 20 items. These
results suggest that the limit on the linear range is not
simply a capacity limitation in a linear accumulator.
Rather, they support the idea that linear spatial number
estimation for the range from five to 20 may be based
on subdividing the display into a subitizable number of
(potentially) subitizable groups, even if those groups are
not outwardly marked.

Introduction

In the absence of pretraining or other opportunities
to calibrate spatial number estimation, Portley and
Durgin (2019) observed that estimates of visual number
were, on average, accurate up to about 20 items but
underestimated actual number thereafter. By varying
the range of numbers tested, Portley and Durgin
showed that this effect was not due to some sort of
central tendency but instead seemed to occur near
20 even when relatively few numbers beyond 20 were
tested and most were below, or when relatively few
numbers below 20 were tested and most were above
20. In all cases, estimates in the range up to 20 were
roughly linear and accurate, whereas the range beyond
20 was nonlinear (a power function) and systematically
underestimated number (had an exponent less than 1).
Power functions have long been observed for estimation
of large visual numbers (Krueger, 1972; Krueger, 1984).
In the present study, we examined temporal number
estimation in order to test two alternative hypotheses
about the apparent limit at 20.

One hypothesis, put forward by Portley and Durgin
(2019), is that 20 represents a kind of natural limit of
a spontaneous grouping process that might seek to
divide the dots into four or five clusters—a strategy
that might lead to accurate estimation if each cluster
were only about four or five dots or fewer. Subitizing
processes (Kaufman et al., 1949) are thought to be
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limited to about four or five items. In other words,
spatially random dot patterns tend to form clumps,
and a subitizable number of natural clumps that
are themselves roughly subitizable might be used
to estimate visual numbers up to about 20 without
substantial bias. On this view, unbiased estimation up
to 20 is an extension of the subitizing range by means
of active grouping, and 20 simply represents the point
at which this strategy breaks down. Several recent
studies have used explicit grouping information to
enhance (reduce variance in) number estimation in the
range below 20 (Ciccione & Dehaene, 2020; Starkey &
McCandliss, 2014). Could implicit or automatic spatial
grouping-by-subdividing processes underlie linear
performance up to 20?

A version of this idea, which we will call subdivision,
would be to suppose that number estimation in the
range is often based on estimation of a subset (e.g.,
Solomon & Morgan, 2018) of possible clusters and
might proceed by first dividing a whole array into a
small number of roughly similar regions and then
estimating some of those regions to arrive at an overall
estimate. As long as the dots in most of those regions
can be subitized, estimates might remain linear. If this
kind of subdivision is an important part of extending
linear estimation up to 20 for spatial number, we would
expect that temporal number estimation might show
a much smaller linear range. This is because it seems
likely that ongoing temporal events whose terminal
boundary is not known until the event is no longer
present cannot be subdivided into a limited number
(e.g., four or five) of roughly equal groups until it is too
late to make effective use of the subdivision process
(i.e., when the event is over).

An alternative hypothesis we considered was that 20
might represent the capacity of a linear accumulator
such as the one discussed by Whalen, Gallistel, and
Gelman (1999). Most sensory dimensions seem to
be coded logarithmically. Logarithmic coding has the
functional advantage of allowing for a very large range
to be encoded with noise proportional to value and is
thus an efficient coding scheme for many purposes.
Moreover, logarithmic coding permits multiplication
by means of addition. However, if a linear range is
desired for the purpose of facilitating, say, addition
or subtraction of linear quantities, then a coding
scheme might need to be range limited in order to
efficiently encode linear values. Whalen et al. (1999)
developed a novel test of temporal number estimation
in order to test whether a linear accumulator (with
scalar variability) was a good fit for temporal number
estimation. Specifically, whereas prior studies had used
fixed rates to present temporal numbers, Whalen et
al. used a stochastic process to produce sequences of
temporal visual numbers ranging from 7 to 25. They
reported that linear fits to their estimation data were
excellent.

We had some prior reason to doubt that temporal
number and spatial number were similar up to about
20. Whereas Whalen et al. (1999) observed a constant
coefficient of variation (CoV) for number estimates for
seven to 20 flashes, Portley and Durgin (2019) observed
that within-subject CoVs for spatial number estimation
increased gradually from four dots (the subitizing
range), where they were nearly zero, up to about 16
dots, where they plateaued. Nonetheless, it remained to
be seen whether and where temporal number estimates
might show a transition between an unbiased linear
range and a power functionwith an exponent less than 1.

In order to be able to tell whether there was a
discontinuity in temporal number estimation at about
20, it seemed best to test a range of number that
extended somewhat further beyond 20 than 25. For this
reason, we adapted the method used by Whalen et al.
(1999) but used a larger range of numbers. This, we
reasoned, should reveal whether the discontinuity in
spatial number at 20 observed by Portley and Durgin
(2019) was also present for temporal number. We
performed three replications of this basic experiment
in Experiment 1: once with visual events, once with
auditory events, and once with combined audiovisual
events. In each case, we observed evidence that temporal
number was not linear beyond a few items.

Experiment 1: Temporal number
estimation for stochastic events

To test whether there was evidence of linear
accumulation beyond about 20 temporal items, we
asked participants to estimate the number of events
presented in a stochastic manner like that used by
Whalen et al. (1999). We tested visual events, auditory
events, and combined audiovisual events among the
participants. In most cases, event presentation was too
rapid for subvocal counting (although, subjectively,
counting of small numbers of auditory events was
possible using echoic memory).

Methods

This and all subsequent experiments adhered to the
tenets of the Declaration of Helsinki and were approved
by the Swarthmore College institutional review board.
All data collected for this study are available at the Open
Science Foundation (https://osf.io/j7y3f/?view_only=
8a20e97391334697903da4999f708dc2).

Participants
Forty-eight undergraduate students 18 years old

or older at Swarthmore College participated as part
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of their Introductory Psychology class. None had
previously participated in a number estimation task.
Sixteen participants estimated numbers of visual events,
16 estimated numbers of auditory events, and 16 were
presented with audiovisual events for estimation.

Apparatus
The experiment was coded using PsychToolbox

(Brainard, 1997; Kleiner, Brainard, Pelli, Ingling, &
Broussard, 2007) running in MATLAB (MathWorks,
Natick, MA) on a Mac Pro (Apple, Cupertino,
CA) with a 120-Hz VIEWPixx/EEG display (VPixx
Technologies, Saint-Bruno, QC, Canada).

Design and stimuli
Twenty numbers were selected for the test using a

base multiplier of 2.49 and an exponential multiplier
1.18 raised to the integer powers of 0 to 19; the
resulting numbers were rounded to the nearest integer.
These integers ranged from 2 to 58. Each visual event
consisted of a circular spot (40 pixels across, about
2° in diameter) on the otherwise white screen being
turned black for three frames (25 ms) and then white
again for six frames (50 ms). Each auditory event
consisted of a 25-ms click followed by 50 ms of silence.
Two different stochastic constants were used: On each
successive frame (8.33 ms), the probability of another
event commencing was 1/k, where k was 10 for half the
trials and 14 for half the trials. The experimental trials
consisted of three blocks of 40 trials, with each block
consisting of a randomly ordered presentation of the
combination of each of the 20 numbers with each of the
two stochastic values. Empirically, the mean duration
for 58 events was 9.70 s (SD = 1.14), with a mean of
10.63 s (SD = 0.74) for k = 14 and a mean of 8.79 s
(SD = 0.59) for k = 10. This suggests that the average
rate of presentation averaged about 5.9 Hz overall (6.4
Hz and 5.4 Hz for the two constants, respectively).
The maximum rate possible, given the algorithm, was
13.3 Hz.

Procedure and practice
On each trial, the onset of the temporal number

stimulus was preceded by the white screen turning green
for 500 ms and then returning to white for a randomly
jittered period of 500 to 750 ms prior to the onset of
the stochastic process that presented a predetermined
number of events. After the final event in the sequence
there was a 500-ms pause and then the screen turned
yellow to signal that an estimate should be given.
Participants typed their estimates into an editable
textbox and pressed return when complete. Using
exclusion rules developed for typographic errors (typos)
by Portley and Durgin (2019), trials with estimates that

were less than the square root of the actual number
presented were treated as typos and shuffled back
into the remaining trials for the block to be repeated;
trials with estimates greater than three times the actual
number were also excluded from analysis.

To accustom participants to the procedure, there
were seven practice trials using numbers that included
three and 58. This was done to ensure that participants
were exposed to the highest numbers to be tested,
as well as to what we assumed would be an easy
number. No feedback or explicit information about
the range of numbers tested was given. After reading
instructions about how the task would proceed, the
participants were invited to begin the practice trials
while the experimenter was in the room with them.
After a few practice trials were complete and the
participants seemed comfortable with the procedure,
the experimenter left the testing room and closed the
door. The experiment proceeded thereafter, stopping
once to alert participants that the practice trials were
over and again after two blocks of experimental trials
to suggest that the participants take a brief break
before completing the final third of the experiment. The
entire procedure took participants about 20 minutes to
complete.

Results

For each participant, the geometric mean estimate
(mean of log estimates) and the CoV (standard
deviation of log estimates) were computed for each
presented number. The grand geometric means of the
estimates for each event type are plotted in Figure 1 in
log–log space. For visual flashes, t-tests conducted at
each point in log space suggested that only for three
events was there no evidence of systematic error in
estimation. A power function with an exponent of 0.826
provided an excellent fit to the estimation data (R2 =
0.999) for the full range of values. This result suggests
that the coding of temporal number is nonlinear.
Like Whalen et al. (1999), we observed approximately
constant (scalar) variability for estimation of visual
flash numbers, even down to as few as three visual
events.

For auditory events, performance was unbiased for
two and three events but reliably underestimated four
or more events. A power function fit to the biased range
had an exponent of 0.824 (R2 = 0.999). Variability for
auditory events was proportionally smaller for smaller
numbers than it was for visual events, perhaps because
of the possibility of using echoic memory (Craik, 1969;
Neisser, 1967) to count small numbers of events.

For audiovisual events, t-tests provided no evidence
of systematic error in estimation for two, three, or four
events, and estimates for four audiovisual events were
reliably higher than those for four auditory events,
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Figure 1. Temporal number estimation results of Experiment 1 with flashes, clicks, or both are shown with power functions fit to the
range demonstrating bias in each condition. Error bars represent standard errors of the means. Black disks represent mean CoVs
(refer to right axis labels).

with t(30) = 2.24 and p = 0.033. However, there was
systematic underestimation for five or more events. A
power function fit to the range of five to 58 events had
an exponent of 0.817 (R2 = 0.999). Variability (CoVs)
appeared to be lower for smaller numbers up to about
eight.

Discussion

Our question was whether temporal number
estimates would show an inflection at 20 as do spatial
number estimates in the absence of training. Unlike
estimates of spatial number, estimates of temporal
number showed only a very limited linear (unbiased)
range (see also Philippi et al., 2008). It thus seems

unlikely that the inflection at 20 for spatial number is the
result of a capacity limitation in a linear accumulator.

Experiment 2: Number estimation
for linearly arranged spatial
number

Typical spatial number arrays afford two-dimensional
(2D) subdivision by being spread over a 2D space.
In contrast, temporal arrays are essentially one
dimensional (1D). As a fairer comparison between
spatial and temporal numbers, we therefore tested
spatial number estimation for briefly presented 1D



Journal of Vision (2022) 22(11):15, 1–11 Durgin, Aubry, Balisanyuka-Smith, & Yavuz 5

spatial number arrays that were designed to mimic
the temporal arrays of Experiment 1. Because these
spatial displays afford subdivision/grouping only along
one dimension, we anticipated that they might have
a smaller range of unbiased performance than do
2D spatial arrays. However, even 1D spatial number
arrays should better afford strategic subdivision simply
because the entire array is presented at once. Thus, if
a subdivision strategy is effective even for 1D arrays
(as long as they are presented all at once, spatially), we
should expect to see a larger linear range for linear
spatial number in the present experiment than we did
for temporal number in Experiment 1.

Method

Participants
Twenty-four undergraduate students 18 years old or

older at Swarthmore College participated online (due
to COVID-19 restrictions) as part of their Introductory
Psychology class. None had previously participated in a
number estimation task.

Displays and design
The experiment was administered using PsyToolkit

(Stoet, 2010; Stoet, 2017). Number displays
were generated in advance using Psychtoolbox
(see Figure 2). The design was identical to that used
in the temporal number experiments, except that
horizontal position was substituted for time. Indeed,
the visual images were generated from randomly
selected trials from Experiment 1 by converting
temporal intervals into spatial ones. A caveat is that, in
order to render the most numerous stimuli within an
800-pixel-wide window, the spatial resolution of our

Figure 2. A sample of 1D spatial number stimuli from
Experiment 2. Each row of vertical lines is also a spatial
representation of a temporal number stimulus from Experiment
1. The numbers shown here, top to bottom, are 6, 9, 13, 21, 35,
and 58 (twice), originally generated with alternating probability
constants (1/14 for odd rows, 1/10 for even rows).

Figure 3. Spatial number estimation results for linear arrays of
elements. Black disks represent the mean CoVs (scale on right
side of graph). Error bars represent standard errors of the
means. Fit line is applied only to estimates in the range showing
statistical evidence of underestimation (11–58).

images was less than the temporal resolution had been,
such that 4 pixels substituted for nine temporal frames.
As a result, the vertical elements, at 2 pixels wide, were
(proportionally) 50% wider than the durations of their
temporal counterparts. Two versions of the experiment
(each using a different set of 127 images) were created.
Some sample images are shown in Figure 2. The display
duration was 400 ms. Typos were excluded prior to
analysis using the same criteria as in Experiment 1.

Results

A plot of estimates is shown in Figure 3. Performance
with briefly presented linear spatial arrays was unbiased
up to about nine items, which is clearly much better
than for temporal arrays (Experiment 1). The power
function fit to the range of underestimation has an
exponent (0.79) that is quite similar to the exponents
observed for temporal number stimuli in Experiment
1 (∼0.82). The CoVs increased beyond the subitizing
range, plateauing at about 11 or 13 elements.

Discussion

Because temporal events are unbounded until they
end, the selection of a limited number of appropriate
subsets for estimation cannot be easily undertaken until
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after the last event has already occurred. Here we tried
to use spatial displays that were otherwise analogous
to the temporal number stimuli in Experiment 1. We
reasoned that even 1D (linear) visual number arrays
likely afford efficient subdivision strategies that are
difficult to deploy for temporal number. Although the
range of unbiased estimation with these linear spatial
arrays was more limited than that typically observed for
2D spatial number arrays, it far exceeded the unbiased
range we saw for temporal number in Experiment 1.

Though clearly speculative, it might be worth noting
that studies of subitizing sometimes suggest that
accuracy is limited to two or three linear items when
they are not evenly spaced (e.g., Krajcsi, Szabó, &
Mórocz, 2013; Mandler & Shebo, 1982) or are not
widely spaced (Atkinson, Campbell, & Francis, 1976).
Thus, the reduced accuracy limit of nine items for the
linear arrays used here is consistent with, for example,
subdivision of our linear arrays into three groups,
with accuracy attained for only up to three lines per
group.

Experiment 3: Number estimation
for spatially cumulative audiovisual
events and for briefly presented
spatial arrays

In Experiment 1 we tested whether temporal number
estimation seemed to reflect a linear accumulator and
what the capacity limits of that accumulator were. The
best estimate of unbiased performance (four events)
occurred for audiovisual events. These results contrast
with the observations of Portley and Durgin (2019)
regarding estimation of spatial number, which is often
unbiased up to about 20 items, even without calibration.
In Experiment 2, we used spatial displays where number
was represented along a single (horizontal) dimension
to better match one constraint of temporal number
stimuli. We still found a larger range of unbiased
performance than we observed for temporal number.

So far, then, it would appear that a subdivision or
grouping hypothesis, like that proposed by Portley and
Durgin (2019), seems more likely to explain unbiased
performance up to about 20 items. Strategies that
involve subdividing a display into a small number of
subsets of elements can be efficiently exercised only
when the entire array is present and are therefore
easiest when all dots are presented simultaneously.
In the present experiment, we sought to contrast a
brief simultaneous presentation of spatial arrays with
temporally extended presentations in which the same
spatial number arrays, rather than appearing all at
once, accumulated one dot at a time in a temporally

stochastic manner like that used in Experiment 1. It
would seem that the information content in a gradually
accumulating display is no less than in the same display
briefly presented, but if a subdivision strategy can only
be implemented once the whole display is present then
we should expect a strategic cost for a spatial display
whose temporal bound, like that of a temporal number
sequence, is unknown until it is too late.

Method

Thirty-two students who had not been in previous
number estimation experiments participated. The
temporal algorithm for the cumulative displays was
identical to the one used in Experiment 1. The difference
was that each event was now composed of an auditory
click, synchronized with the visual onset of a single
element (black ring with an inner diameter of 12 pixels
and an outer diameter of 18 pixels, about 1°) that
remained on (and thus accumulated into a spatial array
of elements) at random positions that were at least
24 pixels, center to center, from other elements within
an unmarked circular boundary. The boundary was
600, 750, or 900 pixels in diameter to decouple density
and number. The elements all disappeared 500 ms after
the last one was added. Sixteen students participated
in the cumulative version, and, for comparison with
the simple spatial case, an additional 16 students made
estimates of purely spatial patterns (presented for 400
ms), generated by the same spatial algorithm as that
used in the cumulative case. Recall that, for the largest
number presented (58), the mean accumulation time
would have been about 10 s, but as with temporal
number participants could not predict when the
accumulation process would end. Moreover, during the
accumulation process, the number of dots in any spatial
subregion could increase at any time. Thus, although
the final glimpse of the completed accumulated display
lasted slightly longer than the brief, simultaneous
display, participants probably could not know that it
was the final display until it had disappeared.

Results and discussion

The grand geometric means for estimates in the two
conditions are plotted in Figure 4 in log–log space. For
briefly presented spatial number arrays, we replicated
the observation of Portley and Durgin (2019) that
estimates were relatively unbiased up to about 20. In
this case, there was some overestimation below 20, but
the first evidence of underestimation occurred for 25
dots. In contrast, for the cumulative displays, unbiased
performance was evident up to only 11 dots, with
reliable underestimation first occurring for 13 dots. It
is worth noting that estimates for the highest number
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Figure 4. Number estimation results of Experiment 3 with simple spatial arrays (left) or with multimodal events consisting of auditory
clicks and visual onsets that accumulated into spatial arrays (right). Black disks represent the mean CoVs (scale on right side of graph).
Error bars represent standard errors of the means. Fit lines are applied only to estimates in the range showing statistical evidence of
underestimation (25–58 for brief spatial displays; 13–58 for temporally cumulative spatial displays).

were the same across both conditions (i.e., 58 dots were
estimated as 35), which is similar to the estimates for 58
in Experiment 1 (34, 35, and 36).

The rather large difference in linear range between
the briefly flashed 2D spatial array and the gradually
accumulating 2D spatial array is consistent with the
idea that subdivision is used to produce accurate
estimates up to about 20 for simultaneous spatial arrays.
When spatial arrays emerge over an unpredictable time
window, the spatial subdivision process cannot be as
effectively wielded. Presumably this is because new
dots were appearing up until the accumulation ended,
whereas the end of accumulation was only signaled by
the disappearance of the entire array (i.e., could not be
easily anticipated).

Note that the within-subject CoVs show that, in the
range above 10, the precision (CoV) of the estimates was
better (smaller) for the gradually accumulated displays
(M = 0.14) than for the brief simultaneous displays (M
= 0.19), with t(30) = 3.7 and p < 0.001, despite the
estimates being more accurate from 15 to 21 dots in the
simultaneous condition. This seems consistent with the
idea that the linear range reached 20 as a result of a
cognitive strategy (e.g., involving subdivision) rather
than more precise number perception, per se.

Although possible, in principle, we suspect that
trying to repeatedly estimate the current state of the
changing display by means of subdivision throughout
the accumulation process would probably have been
so labor intensive that participants would likely have
depended on an alternative strategy to take advantage of
both visual–spatial and auditory–temporal information.

The fact that the accumulation condition has a larger
linear range than the audiovisual temporal condition
of Experiment 1 has many possible interpretations,
but it could, for example, reflect a reduction in
memory demand. Perhaps participants tended to
use a hybrid temporal/spatial process that could
combine low-variability estimates of up to about
six or seven spatially accumulated visual elements,
with temporal estimates of up to three or four new
audiovisual events to arrive at unbiased estimates up to
about 11.

The main conclusion we wish to draw from these
results concerns the comparison of the cumulative
condition to the brief, simultaneous spatial number
conditions. The superior range of accuracy for brief,
simultaneous presentation is consistent with the idea
that, for a subdivision strategy to be accurate over the
largest possible range, it should be initiated when all
items are present.

General discussion

For numeric estimation of briefly presented spatial
arrays of elements, estimates are largely unbiased up to
about 20 (Portley & Durgin, 2019). Here, we considered
two hypotheses about this observation and found
greater support for the subdivision hypothesis than for
the linear accumulator capacity limitation hypothesis.
Specifically, for spatial numbers, the linear (unbiased)
range of estimation was greater when all of the elements
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were simultaneously but briefly presented than when the
same spatial arrays accumulated over several seconds
with accompanying auditory signals. The cumulative
procedure produced a much larger unbiased range (up
to about 11 elements) than temporal audiovisual signals
with the same temporal statistics in Experiment 1 (up to
about four items), but a much lower range than 20 items
for briefly but simultaneously presented spatial number
arrays with the same spatial statistics. Although the
unbiased range was reduced to nine items when linear
simultaneous spatial arrays were used, this still far
exceeded the performance for temporal number. These
observations are consistent with the consideration that
spontaneous subdivision strategies work best when all
of the elements to be estimated appear at once so that
an appropriate subset (e.g., one quarter of the elements)
can be identified for initial analysis.

Prior temporal number data re-examined

Prior reports have suggested that temporal number
estimation might be linearly related to presented
number up to about 20 or 25 events (White, 1963;
Whalen et al., 1999). In contrast, we found here that
temporal number estimates consistently followed a
power function with an exponent of about 0.82 for
numbers of events beyond about four or five. This
observation led us to conduct a re-examination of some
older data on temporal number estimation. By using
data from published tables or, in some cases, digitizing

and extracting coordinates of data points from figures
in these papers, we were able to reconstruct average
estimates across five studies that did not use calibration
procedures (Cheatham & White, 1952; Cheatham
& White, 1954; Forsyth & Chapanis, 1958; Garner,
1951; Lawrence, 1971) and compared linear and power
function fits to the data. Although all of the papers
we examined reported linear fits, power functions
generally provided equivalent fits for their data.
Table 1 shows the exponents for all five pa-
pers on temporal number estimation data
as a function of modality and frequency of
presentation.

Figure 5 shows the exponents from Table 1 as a
function of presentation frequency with separately fit
log functions to the auditory and visual data. Figure 5
shows that, although exponents tended to be somewhat
higher for auditory stimuli, estimation of both
auditory and visual temporal stimuli seemed to be well
captured by power functions with exponents less than
1 whenever the presentation frequency exceeded the
rates for which subvocal counting was likely possible
(i.e., 4 Hz). Moreover, the exponents appear to be
systematically related to the presentation rate and
modality.

Grouping theories and cognitive accumulation

The idea that grouping can contribute to number
estimation has a long history. Although the term

Source Modality Range Range fit Frequency (Hz) Exponent R2

Garner (1951) Auditory 2–20 4–20 4 0.99 1.000
Garner (1951) Auditory 2–20 4–20 6 0.96 1.000
Garner (1951) Auditory 2–15 4–15 8 0.90 0.999
Garner (1951) Auditory 2–12 4–12 10 0.87 0.997
Cheatham and White (1952) Visual 1–9 4–9 10 0.80 0.986
Cheatham and White (1952) Visual 1–13 4–13 15 0.75 0.980
Cheatham and White (1952) Visual 1–18 4–18 22.5 0.62 0.942
Cheatham and White (1952) Visual 1–20 4–20 30 0.67 0.957
Cheatham and White (1954) Auditory 1–8 4–8 10 0.96 1.000
Cheatham and White (1954) Auditory 1–11 4–11 15 0.76 0.996
Cheatham and White (1954) Auditory 1–17 4–17 30 0.75 0.939
Forsyth and Chapanis (1958) Visual 1–20 4–20 2.5 0.98 1.000
Forsyth and Chapanis (1958) Visual 1–20 4–20 5 0.93 0.998
Forsyth and Chapanis (1958) Visual 1–20 4–20 10 0.84 0.997
Forsyth and Chapanis (1958) Visual 1–20 4–20 15 0.74 0.996
Forsyth and Chapanis (1958) Visual 1–20 4–20 22.5 0.67 0.992
Forsyth and Chapanis (1958) Visual 1–20 4–20 30 0.80 0.943
Lawrence (1971) Visual words 1–15 4–15 4 0.99 0.993
Lawrence (1971) Visual words 1–21 4–21 8 0.94 0.994
Lawrence (1971) Visual words 1–31 4–31 12 0.86 0.994
Lawrence (1971) Visual words 1–31 4–31 16 0.83 0.994

Table 1. Exponents computed for data from studies of temporal number estimation.



Journal of Vision (2022) 22(11):15, 1–11 Durgin, Aubry, Balisanyuka-Smith, & Yavuz 9

Figure 5. Exponents fit to temporal number estimation data
from the five studies shown in Table 1 as a function of
presentation frequency and modality.

groupitizing is relatively new (Starkey & McCandliss,
2014), Atkinson, Francis, and Campbell (1976)
used Gestalt grouping principles for linear arrays
(orientation, color, proximity) to test number estimation
beyond the subitizing range (up to 12) and found that
they could get errorless accuracy for up to eight items
when they were split into two groups of four (i.e.,
two subitizable subsets). Somewhat later, Van Offelen
and Vos (1982) reviewed the history of evidence for
enumeration by subgroups and explored a model of
visual processing that might select for small groups of
items to be separately enumerated.

A large number of recent papers have supported the
idea that Gestalt grouping (by color, proximity, etc.)
supports improved number estimation—typically for
numbers well below 20 (e.g., Maldonado Moscoso,
Castaldi, Burr, Arrighi, & Anobile, 2020; Pan, Yang,
Li, Zhang, & Cui, 2021). These grouping effects have
even been found for auditory temporal number for
up to about eight or nine items (Anobile, Castaldi,
Maldonado Moscoso, Arrighi, & Burr, 2021). And
evidence suggests that spontaneous group and add
(or multiply) strategies can probably be deployed for
simultaneous visual items defined in complex ways (by
motion, for example; Kramer, Di Bono, & Zorzi, 2011).

Although it has been argued, from studies of
dyscalculia, that groupitizing effects do not depend on
mathematical ability, the empirical evidence presented
by Anobile, Marazzi, Federici, Napoletti, Cecconi,
and Arrighi (2022) may not be relevant to evaluating
the possible role of math raised in our study for three
reasons. First is calibration; the range of numbers they
tested (5–10) was told to all the participants in advance,

so the study did not address the accuracy of estimation.
Second is ambiguity of outcome; the measure of
precision used in the work (CoV of estimates) showed
that both groups gave more uniform estimates when
clustered displays were presented. In general, although
reduced variation in estimates can be interpreted as
evidence of more precise numerical perception, it can
also reflect better categorical recognition. Finally, in
their study category recognition—in particular, the
observed differences in the uniformity of estimates
between clustered displays and random spreads—might
reflect a difference between recognizable (clustered)
patterns and confusable (random) stimuli (Krajcsi et al.,
2013; Wolters, Van Kempen, & Wijlhuizen, 1987). For
example, although randomized each time, the clustered
number 7 used by Anobile et al. (2022) always consisted
of two clusters of three dots and one additional cluster
of 1 [3,3,1,0], whereas the number 8 could appear as
one of three different breakdowns: [2,2,2,2], [4,4,0,0],
or [3,3,2,0]. Consistent with the categorical recognition
view, the improvement shown for seven dots when
groupitized appears much greater than that for eight
dots among both control participants and those with
dyscalculia (Anobile et al., 2022) (Figure 3). Because
the authors stated that the cluster breakdowns they
used were ones that showed the “most robust” (p. 8)
effects in their prior studies, it is possible that their
clustered displays were particularly categorizable
based on features other than total number (Krajcsi
et al., 2013). On this view, spatial groupitizing, using
only a few repeated cluster breakdowns, might not
be a generalizable example of a subdivision strategy.
Conversely, it would be quite surprising, from our
perspective, if, without feedback or other information
about the range of values being tested, the linear range
of estimation for fully random, briefly presented spatial
displays were to extend as high as 20 among those with
dyscalculia (see Ashkenazi, Mark-Zigdon, & Henik,
2013).

The present work has provided evidence that
differential affordances for efficient subdividing and
subset estimation might underlie differential success
at the various forms of number estimation tasks
we have considered. For example, we suppose that
efficient subdividing is easier when all elements are
presented simultaneously because this allows greater
potential for the proper division of elements into
a subitizable number of (potentially subitizable)
subsets. Support for this idea emerged from the
comparison of linear spatial number estimation
(Experiment 2) and temporal number estimation
(Experiment 1). A fairly direct test of the idea was
implemented in Experiment 3, where mean accuracy
for brief simultaneous presentations of spatial number
arrays seemed to far outstrip accuracy for gradually
accumulated spatial number arrays with the same
spatial statistics. We have noted that the temporal
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unfolding of sequential events (when there is a
sufficiently large range of possible numbers) leaves
them unbounded and thus difficult to subdivide until it
is “too late.”

Although we believe that we successfully manipulated
the affordance for subdivision in Experiment 3, it
remains unclear how subdivision leads to linear
estimation. It is possible that linear (accurate) estimates
result from combining unbiased estimates of all
resulting groups, as suggested by Portley and Durgin
(2019), or by estimation based on a subset of groups,
as might be suggested by Solomon and Morgan (2018).
A subdivision strategy could include a step that seeks
to estimate the elements in what seems like the most
representative regions and to extrapolate from there,
but we have not tried to address these questions
here.

Whereas Atkinson et al. (1976) supposed that
increased capacity of accurate estimation from
grouping depended on having separate channels within
which subitizing could occur, an addendum to their
theory might be a cognitive accumulation process. That
is, the participants in their experiments were well aware
of the simple facts of addition and multiplication and
could literally do the math. Our current hypothesis
is that arithmetic knowledge is probably what allows
subdividing to extend the (uncalibrated) linear range of
estimation beyond the subitizing range, but only up to
about 20. It could be that estimation and comparison
performance on relatively small numbers beyond the
subitizing range correlates with math skills because it
can be improved by those skills (Starkey & McCandliss,
2014).

Conclusions

In the absence of a calibration procedure, number
estimation for spatial and temporal numbers tends to
show log scaling beyond a limited range. In our view, it
is the extent of the limited linear range that requires
explanation. In this paper we have sought to compare
the extent of that limited range across a variety of
procedures that included relatively high numbers (up to
58). We did not see evidence for a fixed capacity linear
accumulator. For temporal number involving auditory
signals, the uncalibrated range appeared linear only for
fairly small numbers where echoic memory may have
supported counting. For spatial number, the range of
approximate linearity was highest when some form of
subdivision strategy was most likely to be effective:
simultaneously presented 2D displays rather than ones
that gradually accumulated over an unpredictable
duration.

Keywords: number, temporal number, grouping
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