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Abstract

Sequencing of the T cell receptor (TCR) repertoire is a powerful tool for deeper study of

immune response, but the unique structure of this type of data makes its meaningful quanti-

fication challenging. We introduce a new method, the Gamma-GPD spliced threshold

model, to address this difficulty. This biologically interpretable model captures the distribu-

tion of the TCR repertoire, demonstrates stability across varying sequencing depths, and

permits comparative analysis across any number of sampled individuals. We apply our

method to several datasets and obtain insights regarding the differentiating features in the T

cell receptor repertoire among sampled individuals across conditions. We have imple-

mented our method in the open-source R package powerTCR.

Author summary

A more detailed understanding of the immune response can unlock critical information

concerning diagnosis and treatment of disease. Here, in particular, we study T cells

through T cell receptor sequencing, as T cells play a vital role in immune response. One

important feature of T cell receptor sequencing data is the frequencies of each receptor in

a given sample. These frequencies harbor global information about the landscape of the

immune response. We introduce a flexible method that extracts this information by

modeling the distribution of these frequencies, and show that it can be used to quantify

differences in samples from individuals of different biological conditions.

This is a PLoS Computational Biology Methods paper.

Introduction

Recent advances in high-throughput sequencing of the T cell receptor (TCR) repertoire pro-

vide a new, detailed characterization of the immune system. T cells, each displaying a unique
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TCR, are capable of responding to presented antigens and initiating an adaptive immune

response. An immune response is described by rapid proliferation of T cell clonotypes whose

TCRs are specific to the antigen. In humans, it is estimated that the body is capable of produc-

ing more than 1018 different TCRs [1, 2], where high diversity of the TCR repertoire implies a

greater range of pathogens that can be fought off. A variety of studies have been published

demonstrating the value in characterizing this immune response for purposes such as describ-

ing tumor cell origin [3] and predicting response to cancer therapy and infection [4]. The

applications of TCR sequencing are many, but this type of data presents new needs for analysis

techniques not met by existing tools for other kinds of genomic experiments.

Several groups have identified that the distribution of larger clone sizes in a sample can be

approximated by a power law [5–8], which means that the number of clones of a given size

decays approximately as a power of the clone size. This heavy-tailed distribution comes as a

consequence of extensively proliferated clones actively participating in an ongoing immune

response. More recent work has aimed to quantify statistically the diversity of the TCR reper-

toire, initially through the use of various estimators borrowed from ecology, such as species

richness, Shannon entropy [9], and clonality. These estimators are known to be highly sensi-

tive to sample size and missing observations. Given that the TCR repertoire is mostly popu-

lated by rare clonotypes, many of the clonotypes in the system are absent from any one

sample. This presents a challenge to many of the ecological estimators. Model-based

approaches to approximating the clone size distribution have also been proposed, with the

goal of providing added stability and consequently more statistical power. Some examples are

the Poisson-lognormal model [10], Poisson mixture models [11, 12], and a heuristic ensemble

method [13]; however, these models lack a biologically meaningful interpretation, and further

do not sufficiently account for the power law-like nature of the data. That is, power law distri-

butions are heavier-tailed than the Poisson or even the lognormal distribution, leading to sys-

tematic bias in the model fit.

Previous research has also identified the imperfectness of the power law behavior for the

clone size distribution below some clone size threshold [7, 8]. To handle the imperfectness,

[7, 8] proposed to model large clones above the threshold using a type-I Pareto distribution,

which is a member of the power-law distribution family, and omitted the clones with fre-

quency below that threshold. The threshold is either user-specified or determined from the

data based on a goodness-of-fit measure. Indeed, this model has certain biological basis.

Through a stochastic differential equations setup that models the birth, death, selection, and

antigen-recognition of cells active in the immune system, Desponds et al. [8] showed that the

upper tail of the clone size distribution at equilibrium approximately follows a type-I Pareto

distribution (Fig 1A). Unlike the Poisson and lognormal models, parameters in this model are

related to relevant actors in the immune response, and can reveal certain biological insights

into immune response, such as average T cell lifetime [8]. Yet, the resulting model excludes all

clones below a certain frequency threshold.

However, even small clones may provide information; for example, Desponds et al. [8] indi-

cated that the generation of new T cells affects the landscape of smaller clone sizes. Other stud-

ies have shown that low-frequency clones may support a diverse immune system and present a

potential to mobilize against antigens, as in some cases having a clone size distribution highly

dominated by a few clones has been correlated with unfavorable clinical outcome [14, 15].

With this in mind, we sought a means to exhaust all available data and consider modeling the

complete clone size distribution.

To address this question, we propose a novel statistical tool, called powerTCR, to character-

ize the full distribution of the TCR repertoire. Our method models large clones that are above

the threshold, where the power law begins, using the generalized Pareto distribution (GPD),
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which contains the type-I Pareto distribution as a special case, but provides a more flexible fit.

It also models the small clones below the threshold using a truncated Gamma distribution. It

determines the threshold in a data-driven manner simultaneously with the characterization of

clone size distribution. Our final model contains parameters that are analogous to those found

in the type-I Pareto model of Desponds et al. [8], relating our model to the biological interpre-

tation of the dynamics of the immune system. Altogether, this allows our model to more accu-

rately describe the shape of the clone size distribution for both large and small clones. Such a

model is well suited for providing a global view of the state of the immune repertoire. It can

also be employed to perform comparative analysis of healthy and compromised individuals to

identify descriptors of strengths and deficiencies in the immune system.

Results

The discrete Gamma-GPD spliced threshold model

Our goal is to model the clone size distribution of a sample immune repertoire. Fig 1A shows a

typical distribution plotted using the repertoire of a Sarcoidosis patient in [16]. If the data are

truly Pareto distributed, this plot would appear linear [17, 18]. However, noting the linear

behavior is only true for the far upper tail of the data, this suggests that these data are a depar-

ture from the Pareto distribution. This imperfect power law implicates the use of a heavy-tailed

distribution above some threshold and a lighter-tailed distribution below that threshold. Here,

we model the tail part with a GPD. The GPD, introduced by [19], is a classical distribution typ-

ically used to model the values in the upper tail of a dataset. This formulation results in a distri-

bution with density

f ðxÞ ¼
1

s
1þ x

x � u
s

� �� ð1=xþ1Þ

; ð1Þ

where u 2 (−1, 1) is a threshold that typically needs to be prespecified, σ 2 (0, 1) is a scale

parameter, and ξ 2 (−1, 1) is a shape parameter. The GPD has support x� u when ξ� 0

Fig 1. Examining the power law behavior of a sample clone size distribution. A: A sample repertoire (gray) of a Sarcoidosis

patient and the fitted curves based on the Desponds method (pink) and our method (blue). The Desponds method only fits the data

above the threshold it estimates (approximately 15% of the data). Our method fits all of the data. The cross marks the threshold

estimated by our method. A complete collection of plots for every dataset analyzed are in S1 Text. B: The QQ-plot of the theoretical

fit using our model against the empirical data for the same dataset in A shows that our model can achieve a good fit.

https://doi.org/10.1371/journal.pcbi.1006571.g001
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and u� x� u − σ/ξ when ξ< 0. We model the bulk part with a Gamma distribution with the

upper tail truncated at the threshold. The Gamma distribution has a flexible shape and can fit

many different clone size distributions. The threshold and the parameters in the two distribu-

tions are estimated from the data simultaneously. This setup, where data above and below an

unknown threshold are drawn from the “bulk” and “tail” distributions respectively, falls into a

class of models called spliced threshold models. The typical motivation for the model is the

belief that the data above and below the threshold are driven by different underlying processes.

We refer the interested reader to [20] for a thorough review of the general spliced threshold

model, and its applications in fields such as insurance, hydrology, and finance.

Denote the proportion of data above the threshold u as ϕ. Let the bulk model distribution

function be Hc(x|θb) and the tail model distribution function be Gc(x|θt), where subscripts b
and t denote the bulk and tail model parameter vectors, respectively. Then the distribution

function of the model is given by

FcðxÞ ¼

(
ð1 � �Þ

HcðxjθbÞ

HcðujθbÞ
for x � u

1 � �þ �Gcðxjθt; uÞ for x > u
ð2Þ

with corresponding density

fcðxÞ ¼

(
ð1 � �Þ

hcðxjθbÞ

HcðujθbÞ
for x � u

�gcðxjθt; uÞ for x > u
: ð3Þ

Because the clone size distribution is count data that typically exhibit numerous ties in the

less frequently observed clonotypes, it is appropriate to treat this as a discrete problem. We

modify the model in order to account for any quantized or censored data. Let ψ and C be the

density and distribution function of a continuous distribution, and let d be the interval length

at which the data are censored. We obtain a quantized analog of ψ by letting

PrðX ¼ xÞ ¼ Cðxþ dÞ � CðxÞ; x 2 k � d; k 2 Z:

This results in a discrete model with distribution function

FðxÞ ¼

(
ð1 � �Þ

HðxjθbÞ

Hðu � djθbÞ
for x � u � d

1 � �þ �Gðxjθt; uÞ for x � u
ð4Þ

and corresponding probability mass function

f ðxÞ ¼

(
ð1 � �Þ

hðxjθbÞ

Hðu � djθbÞ
for x � u � d

�gðxjθt; uÞ for x � u
: ð5Þ

where h(x|θb) * discrete Gamma(α, β), g(x|θt) * discrete GPD(u, σ, ξ), and d = 1, which

specifies that we model integer data (see Methods for the functional form of the discrete

Gamma distribution and the discrete GPD). This discretization step turns out to be important

for accurate estimation in our scenario. See S2 Text for a comparison between the performance

of the discrete and continuous models in settings resembling true clone size distributions.
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Biological interpretation of the model

The relationship between the discrete Gamma-GPD spliced threshold model and the type-I

Pareto model in Desponds et al. [8], hereafter referred to as the Desponds et al. model, allows

us to draw connections between some of our parameters and the dynamics of immune

response underpinning their approach. First, results from [8] show that the threshold at which

the power law begins is indicative of the point over which a clone’s large size can be attributed

to active immune response, as opposed to noise in the body that arises from processes such as

self-recognition. The threshold fitted from the data provides an objective way to narrow down

which clonotypes from a sample repertoire should be interrogated further. This notion is con-

venient for studying factors such as CDR3 (complementarity-determining region 3) amino

acid motifs or specific V, D, and J genes important for combating certain antigens, which are

typically determined based on a heuristic abundance cutoff. For example, [21] studies the

1,000 most abundant CDR3 amino acid motifs across all sampled peripheral blood mononu-

clear cell (PBMC) libraries, while [16] determines CDR3 amino acid motifs from clones that

are present with 10 or more reads in a sampled repertoire. The threshold u estimated with our

model, however, introduces a means to select motifs that does not rely on heuristics and auto-

matically scales with sequencing depth.

Moreover, the shape parameter ξ of the GPD is inversely related to the shape parameter αd
used in the Desponds et al. model (see Methods). As explained by Desponds et al., a small αd,
i.e. a large ξ, implies increased average T cell lifetime and antigenic noise strength. They fur-

ther show that antigenic noise strength grows as a consequence of a higher initial concentra-

tion of antigens and a higher rate at which new antigens are introduced. Interestingly, ξ also

positively correlates with the familiar clonality estimator (1-Pielou’s evenness [22]). Indeed, as

ξ increases, the clone size distribution becomes heavier-tailed—that is, more skewed towards

dominating clones. This trend is in line with that of the clonality estimator, which favors a

more uniform clone size distribution as clonality approaches 0 and a distribution dominated

by expanded clones as clonality approaches 1. To numerically validate this relationship, we

simulated the data from our model and computed the clonality (see Methods). We observed a

high correlation between clonality and ξ (Spearman’s ρ� 0.9), confirming that ξ reflects the

skewness towards dominating clones (see S3 Text).

It is worth noting that our model acquires a theoretical gain via the threshold stability prop-

erty of the GPD [23]. That is, for any generalized Pareto distributed data, the shape parameter

ξ remains constant regardless of changes in u. In our context, this means that at decreasing

sequencing depths, though the threshold u would decrease due to fewer cells being sampled,

the shape parameter ξ in principle would be stable against the variation in sequencing depth.

We will demonstrate this gain in stability on a murine tumor dataset. See Methods for our

extension of the threshold stability property to the case of the discrete GPD.

In the following sections, we inspect four different datasets using our model. We compare

our results to results from the Desponds et al. model to demonstrate the practical and theoreti-

cal benefits of our approach. We also make comparisons to results from the widely used rich-

ness, Shannon entropy, and clonality estimators. See Methods for information on

computation of competing methods.

Discrimination between tumors from MHC-II positive and control

murine breast cancers

The expression of major histocompatability complex II (MHC-II) proteins in tumors corre-

lates with boosted anti-tumor immunity. As part of a study of how MHC-II expression impacts

tumor progression and functional plasticity of T cells [24], the CDR3 of TCRβ-chains of tumor

Modeling differences between T cell receptors sequenced from different individuals
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infiltrating lymphocytes (TILs) were sequenced from breast cancer tumor tissue from six

BALB/c mice [25]. Three of the mice were grafted with MHC-II expressing tumor cells and

three control animals received parental MHC-II-negative cells. Samples were collected at 21

days after the date of treatment. Table A in S4 Text summarizes the number of unique clono-

types observed and the total number of reads in each sample.

Our method quantifies response to treatment and differentiates treatment groups. We

asked whether the MHC-II expression would cause a global change in the TCR repertoire of

the host mice. We analyzed the TCR repertoire in the individuals’ tumor tissue using our pro-

posed model and the Desponds et al. model. Tables B and C in S4 Text show parameter esti-

mates from our model and the Desponds et al. model, respectively. Results from our model

support a claim that increased expression of MHC-II induces an increased rate of clonal

expansion at the tumor site, as indicated by the uniformly larger estimates of the tail shape

parameter ξ in the treatment group.

Because the TCR repertoire is often used as an indicator of an individual’s immune

potency, we next evaluated how well our method discriminates between samples from case

and control groups. We compared our method to the Desponds et al. model and the richness,

Shannon entropy, and clonality estimators. For our model, we computed the pairwise Jensen-

Shannon distance (JSD) between the fitted distributions of each pair of samples, and then used

it as the distance measure to cluster samples with hierarchical clustering (see Methods) using

Ward’s method. Clustering of the Desponds et al. model was done similarly by using a general-

ization of JSD to continuous distributions, trading the summation for an integral. For all eco-

logical measures, we computed pairwise Euclidean distances between estimates which we then

used for hierarchical clustering of the samples. Fig 2 shows that our approach clusters the data

by treatment and control groups. This is contrasted against all other methods, which display

an incorrect construction of the expected true relationships among the experimental subjects.

In the case of the ecological estimators, poor clustering likely occurs because a one-number

summary of repertoire diversity cannot capture intricacies in the data, and varying sequencing

depths across samples may further bias results. In the case of the Desponds et al. model, on the

other hand, poor clustering is likely a result of the lack of a robust fitting procedure and a less

flexible model. Moreover, the exclusion of smaller clones reduces power to discriminate

between samples. See S5 Text for a demonstration of reduced clustering performance when

only using the tail part of our spliced model.

Our results are robust to variation in sequencing depth. One challenge with TCR exper-

iments is that the sequencing depth directly affects the number of TCR variants that are dis-

covered. It is not simple to obtain the same sequencing depth across individuals, and it is also

undesirable to discard data in favor of maintaining an equal number of reads across TCR rep-

ertoire libraries. An ideal scheme for comparative analysis achieves stable classification across

different sequencing depths. Thus, we compared the stability of our model against the

Fig 2. Hierarchical clustering of mouse tumor samples based on different quantifications of the TCR repertoire. The MHC-II-

positive individuals are labeled with an ‘M’, while the control individuals are labeled with a ‘C’.

https://doi.org/10.1371/journal.pcbi.1006571.g002
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Desponds et al. model. To do this, we randomly downsampled reads in the mouse data to 80,

60, 40, and 20% of total reads from the original samples. We fit our model and the Desponds

et al. model in each case, then performed hierarchical clustering according to JSD. The cluster-

ing induced using our model was the same at every downsampling level, while clustering

induced using the Desponds et al. model changed each time. S6 Text contains the dendro-

grams from both models at each downsample level, but Fig 3 summarizes this information by

illustrating the relative JSD between sample C54 and the remaining samples across downsam-

ple levels. The spliced threshold model clearly maintains a similar trend across downsample

levels, not to mention that the relationship inferred distinguishes between treatment and con-

trol groups. However, the downsampling study reveals that relative distances between sampled

individuals observed using the Desponds et al. model are quite erratic.

The higher stability of our results is due in part to the threshold stability property of the

GPD. It is also attributed to the fact that our method models the full clone size distribution.

Doing so circumvents the threshold selection problem encountered when applying the

Desponds et al. model, a recurrent issue when fitting models such as the type-I Pareto distribu-

tion [26]. For their approach, Desponds et al. select the threshold that minimizes the Kolmogo-

rov-Smirnov statistic [27], a commonly used goodness-of-fit strategy for fitting a power law

distribution [28]. However, the results on this dataset show that this strategy does not always

yield stable results across different sequencing depths.

Differentiation between subtypes of Sarcoidosis patients

Sarcoidosis is an inflammatory disease that typically is accompanied by an accumulation of

activated CD4+ T cells in the lungs. A particularly acute form of Sarcoidosis, called Löfgren’s

syndrom (LS), occurs with additional, more severe symptoms. A known signature of LS is the

bombardment of the lungs with CD4+ T cells, which is expected to significantly alter the entire

landscape of the TCR repertoire. We applied our method to TCR repertoire data of LS and

non-LS Sarcoidosis patients [29], originally described in [16]. In this study, bronchoscopy

with the bronchoalveolar lavage was performed on a cohort of 9 LS and 4 non-LS individuals

and prepared for TCR α− and β–chain sequencing.

Fig 3. Robustness to variation in sequencing depth on the mouse tumor data. Relative JSD between sample C54 and the

remaining samples across downsampling levels, using A: our model and B: the Desponds et al. model.

https://doi.org/10.1371/journal.pcbi.1006571.g003
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We compared the TCR distribution between LS and non-LS Sarcoidosis patients using our

method and the competing methods. In order to visualize closeness of samples, we generated a

distance matrix using JSD between fitted distributions using our method and the Desponds

et al. model. The estimated parameters are in Tables E and F in S4 Text respectively. We then

applied non-metric multidimensional scaling (MDS) to the distance matrix and plotted the

first two coordinates. For the ecological estimators, we simply plotted centered and scaled esti-

mates. As shown in Fig 4A, results from our model cluster LS patients into a tight group dis-

tinct from non-LS patients, bolstering the claim that LS patients exhibit a signature immune

response. On the other hand, competing methods fail to uncover any pattern (Fig 4B and 4C).

Relationship between the landscape of the clone size distribution and

clinical outcome in glioblastoma patients

We applied our method to data collected during a clinical trial of 13 glioblastoma patients

receiving autologous tumor lysate-pulsed dendritic cell (DC) vaccine therapy [30], first

detailed in [31]. Three intradermal injections were administered to patients at biweekly inter-

vals. TCRβ-chains from PBMC samples were sequenced for the patients prior to vaccinations

and two weeks following the final injection. Patients were followed up with and their time to

progression (TTP) and overall survival (OS) were recorded. TTP was defined as the time from

the first DC vaccination until MRI-confirmed tumor progression. OS was calculated as the

time from the first DC vaccination until the patient’s death from any cause. We investigated

whether current tools using TCRs sequenced only from blood samples indicate anything about

patients’ survival time and time to progression.

We first fit our model to the pre- and post-treatment samples. In both cases, we classified

the patients into two groups using the hierarchical clustering based on our model, the

Fig 4. Differentiation of TCR repertoires between LS and non-LS Sarcoidosis patients. A–B: Multidimensional scaling

representation of distances between TCR repertoires computed with JSD for the spliced threshold model and the Desponds et al.

model. C: Centered and scaled estimates of richness, Shannon entropy, and clonality.

https://doi.org/10.1371/journal.pcbi.1006571.g004
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Desponds et al. model, and the richness, Shannon entropy, and clonality estimators. No clear

grouping with respect to either TTP or OS could be observed from any clustering on the pre-

treatment samples, whether by the model-based methods or the selected estimators (see S7

Text). However, among post-treatment samples, our method tends to cluster together patients

with better clinical outcome (Fig 5A). This may indicate that the DC therapy alters the land-

scape of the TCR repertoire into a form that promotes favorable clinical outcome.

We do, however, cluster one patient (ID: 33296) with low TTP and OS in the group with

overall higher TTP and OS. Interestingly, this misplaced patient had the lowest estimated TIL

count and tumor/PBMC overlap of the entire cohort (S4 Text, Table G). Tumor/PBMC over-

lap was defined as the total number of reads of shared CDR3s normalized by total reads in the

tumor and PBMC samples. Similarly, patient 17232 displayed among the best clinical outcome

but clustered with lower-performing patients. Patient 17232 had the highest TIL count and

level of tumor/PBMC overlap in the whole cohort. This information taken as a whole suggests

that, while the clone size distribution found in blood may indicate something about a patient’s

response to treatment, it still does not guarantee that T cells will infiltrate the tumor, an impor-

tant factor for clinical benefit [32]. S8 Text highlights the clone size distributions of these two

patients against all others.

Notably, inferred thresholds (minimum u = 4, maximum u = 6) on this dataset are much

lower than on other datasets. This is likely because this dataset contains less deeply-sequenced

samples than the others, which consequently reduces the threshold.

Noting that clones with size at or above the estimated threshold are considered active par-

ticipators in the immune response, we sought to investigate whether any relationship existed

between clinical outcome and the proportion of more highly stimulated cells. We defined the

proportion of highly stimulated cells to be the total number of reads at or above the threshold,

normalized by the total number of reads in the entire repertoire (S3 Text, Table I). We found

correlations between this measure and both TTP (Spearman’s ρ = 0.54) and OS (Spearman’s

ρ = 0.80). Rank scatterplots for these correlations are in Fig 5B. The positive correlation we

Fig 5. Association with time to progression (TTP) and overall survival (OS) time in glioblastoma patients. A: Patient

classification based on TCR repertoire quantification and its relationship to TTP and OS. Patients are classified into two groups

(black and gray) using hierarchical clustering according to the estimates of TCR repertoires from the post-treatment samples.

Anomalous patients 33296 and 17232 are called out on the Spliced model plot. B: Relationship between the proportion of highly

stimulated clones inferred by our method and TTP or OS.

https://doi.org/10.1371/journal.pcbi.1006571.g005
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uncovered suggests that this statistic could be a useful tool to quantify the antigen-specificity

of the sample.

Relationships among sorted CD4+ T cell subtypes in individuals with

type 1 diabetes and healthy donors

Risk factors for type 1 diabetes (T1D) are known to be heritable, yet genes alone are not suffi-

cient explanation for drivers of the disease. Studies of monozygotic twins have revealed that,

given one twin has T1D, the other will only have it at most half of the time [33]. The CD4+ T

cell is viewed as the initiator of T1D as dysregulation of CD4+ antigen-recognition drives the

autoimmune disease. Seeking out apparently non-heritable determinants of T1D, [34] con-

ducted a deeper investigation of the CD4+ T cell. Briefly, the authors obtained PBMCs from

14 volunteer healthy donors (HDs) and 14 recently diagnosed patients with T1D. The cells

were sorted using flow cytometry into distinct T cell subsets (true naïve; TN, central memory,

CM; regulatory, Treg; and stem cell-like memory, Tscm) and TCRβ-chains were sequenced.

The authors conducted a thorough analysis, finding shorter CDR3 sequence lengths and lower

overall repertoire diversity among patients with T1D. However, on a per-individual basis, the

authors were unable to uncover a relationship between repertoire diversity and disease status.

Since the the spliced threshold model provides a new means to probe this complex data, we

applied our approach to complement the original analyses.

Trajectory in clone size distribution across CD4+ T cell subtypes. While [34] consid-

ered pairwise correlations in diversity indices of different CD4+ T cell subsets from the same

individual, their analysis provides no visualization of the data as a whole. Our method for com-

parative analysis, combined with MDS, allows this to be done naturally. Like the Sarcoidosis

patient analysis, we applied our method and competing methods, and visualized the results as

before (Fig 6A–6C).

It is known that TN cells propagate into both Tscm and CM cells, Tscm cells also propagate

in CM cells, and Treg cells generally originate separately in the thymus [35–37]. Our approach

appears to support a gradual change in repertoire shape throughout this differentiation pro-

cess, as a clear trajectory is revealed in the MDS representation of the JSD between fitted

Fig 6. Trajectory of TCR repertoires among CD4+ T cell subsets between T1D patients and HDs. A–B: MDS representations of

JSD between TCR repertoires from the spliced threshold model and Desponds et al. model. C: Centered and scaled estimates of

richness, Shannon entropy, and clonality for all CD4+ T cell subsets. D: The proportion of highly stimulated clones derived from our

method and centered and scaled diversity estimates in the Tscm subset.

https://doi.org/10.1371/journal.pcbi.1006571.g006
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models in Fig 6A. On the other hand, the MDS representation obtained using the Desponds

et al. model does not separate results by cell type or donor status. The ecological estimators

recapitulate some results found in the original analysis [34], for example that TN are more

diverse than other cells, but uncover nothing more.

Upon closer examination of the results from our model, we noticed that individuals from

the T1D and HD groups are not well-separated in the cell types in Fig 6A, except in the Tscm

subset. Tscm cells, identified in vitro in [35], are a stable, yet multipotent, subset of cells sus-

tained via proliferation and turnover throughout the human lifetime and have been suggested

to play a major role in establishing memory in immune response [35, 36]. More recently,

Tscm cells have been implicated as a factor in development and treatment of autoimmune dis-

orders such as acquired aplastic anemia [38] and systemic lupus erythematosis [39]. This moti-

vated a deeper evaluation of the Tscm subset. Recalling that the proportion of highly

stimulated clones, an estimator derived from our model, proved informative in our analysis of

the TCR repertoires sequenced from PBMCs of individuals with glioblastoma, we decided to

again apply it here to the Tscm subset alongside the ecological estimators.

As shown in Fig 6D, richness and Shannon entropy have difficulty differentiating the T1D

and HD groups (p = 0.1879 and p = 0.5838 for a two-sided t-test, respectively), yet clonality

and our measure uncover a clear split between the two groups (p = 2.4 × 10−4 and 2.97 × 10−6,

respectively). This indicates the potential for the Tscm TCR repertoire to be used as a bio-

marker for detecting the status of T1D, suggesting the relevance of Tscm cells in T1D

pathogenesis.

Discussion

We have developed a model, the discrete Gamma-GPD spliced threshold model, and demon-

strated its utility on several datasets. As shown in our analyses, several biologically relevant

descriptive features can be obtained from our model. One is the tail shape parameter ξ, a mea-

sure of the weight of the upper tail of the clone size distribution, where a heavier tail of the fit-

ted model implies a more dominated distribution of expanded clones. Another is the

proportion of total reads at or above the estimated threshold, a possible measure of intensity of

the immune response. The third is the estimated threshold, which is a useful guide to objec-

tively identify CDR3 motifs for downstream analysis. This could involve denoting motifs as

only those CDR3s found in TCRs with frequencies at or above the estimated threshold for a

given sample, or it could mean studying TCR gene usage among that same group of clono-

types. Though the dynamics driving our model form a compelling argument for this interpre-

tation of the threshold, we acknowledge that further biological validation on more datasets is

still needed to confirm this.

Similar to other estimators, our model requires that a repertoire be adequately sampled.

Without adequate sampling, the differentiating features between TCR repertoires will be

masked [8], and the estimated model parameters will not be reliable. Given the immense diver-

sity of the TCR repertoire, one should in general be cautious about using any method to make

inference about a sample TCR repertoire when few cells are sequenced. With sufficient sam-

ples, though, the spliced threshold model provides the user a meaningful high-level view of the

TCR repertoire.

The diversity of the TCR repertoire and its responsiveness to stimuli provide a high-dimen-

sional biomarker for monitoring the immune system and its adaptivity. Robust assessment of

the clone size distribution through TCR sequencing is important for understanding this diver-

sity. The discrete Gamma-GPD spliced threshold model is a flexible model that effectively cap-

tures the shape of the clone size distribution. It is especially appropriate since the heavy-tailed
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GPD is a good fit to model the highly expanded clones that dominate many TCR repertoire

samples. The method also provides a means to comparatively analyze a collection of TCR rep-

ertoire samples while maintaining convenient theoretical properties and interpretations.

Compared with existing approaches, our method is more flexible, utilizes the full clone size

distribution, is less sensitive to sequencing depth, and identifies the threshold in a data-driven

manner. The parameters estimated from our method are biologically relevant and instructive

to the dynamics of immune response. Our results on multiple datasets also show that the

spliced threshold model is powerful in a range of scenarios for comparing TCR repertoires

across samples, revealing potential trends in the landscapes of clone size distributions of

affected immune systems.

Methods

Estimation

We use maximum likelihood to estimate the parameters of our model. First, we more explicitly

specify the form of our distribution. Letting x * Gamma(α, β), we write the probability mass

function of a discrete Gamma distribution as

hðxÞ ¼
1

GðaÞ
g a;b xþ 1ð Þð Þ � gða; bxÞ½ �

for α> 0, β> 0, x 2 Z, and where γ(α, βx) is the lower incomplete gamma function

gða; bxÞ ¼
Z bx

0

ta� 1e� tdt:

If x * GPD(u, σ, ξ), we write the probability mass function of a discrete GPD as

gðxÞ ¼ 1þ x
x � u
s

� �� 1=x

� 1þ x
xþ 1 � u

s

� �� 1=x

for u 2 (−1, 1), σ 2 (0, 1), and ξ 2 (−1, 1). The discrete GPD has support x� u when

ξ� 0 and u� x� u − σ/ξ when ξ< 0, where x 2 Z. In all analyses presented here, we make

no assumptions on the sign of ξ, although empirically we tend to observe ξ> 0.

To proceed, we employ a profile likelihood approach. Let u be the threshold, θb be the bulk

parameter vector {α, β}, θt be the tail parameter vector {σ, ξ}, and θ be the parameter vector

{θb, θt}. Let also h and H be the density and distribution function of a discrete Gamma distribu-

tion, respectively, and let g be the density of a discrete GPD. Then the complete data likelihood

is given by

Lðfθ; ug j xÞ ¼
Yn

i¼1

ð1 � �Þ
hðxi j θbÞ

Hðu � 1 j θbÞ
1ðxi � u � 1Þ þ �gðxi j θt; uÞ1ðxi � uÞ�

�

and the profile likelihood of the model at u is denoted as

LpðuÞ ¼ max
θ

Lðθ j x; uÞ:

A grid search over a suitable range of thresholds u? = (u1, . . ., uk) may be implemented to

maximize the profile likelihood. In this study, we adopted an approach similar to those of [19]

and [40], searching for thresholds at or above the 75% quantile of the sample. The estimated
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parameters are then

û ¼ arg max
u?2u?

Lpðu
?Þ;

θ̂ ¼ arg max
θ

Lðθ j u ¼ ûÞ; and

�̂ ¼
nu

n
;

where n is the total number of clones and nu denotes the number of clones with size greater

than or equal to the threshold.

Computation for competing methods

The Desponds et al. model was fit as previously described [8]. Briefly, the model has density

f ðxÞ ¼
aduad
xadþ1

ð6Þ

and distribution function

FðxÞ ¼ 1 �
u
x

� �ad
ð7Þ

where u> 0 is the threshold and αd> 0 is a shape parameter. For each sample TCR repertoire,

a grid of potential thresholds u? = (u1, . . ., uk) was constructed by considering every unique

clone size in the repertoire. Then, for each ui, the shape parameter is estimated as

â d ¼ ni

Xni

j¼1

ln
xj
ui

" #� 1

ð8Þ

where ni is the number of clones with size larger than the threshold ui. Once this value is com-

puted for every threshold in u?, the threshold and corresponding â were chosen to minimize

the Kolmogorov-Smirnov statistic.

The ecological estimators [9, 22] were computed as follows. For a sample X, let S(X) be the

sample richness, defined as the number of unique clonotypes in X, and let pi be the number of

cells of clonotype i normalized by the total number of cells in the sample. Then, the Shannon

entropy of X is

HðXÞ ¼ �
XSðXÞ

i¼1

pi ln pi ð9Þ

and the clonality of X is

CðXÞ ¼ 1 �
HðXÞ
ln SðXÞ

: ð10Þ

ξ is inversely related to the the shape parameter of the type-I Pareto

distribution

The Desponds et al. model, which is a type-I Pareto distribution, and the “tail” part of our

model, which is a GPD, are closely related. In fact, the GPD contains the type-I Pareto distribu-

tion as a special case. We can write the distribution function of y, where y * GPD(u, σ, ξ),
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as

FðyÞ ¼ 1 � 1þ x
y � u
s

� �� 1=x

: ð11Þ

Now, let x � GPD u; u
ad
; 1

ad

� �
. Then

F x; u;
u
ad
;

1

ad

� �

¼ 1 � 1þ
1

ad

x � u
u=ad

� �� �� ad

¼ 1 � 1þ
x � u
u

� �h i� ad

¼ 1 �
u
x

� �ad

which is exactly the distribution function of a type-I Pareto distribution with threshold u and

shape αd (Eq 7). Of course, this exact relationship only holds when s ¼ u
ad

. Nevertheless, αd
and ξ perform the same function in their respective distributions, adjusting the weight of the

tail. This relationship always holds—a larger ξ (smaller αd) implies a heavier-tailed distribu-

tion, while a smaller ξ (larger αd) implies a lighter-tailed distribution.

Correlation between ξ and clonality

We conjecture that ξ, the shape parameter of the GPD, positively correlates with clonality. We

numerically validated this claim using a simulated cohort of 48 clone size distributions. That

is, we generated samples of n = 20, 000 clonotypes, where our 48 parameter settings were

derived from every combination of α 2 {3, 5, 10}, ξ 2 {.25, .5, .75, 1.1}, and ϕ 2 {0.1, 0.15, 0.2,

0.25}. We chose β = 0.15, s ¼
ffiffi
a
p

b
, and u = bQα,β(1 − ϕ)c in each simulation, where Qα,β is the

quantile function of the Gamma distribution with mean a

b
. To adjust for the effect of sample

size on clonality, we downsampled the simulated data so that each sample contained the same

number of reads (415,989 total reads per sample). We computed the clonality of each simu-

lated TCR repertoire on these adjusted datasets.

Comparative analysis of multiple samples using the spliced threshold

model

The relationship between a pair of TCR repertoires can be elucidated by evaluating the dis-

tance between their fitted spliced threshold models. Several methods to compare densities are

available. We propose measuring the distance between each pair of distributions using Jensen-

Shannon distance (JSD) [41]. This metric is a symmetric and smoothed adaptation of the well-

known Kullback-Leibler divergence that does not require the distributions under comparison

to share the same support.

Given discrete distributions P and Q, the JSD between P and Q is

JSDðP;QÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2

X

i

Pi ln
Pi

Mi

� �

þ
X

i

Qi ln
Qi

Mi

� �" #v
u
u
t ; ð12Þ

where Mi ¼
1

2
ðPi þ QiÞ. The resulting distances allow analysis and visualization via MDS or

hierarchical clustering of the samples. Throughout our study, we use Ward’s method for hier-

archical clustering.
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Threshold stability of the discrete GPD

The threshold stability property of the GPD is well-established [23]. Here, we show that the

property also holds for the discrete GPD. Let X * discrete GPD(u, σ, ξ) and denote its distri-

bution function as F with Fc as its continuous analog. Then we can write

PðX � u � xþ 1jX � uÞ ¼
Pðu � X � xþ uþ 1Þ

PðX � uÞ

¼
Fðxþ uþ 1; u; s; xÞ � Fðu; u; s; xÞ

1 � Fðu; u; s; xÞ

¼
Fcðxþ uþ 2; u; s; xÞ � Fcðuþ 1; u; s; xÞ

1 � Fcðuþ 1; u; s; xÞ

¼

1þ
x

s

� �� 1=x

� 1þ x
xþ 2

s

� �� 1=x

1þ
x

s

� �� 1=x

¼ 1 � 1þ x
xþ 1

sþ x

� �� 1=x

¼ Fcðxþ 1; 0; sþ x; xÞ

¼ Fðx; 0; sþ x; xÞ:

This states that if X * discrete GPD(u, σ, ξ), then X − u * discrete GPD(0, σ + ξ, ξ). Or,

for our application, consider a clone size distribution, where clones larger than some threshold

u are distributed according to the discrete GPD. At decreasing sequencing depths, this esti-

mated u decreases, implying naturally that the size a clone in the sample must achieve to be

considered “expanded” decreases. Still, while u shrinks, the threshold stability property states

that ξ remains constant.

Supporting information

S1 Text. Visualization of all model fits. For each real data sample, a plot analagous to Fig 1A

is provided.

(PDF)

S2 Text. Simulation for comparing the accuracy of parameter estimation for the discrete

spliced threshold model, the Desponds et al. model, and the continuous spliced threshold

model. Details on simulation study comparing the discrete model and Desponds et al. model,

and simulation study comparing the discrete and continuous models.

(PDF)

S3 Text. Correlation between ξ and clonality. Information on simulation study that finds

strong positive relationship between ξ and the clonality estimator.

(PDF)

S4 Text. Summaries for the four TCR repertoire datasets. Tables summarizing number of

unique clonotypes per sample, total reads sequenced per sample, and other patient-specific

information for the Sarcoidosis and glioblastoma datasets. Additionally, tables containing
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fitted model parameter estimates for both our model and the competing model, as well as eco-

logical estimator values, computed for every sample.

(PDF)

S5 Text. Comparative analysis using the GPD. By comparing results from our full model to

those from only our tail model, we observe empirically the gains from including the full clone

size distribution.

(PDF)

S6 Text. Dendrograms for downsampling study. We downsampled mouse tumor data to 80,

60, 40, and 20% of total reads. We used JSD to compute pairwise distances between the sam-

ples for our model fits and the Desponds et al. model fits at each downsample level and did

hierarchical clustering using Ward’s method. The dendrograms for each model at each down-

sample level are presented here.

(PDF)

S7 Text. Clustering of pre- and post-treatment glioblastoma patient samples.

Clustering dendrograms generated on pre- and post-treatment glioblastoma samples. Group-

ings presented for the post-treatment samples here correspond to the colored groupings in

Fig 5.

(PDF)

S8 Text. Clone size distributions of glioblastoma patients. This plot calls out patients 33296

and 17232 from the glioblastoma patients. Patient 33296 incorrectly clustered with the individ-

uals with favorable clinical outcome, while patient 17232 incorrectly clustered with individuals

with unfavorable clinical outcome.

(PDF)
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