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Characterization of DNA methylation 
as well as mico‑RNA expression and screening 
of epigenetic markers in adipogenesis
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Abstract 

This study aimed to use bioinformatics methods to characterize epigenetic changes in terms of micro-RNA(miRNA) 
expression and DNA methylation during adipogenesis. The mRNA and miRNA expression microarray and DNA meth-
ylation dataset were obtained from the GEO database. Differentially expressed genes (DEGs), differentially expressed 
miRNAs (DEMs) and differentially methylated probes (DMPs) were filtered using the limma package. The R language 
cluster profile package was used for functional and enrichment analysis. A protein–protein interaction (PPI) network 
was constructed using STRING and visualized in Cytoscape. The Connection map (CMap) website tool was used to 
screen potential therapeutic drugs for adipogenesis. When comparing the early and late stages of adipogenesis, 111 
low miRNA targeted upregulated genes and 64 high miRNA targeted downregulated genes were obtained, as well as 
663 low-methylated high-expressed genes and 237 high-methylated low-expressed genes. In addition, 41 genes (24 
upregulated and 17 downregulated) were simultaneously regulated by abnormal miRNA changes and DNA methyla-
tion. Ten chemicals were identified as putative therapeutics for adipogenesis. In addition, among the dual-regulated 
genes identified, CANX, HNRNPA1, MCL1, and PPIF may play key roles in the epigenetic regulation of adipogenesis 
and may serve as aberrant methylation or miRNA targeting biomarkers.
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Introduction
With the continuous improvement in living standards, 
obesity has become a worldwide public health problem. 
Unhealthy lifestyles and eating habits have caused the 
number of obese people to rapidly increase worldwide. 
From 2011 to 2012, 8.1% of children aged 0 to 2 in the 
United States were overweight. The proportion of obese 
children among children aged 2–19 years reached 16.9%, 
and the proportion of obesity among adults aged 20 and 
above reached 34.9% [1]. Obesity is caused by energy 
intake exceeding energy expenditure. At the cellular level, 

obesity is the result of an increase in the number or vol-
ume of adipocytes [2].

All adipocytes, along with osteoblasts, muscle cells, 
and chondrocytes, are derived from mesenchymal stem 
cells. This process of differentiation is called adipogen-
esis [3]. The formation of mature adipocytes includes 
two stages, commitment and terminal differentia-
tion [4]. In the commitment stage, mesenchymal stem 
cells are committed to differentiate to preadipocytes. 
Preadipocytes can differentiate into adipocytes, but 
preadipocytes will not spontaneously undergo terminal 
differentiation without exogenous adipogenesis-stimu-
lating factors [5]. In vitro, when adipogenesis-stimulat-
ing factors, including glucocorticoids, cAMP agonists, 
and insulin, are added, preadipocytes are induced to 
differentiate into mature adipocytes. In the terminal 
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stage, preadipocytes undergo lipid accumulation and 
morphological changes of turning spheral. A series of 
signaling pathways, transcription factors and related 
proteins are subsequently activated in this process [6].

MicroRNAs (miRNAs) can interact with transcrip-
tion factors and important signaling molecules related 
to adipocyte differentiation to regulate adipogenesis [7]. 
PPARγ and C/EBPs are the most important transcrip-
tion factors throughout the process of adipocyte dif-
ferentiation. miRNAs can directly or indirectly interact 
with these transcription factors to regulate cell differ-
entiation [8]. Kim et al. [9] and Lee et al. [10] found that 
miR-27a and miR-130a bind with the 3′UTR of PPARγ 
to downregulate the expression of PPARγ. MiR-27a and 
miR-130a are downregulated during the differentiation 
of 3T3-L1 cells, which upregulates the expression of 
PPARγ. Yang et al. [11] found that the levels of miR-138 
were significantly decreased during the adipogenic dif-
ferentiation of primary adipose stem cells. When miR-
138 is overexpressed, adipogenic genes, such as PPARγ, 
C/EBPα, and FABP4, are inhibited; therefore, lipid 
droplet aggregation is reduced.

It has also been reported that the DNA methylation 
of several key genes affects their expression levels dur-
ing adipogenesis [12]. Leptin is a hormone that regu-
lates energy homeostasis. The leptin promoter is rich in 
CpG sites and is a chromosomal tissue-specific methyl 
region that can be dynamically methylated in humans 
and mice. Detecting the changes in DNA methyla-
tion at CpG sites in the promoter region of the leptin 
gene before and after differentiation of 3T3-L1 cells 
confirmed that the degree of DNA methylation was 
reduced, and DNA demethylation promoted leptin 
gene expression in 3T3-L1 cells [13]. Yokomori et  al. 
[14] found that the GLUT4 promoter region exhibited 
similar changes in DNA methylation during 3T3-L1 dif-
ferentiation. Horii et al. [15] screened a small G protein 
Rho family guanine nucleotide exchange factor (Rho 
guanine nucleotide exchange factor 19, ARHGEF19) 
gene using a methylation-sensitive endonuclease PCR 
method and demonstrated that this gene plays an 
important role in regulating adipocyte differentiation. 
Studies on PPARγ, the key regulator of adipocyte differ-
entiation, found that 5-aza-2′-deoxycytidine (AzaD), a 
DNA methylation inhibitor, interferes with the normal 
differentiation of 3T3-L1 preadipocytes and inhibits fat 
accumulation [16].

As aforementioned, the differentiation of preadipocytes 
into adipocytes is controlled by a regulatory network, 
which is responsible for the regulation of commitment, 
lipid accumulation, adipocyte phenotype development, 
and maturation [17]. The regulatory mechanism can tar-
get both stages involved at the same time.

It is worth noting that the expansion of adipose tis-
sue through de novo adipogenesis can neutralize the 
detrimental metabolic effects secondary to obesity. In 
addition, the balance of hypertrophy or expansion of 
existing adipocytes and adipogenesis within the indi-
vidual has a profound impact on metabolic health. 
Studies have shown that the increase in adipocyte size 
was associated with an increased risk of systemic insu-
lin resistance [18]. Other studies have shown that small 
adipocytes are particularly crucial for suppressing obe-
sity and related metabolic disorders [19] and it was 
revealed that small adipocytes are usually correlated 
with reduced susceptibility to diabetes [20]. As their 
size expands, adipocytes will experience more mechan-
ical stress as their contact pressure with neighboring 
structures increases, and when they expand to a size 
close to the oxygen diffusion limit, deficiency of oxygen 
occurs. The increased mechanical and hypoxic stress 
of hypertrophic adipocytes can cause inflammation of 
adipose tissue [21]. Many experimental observations 
have shown that, compared with smaller adipocytes, 
larger hypertrophic adipocytes may exhibit different 
biochemical properties, for example, increased lipoly-
sis, strengthened secretion of inflammatory cytokines, 
and reduced anti-inflammatory adipokines secretion 
[22].

These findings raise an intriguing hypothesis that 
obesity itself may not be responsible for obesity-related 
metabolic disorders, but the deficiency of adipose tissue 
to expand further. This can lead to adipocytes hypertro-
phy instead of hyperplasia and a continuous increase 
in plasma glucose and lipid levels that can accumulate 
in other tissues and cause insulin resistance. Based on 
this theory, promoting de novo adipogenesis or inhib-
iting adipocyte hypertrophy can be a feasible thera-
peutic approach for insulin resistance and chronic 
inflammation secondary to obesity. Consequently, the 
intervention strategy for adipogenesis should be dif-
ferent between early-stage (promotion) and late-stage 
(inhibition).

This study systematically analyzed and summarized 
the epigenetic regulatory network of adipocyte dif-
ferentiation between the early and late stages through 
expression profiling, noncoding RNA, and methylation 
sequencing data derived from public databases. This 
study aimed to construct a miRNA and DNA methyla-
tion regulatory network and to screen out pivotal genes 
that may provide a more comprehensive understanding 
of the epigenetic regulation of adipogenesis and poten-
tial therapeutic targets in the early and late stages of 
adipogenesis for the treatment of metabolic diseases.
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Material and methods
Microarray analysis
The data used in this study were downloaded from 
the Gene Expression Omnibus (GEO) [23]. GSE59684 
was obtained as the noncoding RNA data. DNA 
methylation data were obtained using the accession 
number GSE119539. Transcriptome datasets were 
obtained under the accession numbers GSE76131 and 
GSE119593. The data are the sequencing data of dif-
ferent stages of mesenchymal stem cells after lipogenic 
induction. Transcriptome data included sequenc-
ing data 0, 6, 48, 96, 192, and 384 h after induction of 
human SBGS preadipocyte cells. Micro-RNA data 
included sequencing data from the human MSC line 
(hMSC-TERT) 0, 7 d, and 13 days after induction. The 
methylation data are methylation sequencing data from 
human SBGS preadipocyte cells 0, 24, 48, 96, 192, and 
384  h after induction. An induction time of 96  h was 
set as the cutoff value. Samples with induction times 
longer than 96  h were classified as a late-stage group, 
while others were regarded as an early-stage group.

Analysis of differentially expressed probes
Filtering of differentially expressed probes was accom-
plished using the R language Bioconductor package. 
The limma package was used to screen differential 
expression probes. Absolute t > 2 and q < 0.05 were used 
as cutoff values. Through the annotation file, the probe 
names were converted to the gene name, and DEGs 
and DEMs were then screened out. Differentially meth-
ylated CpG probes (DMPs) were filtered similarly. 
DMPs located in the gene region were well anchored 
to differentially methylated genes (DMGs). The sin-
gle methylation value is merged into each gene pro-
moter represented in the GPL13534 platform using the 
median of the CpG probe methylation value to locate 
the promoter region, including 1500 nucleotides from 
the transcription start site TSS1500 and 200 nucleo-
tides from the transcription start site TSS200, 5’UTR 
and the first exon. The sex chromosome data were not 
included for analysis.

PPI network analysis
The human protein interaction pairs were downloaded 
from the STRING database [23]. Cytoscape software 
was used to visualize the PPI network based on the out-
put files of the STRING database. The MCODE plugin 
was then used to identify the pivotal gene modulus with 
the following parameters: degree cutoff: 2; node score 
cutoff: 0.2; K-Core: 2; and maximum depth: 100.

miRNA target gene prediction, miRNA‑mRNA network 
construction, and ceRNA network prediction
The miRWalk3.0 online database was utilized to predict 
miRNA target genes based on miRNA sequences[24]. 
The filter parameters were set as score = 1, binding site 
3UTR, and experimentally validated. Using the starBase 
3.0 database, lncRNAs and circRNAs were predicted 
based on miRNA sequence input and predicted ceRNA 
networks were constructed. The parameters were set to 
CLIP-Data greater than or equal to 1, Degradome-Data 
greater than or equal to 0, pan-Cancer greater than or 
equal to 0, and target to empty.

Functional annotation and pathway enrichment analysis
GO and KEGG enrichment analyses were performed 
using the R language cluster profile package. The 
ClueGO plug-in was used to analyze the connections 
between different GO terms. The R package ggplot2 
was employed for visualization.

Predicting therapeutic drugs based on the CMap database
The query function of the CMap database (https://​clue.​
io/) was used to import upregulated and downregulated 
gene lists. The exported results are shown in the form 
of heatmaps. The column is the cell ID, and the row 
represents perturbation, indicating the classification of 
the database (small molecule composition, knockout, 
or overexpression). The small molecule compounds 
that act on the introduced genes were screened out and 
ranked in descending order according to the enrich-
ment scores from the heatmap, and the top 10 com-
pounds were selected as potential therapeutic drugs.

Molecular docking
Maestro (version 10.2) was used to predict the bio-
logical binding between compounds and target pro-
teins encoded by hub genes. The protein and chemical 
structure were imported into Maestro software. After 
the assignment of the bond sequence, the addition of 
hydrogen, generation of zero-order bonds with the 
metal, and generation of disulfide bonds, the prepa-
ration was complete, and the structure was ready for 
docking.

Results
Summary of mRNA, miRNA, and CpG islets filtered out
For the gene methylation microarray GSE119539, 
24,921 hypomethylated CpG sites were anchored in 
5513 genes, and 7,555 hypermethylated CpG sites were 
anchored in 2880 genes, which were regarded as dif-
ferentially methylated genes (DMGs). The differen-
tially methylated CpG islets are illustrated in the circus 

https://clue.io/
https://clue.io/
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Fig. 1  Differential DNA methylation distribution. A Circus plot of CpGs. Autosomal chromosomes are shown in a clockwise direction from 1 to 
22 in the outermost circle. Red- and green-labeled genes correspond to the top 8 hypermethylated and hypomethylated genes, respectively. The 
two innermost circles represent the frequency of the filtered hypermethylated (inner) and hypomethylated (outer) CpG islets. The two middle 
circles show the histogram of p values of hypermethylated (inner) and hypomethylated (outer) CpG islets. The two outermost circles show the 
heatmaps with two different sample sets of methylated CpG islets. B Bar plot of differentially methylated CpGs throughout each genomic region. 
Body methylated CpG islets were excluded from further analysis. C Manhattan plot of epigenome-wide association results showing -log10 (P-value) 
labeled with the red line
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plot (Fig.  1A). Figure  1B shows different methylation 
site proportions in different genomic subregions. The 
pattern of DMG distribution on autosomes is shown 
in Fig.  1C. In GSE76131, a total of 5,077 DEGs were 
screened out, including 3463 highly expressed and 
1,614 lowly expressed genes. In GSE119593, 6835 DEGs 
were filtered, including 3473 high-expression and 3362 
low-expression DEGs. Venn diagrams were utilized to 
obtain the intersection of the two datasets, and a total 
of 3650 overlapping DEGs were screened, including 
2479 high-expression and 1171 low-expression DEGs, 
as shown in Fig. 2A-B. In addition, 35 highly expressed 
miRNAs and 21 downregulated miRNAs were filtered 
in GSE59684. The GO enrichment analysis of DEMs 
is shown in Fig.  2C. Figure  2D shows the heatmap of 
the top 40 DMGs (20 hypermethylated and hypo-
methylated genes). In addition, 101 low miRNA-tar-
geted upregulated genes and 64 high miRNA-targeted 

downregulated genes overlapped according to the 
Venn diagram (Fig.  3A). 663 hypomethylated-highly 
expressed genes and 237 hypermethylated-low 
expressed genes were identified by overlapping abnor-
mally methylated and mRNA genes (Fig.  3B). A sche-
matic diagram demonstrating the overall findings and 
working flow of the study has been plotted in Fig. 3C.

High‑expression genes binding with low‑expression 
miRNAs
Thirty-two gene ontology terms met the threshold of q 
value < 0.05. These genes were significantly enriched in 
nucleotide metabolism and phosphatase activities. To 
further determine the importance of miRNA regulation 
in the adipogenesis process, a miRNA-mRNA regulation 
network was built (Fig. 4A). AP1G1, OPA3, PANK1, PPIF, 
and SH3GLB1 could be targeted by two miRNAs based 

Fig. 2  A and B Venn diagram for all overlapping DEGs, including 2479 upregulated genes and 1171 downregulated genes. C KEGG enrichment 
analysis of DEMs expressed. D Top 40 DMGs (20 hypermethylated genes and 20 hypomethylated genes). Orange indicates that the expression of 
genes is relatively upregulated, and blue indicates that the expression of genes is relatively downregulated
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Fig. 3  A Venn diagram for all overlapping genes between DEM-predicted genes and DEGs. B Venn diagram for all overlapping genes between 
DMGs and DEGs. C Overall findings and working flow of the present study
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on the regulatory network. The bubble chart of KEGG 
enrichment is shown in Fig. 4B.

Low‑expression genes with high‑expression miRNAs
The GO enrichment results showed that genes with 
low expression overlapping with highly expressed miR-
NAs were primarily related to cell cycle regulation and 

chromosome regulation. As plotted in the miRNA-
mRNA network, MCL1 was regulated by 4 miRNAs, 
and ASB6, DNAJC10, SEMA7A, and TMEM43 were 
regulated by 3 miRNAs. CALU and CLCC1 were regu-
lated by 2 miRNAs, as shown in Fig. 4C. The terms for 
enriched KEGG analysis are shown as bubble plots in 
Fig. 4D.

Fig. 4  Visualized regulatory network and enrichment bubble graph for miRNA-targeting DEGs. A Regulatory network graphs of low-expression 
miRNAs and upregulated target genes. B KEGG and GO enrichment bubble graph for overlapping upregulated genes. C Regulatory network graph 
of highly expressed miRNAs and downregulated genes. D KEGG and GO enrichment bubble graph for overlapping downregulated genes
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Highly expressed and hypomethylated genes
Enrichment analysis was performed on 364 hypometh-
ylated and highly expressed genes. Among the 335 GO 
enrichment items filtered using the threshold value of q 
value < 0.05, the top 5 items were primarily related to lipid 
metabolism and small molecule catabolism (Fig.  5A). 
KEGG and Reactome pathway analysis showed that the 
module was primarily related to the PPAR signaling path-
way, fatty acid metabolism, and mitochondrial transla-
tion initiation, as illustrated in Fig. 5B. The PPI included 
577 genes and established 4274 interconnections using 
the STRING database. In addition, the MCODE plug-in 
was used to screen out the most important module based 
on the generated PPI network (Fig. 5C).

Downregulated DGEs overlapped with hypermethylation
A total of 112 GO terms were screened according to the 
threshold of q < 0.05. Figure 5D shows that they were pri-
marily involved in the extracellular matrix organization, 
focal adhesion, and collagen binding. GO and Reactome 
pathways showed that the function of the core module 
was primarily related to elastic fiber formation, collagen 
formation, and constitutive signaling by aberrant PI3K in 
the cancer pathway, as shown in Fig. 5E. A PPI compris-
ing 173 genes and 744 connections was built using the 
STRING database. The MCODE plug-in was used to fil-
ter out the most significant module (Fig. 5F).

Dual regulated DEGs
Interestingly, some DEGs were simultaneously regulated 
by both DNA methylation and miRNA, which may indi-
cate a more intricate function during adipogenic differen-
tiation. Twenty-four DEGs, including ACACA, ALDH2, 
AP1G1, and ARIH1, were upregulated during hypometh-
ylation and low miRNA expression (Fig. 6A). Seventeen 
genes, including BAIAP2, CALU, CCDC80, and DFFB, 
were downregulated during hypermethylation and high 
miRNA expression (Fig.  6B). Additional file  1: Table  S3 
summarizes DNA methylation sites and their relation-
ship with CpG islands, as well as regulatory miRNAs. The 
KEGG pathways of up-and down-regulated genes were 
listed in Fig.  6C. The PPI network of 41 dual-regulated 
genes is shown in Fig.  6D. To gain deeper insights into 
the upregulation and downregulation of gene expres-
sion across the entire human genome, especially in the 
hematopoietic system and soft tissues where there exist 
abundant adipocytes, the MERAV online database was 
used, and representative heatmaps were created. Among 
the 24 upregulated genes, ALDH2 and GLUL exhibited 
the highest expression levels in the hematopoietic sys-
tem, skin, and soft tissues, as shown in Fig.  6E. Among 
the 17 downregulated genes, FKBP14, OSMR, and DFFB 

displayed the lowest expression levels in the hematopoi-
etic system, skin, and soft tissues, as illustrated in Fig. 6F.

Twenty-four up- and 17 downregulated dual overlap-
ping genes were imported to the CMap tool to predict 
potential compounds that have pharmacologic actions 
against the input genes. Based on enrichment scores, the 
top 10 compounds were determined as potential thera-
peutic candidates for adipogenesis-related pathological 
conditions, which are listed in Table 1.

The predicted CpG island location that can be bound 
by transcription factors is listed in Fig.  7A. In addition, 
PPI networks were built based on overlapping abnormally 
expressed genes, and the core module was screened out 
using the MCOD plug-in. The core module included four 
genes, among which the upregulated genes were CANX 
and PPIF, and the downregulated genes were MCL1 and 
HNRNPA1. Figures 7B-C show the predicted ceRNA reg-
ulation patterns for the four selected genes. In addition, 
PROMO software has been used to predict the transcrip-
tion factors that can bind to the methylated regions of the 
above four gene promoters (Fig. 7D and Additional file 1: 
Figure S1). To determine the binding pattern between 
hub gene-encoded proteins and predicted compounds, 
docking analysis was performed. The docking patterns 
of CANX and PPIF are shown in Figs. 7E and 7F, respec-
tively. However, further experiments are needed to verify 
these associations.

Discussion
The formation of mature adipocytes includes two stages, 
commitment and terminal differentiation. Once differ-
entiation is initiated, preadipocytes will first enter the 
contact inhibition phase. When the adipogenesis stimu-
lating factor is added, the preadipocyte morphology will 
enter the second phase. With the accumulation of lipid 
droplets, they will transform into mature adipocytes [25]. 
This article primarily examined the process of adipocyte 
differentiation in molecular mechanisms and epigenetic 
regulation during adipogenesis. The miRNA microarray, 
DNA methylation microarray, and mRNA microarray 
data were systematically analyzed, and analyses between 
samples in the early and late stages of adipogenic differ-
entiation were compared. Hub genes and key pathways 
involved in epigenetic regulation during adipogenic dif-
ferentiation were screened out.

In this study, day 4 (96 h) of induction was regarded as 
the cutoff, based on which the cell cohorts were divided 
into early-stage and late-stage groups. For miRNA data-
sets, there were no significant probes screened out 
between days 7 and 13. In addition, for DNA methyla-
tion datasets, when 48 h was selected as the cutoff, only 
33 significantly methylated CpG islets were screened out. 
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Fig. 5  The PPI network and enrichment bar graph for methylation-related DEGs. A and D GO and KEGG enrichment bar graphs for 
hypomethylation–upregulated genes (A) and hypermethylation–downregulated genes (D). B and E Reactome and KEGG pathway enrichment 
visualized by CluoGO of hypomethylation and high-expression hub genes (B) and hypermethylation and low-expression hub genes (E). C and F, 
Pivotal modules of hypomethylated–upregulated genes (C) and hypermethylated–downregulated genes (F)
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Combined with the aforementioned information, 96  h 
was selected as the optimal cutoff value.

Through the overlapping strategy of DEG and DEM 
target genes, 101 upregulated genes with low miRNAs 
were screened out. KEGG analysis revealed that the insu-
lin signaling pathway was enriched. The insulin signaling 
pathway has been widely investigated in fat metabolism 
[26]. After insulin binds to the extracellular alpha subu-
nit of the insulin receptor (InsR), it activates tyrosine 
kinase activity of the intracellular beta subunit, and the 
beta subunit undergoes autophosphorylation so that the 
tyrosine of the downstream substrate is phosphorylated 
and activated [27]. Insulin promotes the synthesis of fat 
and glycogen by acting on target tissues and inhibits the 
decomposition rate of lipids and liver glycogen, strongly 
promoting the storage of substances in the body. If insu-
lin resistance or insulin production defects occur in the 
body, it will lead to abnormal regulation of adipogenesis 
[28].

Sixty-four lowly expressed genes binding to miRNAs 
with high expression were filtered by determining the 
intersection between DEGs and DEM target genes. Using 
GO analysis, it was found that these genes are primarily 
involved in cell cycle regulation and chromosome regula-
tion. KEGG analysis revealed that these genes were pri-
marily responsible for the cell cycle and proliferation. As 
illustrated in Fig. 4C of the miRNA-mRNA network, it is 
worth noting that a total of 7 genes were bound by mul-
tiple miRNAs, which may be key targets for the regula-
tion of multiple miRNAs. For instance, hsa-miR-455-3p 
can bind abundant target genes, such as APOBEC3F, 
BAIAP2, CDKN2A, CLCC1, PFKP, PLPP4, POFUT2, 
SYT7, and TMEM43. Hsa-miR-455 enhances adipo-
genic differentiation of 3T3-L1 cells by targeting uncou-
pling protein-1 [29]. Hsa-miR-455 activates AMPKα1 by 
targeting HIF1, and AMPK promotes the brown adipo-
genic program and mitochondrial biogenesis. Concomi-
tantly, miR-455 also targets the adipogenic suppressors 
Runx1t1 and Necdin, initiating adipogenic differentiation 
[30]. KEGG analysis of Hsa-miR-455-3p binding genes 
revealed that these genes were related to cell cycle regu-
lation and CDC42-related signaling pathways. Recent 
in vitro experiments confirmed that Cdc42 promotes the 
differentiation of adipose-derived mesenchymal stem 
cells (ADSCs) into pancreatic β-like cells through the 
Wnt/β-catenin pathway [31].

The pathway enrichment of 663 genes with low meth-
ylation and high expression was primarily concentrated 

in Alzheimer’s disease, prion disease, diabetic car-
diomyopathy, Parkinson’s disease, and reactive oxygen 
species-related chemical carcinogenesis. Diabetic cardi-
omyopathy is one of the complications of T2DM. These 
cellular changes include enhanced adipogenesis of MSCs, 
as observed in both type 1 and 2 models of diabetes. 
Emerging evidence now implicates enhanced marrow 
adipogenesis and changes to cellular makeup of the mar-
row in a novel mechanistic link between various second-
ary complications of diabetes [32]. The MCODE plug-in 
was used to screen the core module. Analysis of the core 
module showed that its function was primarily related to 
fatty acid metabolism, peroxisomal protein import, the 
PPAR signaling pathway, the citric acid cycle, respiratory 
electron transport, glyoxylate metabolism and glycine 
degradation, and mitochondrial transition initiation.

For 237 genes with high methylation and low expres-
sion, GO and KEGG enrichment analysis indicated that 
they were primarily enriched in the extracellular matrix 
organization, focal adhesion, and cell-substrate junctions. 
These genes are primarily related to the movement of 
cells and formation of the extracellular matrix. The core 
modules of hypermethylated-low expressed genes were 
screened out from the PPI network. The functions of the 
core modules were focused on elastic fiber formation, 
collagen formation, and constitutive signaling by aber-
rant PI3K. It was reported that type III collagen (ColIII) 
is required for 3T3-L1 preadipocyte adipogenesis as well 
as the formation of actin stress fibers [33]. The above 
analysis suggests that during the late stage of adipogen-
esis, cytoskeletal components are reduced, which may be 
related to the activation of PI3K-related pathways.

Interestingly, miRNA and DNA methylation may work 
together to regulate the expression of certain genes in 
adipogenesis. Twenty-four genes, including ACACA, 
ALDH2, AP1G1, and ARIH1, were increased due to two 
types of epigenetic regulation. Under dual regulation, 
17 genes, such as APOBEC3F, ATP8B2, BAIAP2, and 
CALU, were downregulated. These genes were primarily 
involved in apoptosis, the JAK-STAT signaling pathway, 
the PI3K-Akt signaling pathway, another type of O-gly-
can biosynthesis, and adherens junctions. For 24 genes 
upregulated by low miRNA and hypomethylation, KEGG 
analysis determined that these genes may be involved 
in the insulin signaling pathway, pyruvate metabolism, 
nitrogen metabolism, fatty acid biosynthesis, and protein 
processing in the endoplasmic reticulum. ALDH2 and 
GLUL were upregulated in hematopoietic and lymphoid 

Fig. 6  Details of dual regulated genes. A and B, Venn graph for all overlapping genes, including 17 upregulated genes and 24 downregulated 
genes. C KEGG enrichment analysis of dual regulated genes. Orange indicates the up-regulated genes, and green color indicates the 
down-regulated genes. D PPI network of the overlapping dual regulated genes, including an upregulated label with red color and downregulated 
genes with green color. E and F Heatmap of 43 upregulated and 14 downregulated genes expressed in different tissues

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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tissue and soft tissue. On the other hand, FKBP14, 
OSMR, and DFFB were downregulated in hematopoietic 
and lymphoid tissue and soft tissue, indicating that they 

may be involved in the adipogenesis of fat cells in these 
tissues.

From the CMap database, 10 chemical substances 
were identified, including dolasetron, dopamine, 

Table1  Top 10 chemicals were predicted as putative therapeutic agents for adipogenesis

Chemical name Function Chemical formula Enrichmentscore

dolasetron Serotonin receptor antagonist

 

1.99

dopamine Dopamine receptor agonist

 

1.87

everolimus MTOR inhibitor

 

1.86

ivermectin GABA receptor agonist

 

1.83

atenolol Adrenergic receptor antagonist

 

1.81

dephostatin Tyrosine phosphatase inhibitor

 

1.81

nikkomycin Chitin inhibitor

 

1.77

roscovitine CDK inhibitor

 

1.76

UK-356618 Metalloproteinase inhibitor

 

1.75

GR-144053 Integrin inhibitor

 

1.74
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Fig. 7  Comprehensive epigenetic regulation prediction of the four hub genes. A CpG islands prediction analysis of 4 hub genes. B and C Ce-RNA 
regulatory network of four hub genes. D Representative predicted transcription factors MyoD and VDR that can bind CpG islands in the promoter 
regions of CANX. E and F simulation of the molecular docking pattern of CANX (E) and PPIF (F) with dolasetron
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everolimus, ivermectin, and atenolol, which may have 
potential pharmacological actions on adipogenesis. 
Dopamine is a substance with a wide range of effects, 
and studies have shown that it has a potential effect on 
adipogenic differentiation. Dopamine receptor domain 
5 (Drd5) genes were previously suggested to contribute 
to the adipogenesis. Knockdown of dopamine receptor 
D2 upregulates the expression of adipogenic genes in 
mouse primary mesencephalic neurons [34].

The MCODE plug-in was used to screen out core 
modules, including 4 central genes, CANX, HNRNPA1, 
MCL1, and PPIF. The promoter region of CANX pre-
dicts four CpG islands, which may bind a large num-
ber of transcription factors, including AP2, MyoD, and 
VDR. The encoded protein calnexin is a calcium-bind-
ing, endoplasmic reticulum (ER)-related protein that 
transiently interacts with newly synthesized N-linked 
glycoproteins to promote protein folding and assem-
bly. By keeping misfolded protein subunits in the ER for 
degradation, it may also play a central role in the qual-
ity control of protein folding [35]. HNRNPA1 contains 
five CpGs in its promoter region. This gene encodes 
members of the ubiquitously expressed heterogene-
ous ribonucleoprotein (hnRNP) family. These ribonu-
cleoproteins are RNA-binding proteins associated with 
pre-mRNA in the nucleus that affects pre-mRNA pro-
cessing, as well as mRNA metabolism and transport. 
The protein encoded by this gene is one of the most 
abundant core proteins of the hnRNP complex and 
plays a key role in the regulation of alternative splic-
ing. Mutations in this gene have been observed in indi-
viduals with amyotrophic lateral sclerosis [36]. MCL1 
encodes an anti-apoptotic protein that is a member of 
the Bcl-2 family. The longest gene product (isotype 1) 
enhances cell survival by inhibiting apoptosis, while the 
shorter gene products (isotypes 2 and 3) that are alter-
nately spliced promote apoptosis [37, 38]. The protein 
encoded by PPIF is a member of the peptidyl-prolyl 
cis–trans isomerase (PPIase) family. PPIases catalyze 
the cis–trans isomerization of proline amide peptide 
bonds in oligopeptides and accelerate protein folding. 
This protein is part of the mitochondrial permeability 
transition pore in the inner mitochondrial membrane. 
Activation of this pore is thought to be related to the 
induction of apoptosis and necrotic cell death [39].

The role of ceRNA in adipogenesis has been a research 
hotspot in recent years. For example, lncRNA H19 tar-
gets LCoR by interacting with the miR-188 sponge, 
thereby affecting the osteogenic and adipogenic differ-
entiation process of mouse BMSCs. LncRNA ADNCR 
inhibits adipogenesis and differentiation by targeting 
miR-204 [40]. Therefore, potential ceRNA networks have 
been predicted for the above four central genes.

In the past, it was widely assumed that inhibiting adi-
pogenesis could be a potential anti-obesity approach. 
However, results from various experiments indicate that 
adipogenesis inhibitors are not a good choice for improv-
ing metabolic disorders because restricting adipocyte 
expansion may lead to insulin resistance. As reported by 
Danfour et al., the failure of adipocyte differentiation may 
lead to type 2 diabetes [17]. The mouse model showed 
that the improvement of the metabolic health of obese 
animals can be induced by further healthy expansion of 
adipose tissue [41]. In these mice, adipogenesis allows 
adipose tissue to expand in the way of hyperplasia while 
preventing hypoxia, chronic inflammation, and fibrosis 
caused by hypertrophy of adipocytes [42]. In the present 
study, through filtering the pivotal genes and character-
izing different epigenetic regulation between the early 
and late stage of adipogenesis, more precise therapeutic 
targets could be provided to intervene in the early stage 
( promoting hyperplasia) or late stage of adipogenesis 
(inhibiting hypertrophy) for the treatment of metabolic 
disorders secondary to obesity. Besides, the genes differ-
entially expressed in the early and late stages of adipogen-
esis could also be the potential biomarkers to evaluate the 
risk of metabolic disorders for the overweight population.

There is some inherent limitation in our study. Due to 
data availability, the study did not include the correlation 
analysis involving clinical parameters such as incidence 
rate of metabolic disorders. Besides, more experiments 
are needed to further validate the effect of specific meth-
ylation or miRNA expression changes on adipogenesis. 
As a consequence, in the future, clinical trials and experi-
ments are planned to validate the effectiveness of the 
epigenetic regulation of these genes and to explore the 
feasibility to use certain biomarkers to predict the risk of 
metabolic disorders among overweight populations.

In summary, this study comprehensively analyzed 
abnormally methylated, miRNA-targeted, and differ-
entially expressed genes involved in the process of adi-
pogenesis that is epigenetically regulated. Twenty-four 
genes were upregulated in response to miRNA reduction 
and hypomethylation, while 17 genes were downregu-
lated in response to miRNA increase and hypermeth-
ylation. Ten chemicals were identified as putative 
therapeutics for adipogenesis. In addition, among these 
dual-regulated genes, CANX, HNRNPA1, MCL1, and 
PPIF may be key biomarkers in the epigenetic regulation 
of adipogenesis and may serve as aberrant methylation or 
miRNA targeting biomarkers.
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