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ABSTRACT
Psoriasis is a common, chronic, inflammatory skin disease that affects 2%–4% of the global population.
Recent studies have shown that increased oxidative stress (OS) and T-cell abnormalities are central to
the pathogenesis of this disease. The resulting reactive oxygen species (ROS) induces proliferation and
differentiation of Th17/Th1/Th22 cells and inhibits the anti-inflammatory activities of regulatory T
lymphocytes (Treg). Subsequent secretions of inflammatory cytokines, such as interleukin (IL)-17, IL-
22, tumor necrosis factor alpha (TNF-α), and interferon-gamma (IFN-γ), and vascular endothelial
growth factor (VEGF), stimulate keratinocyte proliferation and angiogenesis.

Proanthocyanidins are a class of flavonoids from plants and fruits, and have various antioxidant,
anti-inflammatory, and anti-angiogenic properties. Numerous reports have demonstrated
therapeutic effects of proanthocyanidins for various diseases. Among clinical activities,
proanthocyanidins suppress cell proliferation, prevent OS, and regulate Th17/Treg cells. Because
the pathogenesis of psoriasis involves OS and T cells dysregulation, we reviewed the effects of
proanthocyanidins on OS, Th17 and Treg cell activities, and keratinocyte proliferation and
angiogenesis. Data from multiple previous studies warrant consideration of proanthocyanidins as a
promising strategy for the treatment of psoriasis.
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Introduction

Psoriasis, a chronic immune-mediated inflammatory relapsing
skin disorder, is characterized by epidermal hyperplasia,
angiogenesis, and inflammatory cells infiltration [1]. Psoriasis
currently affects 2%–4% of the global population and
impacts quality of life by causing physical and psychological
trauma [2,3]. Although the etiology of psoriasis remains
unclear, it is widely considered that oxidative stress (OS)
and T-cell dysregulation are the key pathogenic factors.
Various treatments have been utilized to treat psoriasis,
including topical preparations containing corticosteroids, reti-
noid derivatives, synthetic vitamin D3 analogs, tar, or anthra-
lin; systemic medications, such as immunosuppressive agents
and calcineurin inhibitors acitretin and isotretinoin; and
photochemotherapy (PUVA) and UVB irradiation [4–6].
However, these therapies have transient curative effects and
hardly prevent relapse. Moreover, most psoriasis therapies
are unsuitable for long-term use due to considerable side
effects and high costs [7,8]. Consequently, a long-term cure
for psoriasis is eagerly awaited.

Recently, studies have shown that natural proanthocyani-
dins have powerful antioxidant, anti-inflammatory, immuno-
suppressive, anti-angiogenic, and anti-proliferative activities,
and have no adverse effects [9,10]. Proanthocyanidins are
polyphenols from various plants and fruits, and are present
at high levels in grape seeds, cranberries, red wine, metase-
quoia, and glyptostroboides. Increasing evidence indicates
that proanthocyanidins offer effective and safe treatments
for various diseases, including cardiovascular disease,

diabetes, autoimmune arthritis, and squamous cell carcinoma,
primarily by ameliorating OS, regulating cell differentiation,
and inhibiting cell proliferation. However, few studies demon-
strate the efficacy of proanthocyanidins in the treatment of
psoriasis [11–16]. Because psoriasis is an immune-mediated,
inflammatory disease that leads to OS and T-cell abnormal-
ities, we reviewed the evidence of treatment potential of
psoriasis.

Pathogenesis of psoriasis

Genetic, environmental, and immunological factors have
been considered in connection with the etiology of psoriasis
[17,18], and an increasing number of studies have demon-
strated that OS and immune inflammation are central to the
pathogenesis of psoriasis. Although several proinflammatory
factors and cytokines have been implicated, OS is caused by
endogenous and exogenous factors and contributes to
increased levels of reactive oxygen species (ROS), which
initially triggers T-cell imbalances and inflammatory reactions,
and then promotes the release of inflammatory cytokines that
stimulate keratinocyte proliferation and angiogenesis [19,20].
These molecular and histopathological alterations have been
implicated in clinical manifestations of psoriasis [21–23], with
increased ROS and dysregulated T cells being central.

Redox imbalances are increasingly implicated in the patho-
genesis of psoriasis and manifest throughout the disease. In
particular, multiple studies have shown significant aberrations
of OS parameters in psoriasis patients [24–26], and most show

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

CONTACT Jianqiao Zhong zjq7632@hotmail.com Department of Dermatology, Affiliated Hospital of Southwest Medical University, No.25 Tai Ping Jie,
Luzhou, Sichuan, 646000, People’s Republic of China
*Co-author.

REDOX REPORT
2018, VOL. 23, NO. 1, 130–135
https://doi.org/10.1080/13510002.2018.1462027

http://crossmark.crossref.org/dialog/?doi=10.1080/13510002.2018.1462027&domain=pdf
http://orcid.org/0000-0003-1880-7091
http://creativecommons.org/licenses/by/4.0/
mailto:zjq7632@hotmail.com
http://www.tandfonline.com


marked decreases in the antioxidant enzymes catalase (CAT),
superoxide dismutase (SOD), and glutathione peroxidase
(GSH-Px) in psoriatic lesions and in matched serum samples.
Conversely, increased levels of malondialdehyde (MDA),
nitric oxide (NO), superoxide radical (O−

2 ), and inducible
nitric oxide synthase (iNOS), have been found in psoriatic
lesions [27–29]. Most of these OS biomarkers are closely
related to the severity and progression of psoriasis. Previous
studies show that OS, predominantly related to increased
ROS, has significant effect on T lymphocytes, dendritic cells
(DCs), and keratinocytes, and on inflammatory signaling and
angiogenesis [30,31]. By stimulating several proinflammatory
signaling pathways including nuclear factor kappa B (NF-κB),
mitogen activated protein kinase (MAPK), and the Janus
kinase–signal transducers and activators of transcription
(JAK-STAT), increased ROS elicit the release of proinflamma-
tory mediators and secretions of vascular endothelial
growth factor (VEGF), which induces angiogenesis. Concomi-
tantly, T helper (Th)1/Th17 cells are activated and regulatory
T (Treg) cells are inhibited [32–34]. Th1 activation may
induce occurrence of psoriasis, while Th17 cells, the most
central factor of psoriasis, facilitate further development of
psoriasis via production of several inflammatory cytokines
and stimulation of neutrophil and macrophage infiltration
[35,36]. Consequently, Th1/Th17 cells interact with DCs,
mast cells, macrophages, and neutrophils to coordinate
inflammatory responses involving interleukin (IL)-8, IL-12, IL-
17, IL-19, IL-22, IL-23, tumor necrosis factor alpha (TNF-α),
transforming growth factor-β (TGF-β), and interferon-
gamma (IFN-γ) [37,38]. Via ROS-mediated transcription
factors and proliferation pathways, these cytokines promote
T-cell and keratinocyte proliferation and differentiation, and
induce the above signals to mediate the immunopathological
process of psoriasis [39,40].

Psoriasis, as a disease of multifactorial involvement, is also
implicated in inherited susceptibility alleles, TNF-α gene poly-
morphism in particular. TNF-α is generally considered as the
master proinflammatory cytokine and is deemed to be a
key candidate gene for the pathogenesis of psoriasis, which
can accelerate the infiltration of lymphocytes, neutrophils
and monocytes. The single nucleotide polymorphisms of
TNF-α at loci + 489 GG and GA, −308 G/G, −238 and −857C/
T and + 489 are strongly associated with psoriasis and psoria-
sis arthropathica and may become a vital pharmaceutical
therapy target for these conditions [41]. Although TNF-α has
been investigated in multiple studies of psoriasis, the cyto-
kines IL-12, IL-17, IL-19, IL-22, and IL-23 also play central
roles. In particular, IL-12 and IL-23 induce Th1 and Th17-
biased immune responses; IL-23 dominates Th17 activation,
proliferation and maintenance [22,39,42], while IL-12 polarizes
Th1 responses, leading to the production of Th17 (IL-17, IL-22,
and IL-23) and Th1 cytokines (IFN-γ and TNF-α), respectively
[43,44]. Th17 cells and Treg cells also represent two CD4(+)
T-cell subsets, and are central players in the pathogenesis of
psoriasis. Ratio of Th17 to Treg cells increase in psoriasis
patients and is positively correlated with disease severity
[45]. Th17 cells are derived from CD4+ T cells in the presence
of IL-6, IL-23, and TGF-β, which play a central role in the
chronic inflammatory diseases (psoriasis in particular) and
are considered responsible for the chronic course of psoriasis
[21,31,35]. These cell types secrete inflammatory cytokines
such as IL-6, IL-17, IL-21, IL-22, IL-23, IL-26, and TNF-α (IL-17
in particular); IL-17 not only promotes keratinocytes

proliferation but also encourages the production of intercellu-
lar adhesion molecule-1, IL-6, IL-1, IL-8, prostaglandin E2, TNF-
α and IFN-γ [35]. The above processes provoke and exacerbate
the immune responses and contribute to sustained psoriatic
inflammation [22,31,42]. In contrast, CD4+ T cells differentiate
into Treg cells in the presence of TGF-β, and subsequently
express Forkhead Box P3 (Foxp3) [46]. Foxp3 (+) Treg cells
have prominent functions in the maintenance of immunologi-
cal tolerance to self-antigens, in the counteraction of inflam-
matory activity of effector Th cells, and in the regulation of
Th17 differentiation [22]. However, during the onset of psoria-
sis, the anti-inflammatory effects of Treg cells against T-cell
proliferation and IFN-γ secretion are impaired, and number
of Treg cells is reduced [47]. Notably, many of the cytokines
produced by activated Th17 cells induce keratinocyte prolifer-
ation in psoriasis patients, and following receptor binding and
downstream signaling via STAT3, IL-23 contributes to the
development of psoriasis [48,49]. The STAT3 pathway has
been widely associated with proliferation and is markedly
active in psoriasis patients, likely leading to an increased IL-
17 expression [50]. Persistent activation of STAT3 leads to
increased Th17 and keratinocyte proliferation [49]. Moreover,
following stimulation of STAT3 phosphorylation by IL-6/IL-22,
the ensuing signaling pathway leads to overexpression of
VEGF during psoriasis. Although IL-17 is widely associated
with psoriatic keratinocyte proliferation and prosoplasia [51–
54], activated keratinocytes produce numerous cytokines
and chemokines, including adenosine monophosphates
(AMPs), angiogenic factors, and CCL20, which subsequently
activate T cells, recruit neutrophils, and form a sustaining
and amplifying inflammation loop [55]. Due to these molecu-
lar and cellular alterations, histopathologic features of psoria-
sis ultimately present as hyperkeratosis, parakeratosis,
hypogranulosis, angiogenesis of dermal papillae, and sus-
tained infiltration of lymphocytes and neutrophils [56]. The
pathogenic mechanisms of psoriasis are summarized in
Figure 1.

Characteristics and clinical applications of
proanthocyanidins

Proanthocyanidins belong to plant flavonoids, including cate-
chin and epicatechin, and have antioxidant, anti-inflamma-
tory, anti-angiogenesic, anti-proliferative, and
immunomodulatory effects [16,57–65]. Proanthocyanidins
have been isolated from grapes, apples, metasequoia bark,
cinnamon, aronia fruit, cocoa beans, bilberry, cranberry,
black currant, and various other plants [16,66]. As powerful
antioxidants and free-radical scavengers, proanthocyanidins
have a wide range of application in the treatment for
various OS-related complaints [67]. Previous studies have
shown that proanthocyanidins antagonize OS-mediated
damage and enforce antioxidant capacity by modulating
several signaling pathways, eliminating ROS and MDA, and
upregulating antioxidants or detoxication enzymes, including
hemeoxygenase-1(HO-1), CAT, SOD, and GSH-Px [14,57,58,68].
Mantena et al. found that dietary proanthocyanidin sup-
plements help to prevent UV-induced skin disorders by
scavenging hydroxyl radicals and superoxide anions, and by
enhancing CAT, SOD, GSH, and GSH-Px activities [68]. Simi-
larly, Som et al. reported that proanthocyanidins protect
skin from UVB-induced damage by inhibiting MAPK/NF-κB
signaling pathways [57]. Moreover, findings from Sun [58]
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and Miao et al. [14] show elevated Nrf2 and HO-1 protein
expression in the presence of proanthocyanidins. HO-1 in par-
ticular reportedly blocks the STAT3 signaling pathway [53]
and further mitigates oxidative damage in diabetes, following
induction by zearalenone.

Given the number of demonstrated effects on various
markers of inflammation and immune abnormalities,
proanthocyanidins potently regulate T cells and inflammatory
cytokines and have a high potential as treatments for inflam-
matory and autoimmune diseases. In a well-established auto-
immune arthritis mice model, proanthocyanidins alleviated
collagen-induced arthritis symptoms of mice by reducing
Th17 cell numbers, increasing Treg cell numbers, and suppres-
sing the release of the STAT3-induced cytokines IL-21, IL-22,
IL-26, and IL-17 [15]. Concomitantly, Chen treated allergic
contact dermatitis with proanthocyanidins and observed
direct inhibition of Th cell activation and significant
reductions in Th17 cytokines (IL-2, IFN-γ, and IL-17) expression
levels [59]. Proanthocyanidins also inhibit LPS-induced inflam-
mation via inhibiting the mRNA expression of TNF-α and IL-1β
and suppressing MAPK and NF-κB signal pathways [60]. More-
over, related studies demonstrated strong anti-proliferative
properties of proanthocyanidins in squamous carcinoma
cells, with increased apoptosis and autophagy [16,61]. Fur-
thermore, proanthocyanidins were shown to be excellent
inhibitors of VEGF and had in vitro and in vivo anti-angiogenic
properties that affected angiogenesis by inhibiting of VEGF
expression, endothelial cell migration, and vascularization
[64,69,70]. In addition, numerous clinical trials of proanthocya-
nidins have been performed for the treatment of various dis-
eases in patients, and in healthy subjects and pregnant
women [10,71,72]. These studies consistently show that

proanthocyanidins are effective and safe, warranting their
application to a variety of diseases. However, the efficacy of
proanthocyanidins in the treatment of psoriasis has not yet
been tested directly.

Hypothesis for proanthocyanidins in the
management of psoriasis

Because OS insult and T-cell dysregulation are characterized
pathogenic consequences of psoriasis, and proanthocyanidins
have established antioxidant, anti-inflammatory, anti-angio-
genic, anti-proliferative, and immunomodulatory properties, it
is likely that proanthocyanidins will be of benefit to psoriasis
patients. Here, we present lines of evidence for the potential
of proanthocyanidins in the treatment of psoriasis as follows:
(1) Psoriasis is a common immune-mediated inflammatory
skin disorder that presents as keratinocyte hyperproliferation,
epidermalhyperplasia, angiogenesis, and inflammatory cell infil-
tration [1,56]. (2) OS insult and immune inflammation have been
associated with the pathogenesis of psoriasis [27–29]. (3) Elev-
ated ROS and oxidant/antioxidant imbalances have been
shown with increased Th17/Treg ratio in psoriatic lesions and
in serum samples [24–26], and these conditions are known to
trigger and sustain the progression of psoriasis [47–49]. (4)
Numerous inflammatory mediators/cytokines (IL-17, IL-23,
VEGF, TNF-α, TGF-β, and IFN-γ) and several signaling pathways
(NF-κB, MAPK, and STAT3) are upregulated and activated in
psoriatic tissues [22,42,48,49,51]. (5) Proanthocyanidins are
natural extracts with no known side effects and antioxidant,
anti-inflammatory, anti-angiogenic, anti-proliferative, and
immunomodulatory activities [16,57–65]. (6) Proanthocyanidins
ameliorate various OS-related diseases by scavenging ROS and

Figure 1. The primary pathogenesis of psoriasis. Genetic, environmental, and immunological factors induce active oxidative stress (OS) responses, leading to
increased reactive oxygen species (ROS), malodialdehyde, nitric oxide, superoxide, inducible nitric oxide synthase, and decreased catalase, superoxide dismutase,
and glutathione peroxidase in psoriatic lesions and in serum. Abnormal OS follows excessive ROS production, active dendritic cells, mast cells, macrophages and
neutrophils, and activated nuclear factor kappa B, mitogen activated protein kinase, and Janus kinase-signal transducers and activators of transcription signaling
pathways. Under these conditions, cells secrete proinflammatory cytokines, including IL-12, 17, 19, 22, 23, tumor necrosis factor alpha (TNF-α), interferon-
gamma (IFN-γ), and transforming growth factor beta. Released cytokines promote the expression of vascular endothelial growth factor and encourage Th1/Th17
cell activation and decreased Treg cell activity. Increased numbers of Th1 and Th17 cells secrete IFN-γ, TNF-α, IL-17, IL-21, IL-22, IL-23, and IL-26, and subsequent
STAT3 signaling leads to increased keratinocyte numbers, thus contributing to psoriasis. OS, oxidative stress; ROS, reactive oxygen species; NO, nitric oxide; MDA,
malondialdehyde; O−

2 , superoxide radical; SOD, superoxide dismutase; GSH-PX, glutathione peroxidase; CAT, catalase; DCs, dendritic cells; IL, interleukin; TNF-α,
tumor necrosis factor alpha; TGF-β, transforming growth factor beta; IFN-γ, interferon-gamma; STAT3, signal transducers and activators of transcription; Th, T
helper; Treg cells, regulatory T cells; VEGF, vascular endothelial growth factor; KCs, keratinocytes.
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MDA, by blocking MAPK/NF-κB signaling pathways, and by
upregulating HO-1, CAT, SOD, and GSH-Px [14,57,58,68]. (7)
Proanthocyanidins also decrease Th17/Treg ratios and
expression levels of inflammatory cytokines and STAT3, and
have been used to treat various immune-mediated diseases
[15,59]. (8) Finally, proanthocyanidins slowed tumorigenesis by
inhibiting cell proliferation, VEGF expression, and angiogenesis
[16,62,64,69,70,73]. Hypotheticalmechanismsofproanthocyani-
dins in the treatment of psoriasis are broadly summarized in
terms of OS inhibition, mediation of proinflammatory signaling
pathways, and regulation of T cells (Figure 2).

Clinical significance

Psoriasis has long been a research focus in the field of dermatol-
ogy. Despite the use of various drugs and physical therapies to
control psoriasis, these strategies are limited to short-term use
owing to their transient efficacy, high costs, and serious side
effects. As natural active substances without side effects,

proanthocyanidins are excellent candidates for the treatment
ofpsoriasis, and their antioxidant, anti-inflammatory, anti-angio-
genic, anti-proliferative, and immunomodulatory activities will
likely ameliorate OS, Th17/Treg cell imbalances, keratinocyte
over-proliferation, and angiogenesis. Finally, proanthocyanidins
are safe for infants, pregnant women, and the elderly [72,74].

Future research

Future studies are required to monitor psoriasis related histo-
pathological alterations such as hyperkeratosis, parakeratosis,
angiotelectasis, microabscesses, and immune cell infiltration
in the presence and absence of proanthocyanidins. Herein,
we speculate that proanthocyanidins have potent therapeutic
effects on psoriasis. To test this hypothesis and clarify the
effects of proanthocyanidins in psoriasis patients, animal
experiments are necessary to investigate the effects of
dietary proanthocyanidins in well-established psoriatic mice
models. Subsequent in vitro studies could be performed

Figure 2. Hypothesized mechanisms of action of proanthocyanidins against psoriasis. Proanthocyanidins block MAPK/NF-κB signaling pathways and activate HO-1
expression. Oxidative stress parameters such as reactive oxygen species and malondialdehyde are then decreased with increasing antioxidant levels. Proanthocya-
nidins also reduce Th17 cell numbers and moderate the release of STAT3-dependent cytokines. Moreover, increased Treg cell numbers in the presence of proantho-
cyanidins may facilitate immunological tolerance. Furthermore, proanthocyanidins are anti-proliferative and may prevent VEGF expression. Ultimately, all these
aspects are likely to contribute to the control of psoriasis. ROS, reactive oxygen species; NO, nitric oxide; MDA, malondialdehyde; O−

2 , superoxide radical; SOD, super-
oxide dismutase; GSH-PX, glutathione peroxidase; GSH, glutathione; CAT, catalase; STAT3, signal transducers and activators of transcription; Th, T helper; Treg cells,
regulatory T cells; IL, interleukin; VEGF, vascular endothelial growth factor; KCs, keratinocytes.

Figure 3. Previously, we established a psoriatic-like three-dimensional in vitro skin model. (A) Appearance of three-dimensional skin in our experiments; (B) histo-
pathology of the three-dimensional skin model; hematoxylin and eosin staining (×200).
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using psoriatic-like three-dimensional skin, as suggested in
our previous study (Figure 3). Finally, placebo-control clinical
trials may offer a scientific basis for further studies and clinical
applications of proanthocyanidins.

Conclusion

In summary, psoriasis is a common skin disease that nega-
tively affects quality of life. It is widely regarded as a multifac-
torial condition involving OS aggression, T-cell dysregulation
(Th17 and Tregs in particular), and genetic susceptibility
(typical example being TNF-α gene polymorphism) as well
as a complicated cytokine network [35]. By targeting these
key points, psoriasis can be hoped to be cured. Now, a new
generation of biologics, cytokine blockers targeting key cyto-
kines or pathways, have shown positive efficacy for psoriasis
in clinical trials [75]. Etanercept, a typical biologic for psoriasis,
targets TNF-α (+489 GG and + 489 GA genotypes) and is effec-
tive in treating psoriasis, especially psoriasis arthropathica
[41,76,77]. Ustekinumab, another novel biologic, a mono-
clonal antibody targeting the common p40 subunit, has an
encouraging effect on psoriasis by inhibiting IL-12 and IL-23.
Besides, psoriasis positively responds to the treatment invol-
ving IL-17 antibodies (e.g. secukinumab, ixekizumab, and bro-
dalumab) that targets the IL-17 cytokine pathway to alleviate
the inflammatory response [78–80]. Although biologics
display improved effect on psoriasis, the treatment cost pre-
vents patients from adopting the treatment. Thus, cost-effec-
tive therapies are required for psoriasis. Herein, we clarify the
pathogenesis of psoriasis in terms of the properties and clini-
cal applications of proanthocyanidins. The present cited
studies suggest that proanthocyanidins are an ideal candidate
for the management of psoriasis and can be used in combi-
nation with other drugs, such as anti-cytokine biologics.
However, further in vivo and in vitro experiments are required
to confirm improvements in psoriasis disease parameters fol-
lowing treatments with proanthocyanidins.
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